
Embedded Coder™ 6
User’s Guide

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Embedded Coder™ User’s Guide

© COPYRIGHT 2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
April 2011 Online only New for Version 6.0 (Release 2011a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Introduction to the Embedded Coder Product

1

Bug Reports

2

Developing Models for Code Generation

Setting Up Your Modeling Environment

3

Architecture Considerations

4
Generating Code for Variant Systems 4-2
Overview . 4-2
Why Generate Code for Variant Systems? 4-3
How to Generate Preprocessor Conditionals for Variant
Systems . 4-3

Reviewing Code Variants in the Code Generation
Report . 4-6

Example of Model Variants in the Generated Code 4-7
Example of Variant Subsystems in the Generated Code . . 4-9
Restrictions on Code Generation of a Variant Subsystem . . 4-13
Special Considerations for Generating Preprocessor
Conditionals . 4-14

Limitations on Generating Code for Variants 4-15
Exceptions to Conditionally Compiled Components in the
Generated Code . 4-15

iii

Demos for Generating Code for Variants 4-16

Creating and Using Host-Based Shared Libraries 4-17
Overview . 4-17
Generating a Shared Library Version of Your Model
Code . 4-18

Creating Application Code to Load and Use Your Shared
Library File . 4-19

Host-Based Shared Library Limitations 4-23

Scheduling Considerations

5
Using Discrete and Continuous Time 5-2
Generating Code for Discrete and Continuous Time
Blocks . 5-2

Generating Code that Supports Continuous Solvers 5-2
Generating Code that Honors a Stop Time 5-3

Optimizing Task Scheduling for Multirate Multitasking
Models on RTOS Targets . 5-4
Overview . 5-4
Using rtmStepTask . 5-5
Task Scheduling Code for Multirate Multitasking Model on
Wind River Systems VxWorks Target 5-5

Suppressing Redundant Scheduling Calls 5-6

Developing Model Patterns that Generate
Specific C Constructs

6
About Modeling Patterns . 6-2

Standard Methods to Prepare a Model for Code
Generation . 6-3

iv Contents

Configuring a Signal . 6-3
Configuring Input and Output Ports 6-4
Initializing States . 6-4
Setting Up Configuration Parameters for Code
Generation . 6-4

Setting Up an Example Model With a Stateflow Chart . . . 6-5
Setting Up an Example Model With a MATLAB Function
Block . 6-7

Types, Operators, and Expressions 6-8
Data Declaration . 6-8
Data Type Conversion . 6-11
Type Qualifiers . 6-15
Relational and Logical Operators . 6-17
Bitwise Operations . 6-21

Control Flow . 6-25
If-Else . 6-25
Switch . 6-32
For loop . 6-38
While loop . 6-46
Do While loop . 6-58

Functions . 6-65
Function Call . 6-65
Function Prototyping . 6-67
External C Functions . 6-70

Preprocessor Directives . 6-77
Macro Definitions (#define) . 6-77
Conditional Inclusions (#if / #endif) 6-79

Structures . 6-81
Typedef . 6-81
Structures for Parameters . 6-83
Structures for Signals . 6-85
Nested Structures . 6-89
Bitfields . 6-92

Arrays . 6-95
Arrays for Parameters . 6-95

v

Arrays for Signals . 6-97

Pointers . 6-99
Pointers for Signals . 6-99
Pointers for Signals and Parameters Using Simulink Data
Objects . 6-100

Defining Data Representation and Storage
for Code Generation

Using mpt Data Objects

7

Creating and Using Custom Storage Classes

8
Introduction to Custom Storage Classes 8-2
Custom Storage Class Memory Sections 8-3
Registering Custom Storage Classes 8-3
Custom Storage Class Demos . 8-4

Resources for Defining Custom Storage Classes 8-5

Simulink Package Custom Storage Classes 8-6

Creating Packages that Support CSC Definitions 8-8

Designing Custom Storage Classes and Memory
Sections . 8-12
Using the Custom Storage Class Designer 8-12
Editing Custom Storage Class Properties 8-19
Using Custom Storage Class References 8-26
Creating and Editing Memory Section Definitions 8-31
Using Memory Section References . 8-34

vi Contents

Applying CSCs to Parameters and Signals 8-37
About Applying Custom Storage Classes 8-37
Applying a Custom Storage Class to a Parameter 8-38
Applying a Custom Storage Class to a Signal 8-40
Applying a CSC Using a Base Workspace Signal Object . . 8-41
Applying a CSC Using an Embedded Signal Object 8-43
Specifying a Custom Storage Class Using the GUI 8-50
Specifying a Custom Storage Class Using the API 8-53

Generating Code with Custom Storage Classes 8-58
Code Generation Prerequisites . 8-58
Code Generation Example . 8-58

Defining Advanced Custom Storage Class Types 8-62
Introduction . 8-62
Create Your Own Parameter and Signal Classes 8-62
Create a Custom Attributes Class for Your CSC
(Optional) . 8-62

Write TLC Code for Your CSC . 8-63
Register Custom Storage Class Definitions 8-63

GetSet Custom Storage Class for Data Store Memory . . 8-66
Overview . 8-66
GetSet CSC Properties . 8-66
Using the GetSet CSC . 8-67
GetSet CSC Restrictions . 8-67
GetSet Custom Storage Class Example 8-68

Custom Storage Class Implementation 8-70

Custom Storage Class Limitations 8-72

Memory Sections

9
Introduction to Memory Sections 9-2
Overview . 9-2
Memory Sections Demo . 9-2

vii

Additional Information . 9-2

Requirements for Defining Memory Sections 9-4

Defining Memory Sections . 9-7
Editing Memory Section Properties 9-7
Specifying the Memory Section Name 9-9
Specifying a Qualifier for Custom Storage Class Data
Definitions . 9-9

Specifying Comment and Pragma Text 9-9
Surrounding Individual Definitions with Pragmas 9-9
Including Identifier Names in Pragmas 9-10

Configuring Memory Sections . 9-11

Declaring Constant Data as Volatile 9-12

Applying Memory Sections . 9-15
Assigning Memory Sections to Custom Storage Classes . . 9-15
Applying Memory Sections to Model-Level Functions and
Internal Data . 9-17

Applying Memory Sections to Atomic Subsystems 9-19

Examples of Generated Code with Memory Sections . . 9-23
Sample ERT-Based Model with Subsystem 9-23

Model-Level Data Structures . 9-25
Model-Level Functions . 9-25
Subsystem Function . 9-26

Memory Section Limitation . 9-28

Optimizing Buses for Code Generation

10
Introduction . 10-2

viii Contents

Setting Bus Diagnostics . 10-3

Optimizing Virtual and Nonvirtual Buses 10-4
Use Virtual Buses Wherever Possible 10-4
Avoid Nonlocal Nested Buses in Nonvirtual Buses 10-5

Using Single-Rate and Multi-Rate Buses 10-7
Introduction . 10-7
Techniques for Combining Multiple Rates 10-7
Larger Buses and Multiple Rates . 10-9
Specifying Sample Time Rates . 10-10

Setting Bus Signal Initial Values . 10-11
Introduction . 10-11
Initializing Bus Signals in Simulink 10-11
Bus Initialization in Stateflow . 10-12
Creating a Bus of Constants . 10-14

Buses and Atomic Subsystems . 10-16
Extract Nonvirtual Bus Signals Inside of Atomic
Subsystems . 10-16

Virtual Bus Signals Crossing Atomic Boundaries 10-17
Atomic Subsystems and Buses of Constants 10-19

Renaming and Replacing Data Types

11
Defining Application-Specific Data Types Based On
Built-In Types . 11-2

Code Generation with User-Defined Data Types 11-4
Overview . 11-4
Specifying Type Definition Location for User-Defined Data
Types . 11-5

Using User-Defined Data Types for Code Generation 11-6

ix

Managing Data Definitions and Declarations
With the Data Dictionary

12
Overview of the Data Dictionary . 12-2

Creating Simulink and mpt Data Objects 12-4
Overview . 12-4
Creating Simulink Data Objects with Data Object
Wizard . 12-5

Creating mpt Data Objects with Data Object Wizard 12-11
Comparing Simulink and mpt Data Objects 12-12
Creating Data Objects Based on an External Data
Dictionary . 12-16

Creating a Data Dictionary for a Model 12-19
Using Data Object Wizard . 12-19
Inspect the Data Dictionary . 12-23
Generate and Inspect Code . 12-24

Defining All Global Data Objects in a Separate File . . . 12-26

Defining a Specific Global Data Object in Its Own
File . 12-28

Saving and Loading Data Objects 12-29

Applying Naming Rules to Identifiers Globally 12-30
Overview . 12-30
Changing Names of Identifiers . 12-31
Specifying Simulink Data Object Naming Rules 12-34
Defining Rules That Change All Signal Names 12-35
Defining Rules That Change All Parameter Names 12-35
Defining Rules That Change All #defines 12-36

Creating User Data Types . 12-38
Overview . 12-38
Registering User Data Types Using sl_customization.m . . 12-39
Example User Data Type Customization Using
sl_customization.m . 12-41

x Contents

Selecting User Data Types for Signals and
Parameters . 12-43
Preparing User Data Types . 12-43
Selecting the User Data Types . 12-45

Registering mpt User Object Types 12-48
Introduction . 12-48
Registering mpt User Object Types Using
sl_customization.m . 12-48

Example mpt User Object Type Customization Using
sl_customization.m . 12-50

Replacing Built-In Data Type Names in Generated
Code . 12-52
Replacing Built-In Data Type Names 12-52
Replacing boolean with an Integer Data Type 12-57
Data Type Replacement Limitations 12-59

Customizing Data Object Wizard User Packages 12-60
Introduction . 12-60
Registering Data Object Wizard User Packages Using
sl_customization.m . 12-61

Example Data Object Wizard User Package Customization
Using sl_customization.m . 12-62

Managing Placement of Data Definitions and
Declarations

13
Overview of Data Placement . 13-2

Priority and Usage . 13-3
Overview . 13-3
Read-Write Priority . 13-4
Global Priority . 13-7
Definition File, Header File, and Ownership Priorities . . . 13-8

Ownership Settings . 13-10

xi

Memory Section Settings . 13-11

Data Placement Rules . 13-12

Example Settings . 13-13
Introduction . 13-13
Read-Write Example . 13-15
Ownership Example . 13-17
Header File Example . 13-18
Definition File Example . 13-20

Data Placement Rules and Effects 13-22
Effects of Ownership Settings . 13-22
Example Settings and Resulting Generated Files 13-23
Data Placement Rules . 13-25

Specifying the Persistence Level for Signals and
Parameters

14

Preparing Models for Code Generation

Mapping Application Objectives to Model
Configuration Parameters

15
Considerations When Mapping Application
Objectives . 15-2

Defining High-Level Code Generation Objectives 15-3

Determining Whether the Model is Configured for
Specified Objectives . 15-4
Specifying Code Generation Objectives Using the GUI . . . 15-4

xii Contents

Specifying Code Generation Objectives at the Command
Line . 15-6

Reviewing Objectives in Referenced Models 15-7
Reviewing the Model Without Generating Code 15-7
Reviewing the Model During Code Generation 15-9

Creating Custom Objectives . 15-11
Specifying Parameters in Custom Objectives 15-11
Specifying Checks in Custom Objectives 15-12
Determining Checks and Parameters in Existing
Objectives . 15-12

How to Create Custom Objectives . 15-14

Selecting and Configuring an Embedded
Real-Time Target

16
Introduction . 16-2

Selecting an ERT Target . 16-4

Customizing an ERT Target . 16-6

Specifying Code Appearance and
Documentation

17
Customizing Comments in Generated Code 17-2
Adding Custom Comments to Generated Code 17-2
Adding Global Comments . 17-5

Configuring the Appearance of Generated
Identifiers . 17-12
Customizing Generated Identifiers 17-12
Configuring Symbols . 17-13

xiii

Controlling Code Style . 17-22

Configuring Templates for Customizing Code
Organization and Format . 17-23
Overview . 17-24
Custom File Processing Components 17-25
Custom File Processing User Interface Options 17-25
Code Generation Template (CGT) Files 17-27
Using Custom File Processing (CFP) Templates 17-31
Custom File Processing (CFP) Template Structure 17-31
Changing the Organization of a Generated File 17-33
Generating Source and Header Files with a Custom File
Processing (CFP) Template . 17-35

Comparison of a Template and Its Generated File 17-44
Code Template API Summary . 17-47
Generating Custom File and Function Banners 17-50
Template Symbols and Rules . 17-59

Configuring the Placement of Data in Generated
Code . 17-68

Ensuring Delimiter Is Specified for All #Includes 17-69

Defining Model Configuration Variations

18
Introduction . 18-2

Viewing ERT Target Options in the Configuration
Parameters Dialog Box or Model Explorer 18-3

xiv Contents

Generating Code andBuilding Executables

Generating Code Modules

19
Code Modules . 19-2
Introduction . 19-2
Generated Code Modules . 19-2
User-Written Code Modules . 19-5
Customizing Generated Code Modules 19-5

Generating Reports for Code Reviews and
Traceability Analysis

20
About HTML Code Generation Report Extensions 20-2

Generating an HTML Code Generation Report 20-4

Using the Code Interface Report to Analyze the
Generated Code Interface . 20-6
Code Interface Report Overview . 20-6
Generating a Code Interface Report 20-7
Navigating Code Interface Report Subsections 20-9
Interpreting the Entry Point Functions Subsection 20-10
Interpreting the Inports and Outports Subsections 20-13
Interpreting the Interface Parameters Subsection 20-14
Interpreting the Data Stores Subsection 20-16
Code Interface Report Limitations . 20-17

Optimizing Generated Code

21
Configuring Production Code Optimizations 21-2

xv

Optimization Dependencies . 21-5

Optimizing Your Model with Configuration Wizard
Blocks and Scripts . 21-7
Overview . 21-7
Adding a Configuration Wizard Block to Your Model 21-9
Using Configuration Wizard Blocks 21-11
Creating a Custom Configuration Wizard Block 21-11

Tips for Optimizing the Generated Code 21-19
Introduction . 21-19
Using Configuration Wizard Blocks 21-19
Setting Hardware Implementation Parameters
Correctly . 21-20

Removing Unnecessary Initialization Code 21-22
Generating Pure Integer Code If Possible 21-23
Disabling MAT-File Logging . 21-23
Using Virtualized Output Ports Optimization 21-24
Controlling Signal Storage . 21-25
Using External Mode with the ERT Target 21-26
Optimizing Generated Code Using Specified Minimum and
Maximum Values . 21-27

Developing Models and Code That Comply with
Industry Standards and Guidelines

22
What Are the Standards and Guidelines? 22-2

Developing Models and Code That Comply with MAAB
Guidelines . 22-4

Developing Models and Code That Comply with MISRA
C Guidelines . 22-5

Developing Models and Code That Comply with the IEC
61508 Standard . 22-6

xvi Contents

Applying Simulink and Embedded Coder to the IEC 61508
Standard . 22-6

Checking for IEC 61508 Standard Compliance Using the
Model Advisor . 22-6

Validating Traceability . 22-7

Developing Models and Code That Comply with the ISO
26262 Standard . 22-8
Applying Simulink and Embedded Coder to the ISO 26262
Standard . 22-8

Checking for ISO 26262 Standard Compliance Using the
Model Advisor . 22-8

Validating Traceability . 22-8

Developing Models and Code That Comply with the
DO-178B Standard . 22-10
Applying Simulink and Embedded Coder to the DO-178B
Standard . 22-10

Checking for Standard Compliance Using the Model
Advisor . 22-10

Validating Traceability . 22-11

Generating Reentrant Code fromMATLAB Code

23
What Is Reentrant Code? . 23-2

When to Generate Reentrant Code 23-3

How to Generate Reentrant Code 23-4
Prerequisites . 23-4
Procedure . 23-4

Generated Code API . 23-5

How to Call Reentrant Code in a Single-Thread
Environment . 23-6

xvii

How to Call Reentrant Code in a Multithreaded
Environment . 23-7
Multithreaded Examples . 23-7

Example: Calling Reentrant Code with No Persistent or
Global Data (UNIX Only) . 23-9
MATLAB Code Used for This Example 23-9
Providing a main Function . 23-9
Generating Reentrant C Code . 23-12
Examining the Generated Code . 23-13
Running the Code . 23-14

Example: Calling Reentrant Code — Multithreaded
with Persistent Data (Windows Only) 23-15
MATLAB Code Used for This Example 23-15
Providing a main Function . 23-16
Generating Reentrant C Code . 23-18
Examining the Generated Code . 23-19
Running the Code . 23-20

Example: Calling Reentrant Code — Multithreaded
with Persistent Data (UNIX Only) 23-21
MATLAB Code Used for This Example 23-21
Providing a main Function . 23-22
Generating Reentrant C Code . 23-24
Examining the Generated Code . 23-26
Running the Code . 23-27

Generating Code for AUTOSAR Software
Components

24
Overview of AUTOSAR Support . 24-2

Simulink Modeling Patterns for AUTOSAR 24-3
About Simulink Modeling Patterns for AUTOSAR 24-3
AUTOSAR Software Components . 24-3
AUTOSAR Communication . 24-9

xviii Contents

Calibration Parameters . 24-15
Inter-Runnable Variables . 24-16
Data Types . 24-17
Per-Instance Memory . 24-22
AUTOSAR Terminology . 24-23

Workflow for AUTOSAR . 24-26

Importing an AUTOSAR Software Component 24-28

Preparing a Simulink Model for AUTOSAR Code
Generation . 24-31
Using the Configure AUTOSAR Interface Dialog Box 24-31
Configuring Ports for Basic Software and Error Status
Receivers . 24-37

Configuring Client-Server Communication 24-38
Configuring Multiple Runnables . 24-47
Configuring Calibration Parameters 24-53
Using Data Store Memory Blocks to Specify Per-Instance
Memory . 24-55

Modifying and Validating an Existing AUTOSAR
Interface . 24-57

Generating AUTOSAR Code and Description Files 24-58
Selecting an AUTOSAR Schema . 24-58
Specifying Maximum SHORT-NAME Length 24-58
Configuring AUTOSAR Compiler Abstraction Macros 24-59
Root-Level Matrix I/O . 24-61
Exporting AUTOSAR Software Component 24-61

Configuring AUTOSAR Options Programmatically . . . 24-64

Verifying the AUTOSAR Code with SIL and PIL
Simulations . 24-65
Overview . 24-65
Using the SIL and PIL Simulation Modes 24-65
Using a SIL or PIL Block for AUTOSAR Verification 24-66

Limitations and Tips . 24-68
Cannot Import Internal Behavior . 24-68

xix

Cannot Copy Subsystem Blocks Without Losing Interface
Information . 24-68

Error If No Default Configuration . 24-69
The Generate Code Only Check Box 24-69
Specify Sample Time Independent Server Operation
Model . 24-69

Invoke AUTOSAR Server Operation Block in Referenced
Model . 24-69

Cannot Save Importer Objects in MAT-Files 24-69
Using the Merge Block for Inter-Runnable Variables 24-70
Using Goto and From Blocks Within Wrapper
Subsystems . 24-70

AUTOSAR Compiler Abstraction Macros 24-70
Intrinsic Fixed-Point Types for Model Configured as
Server . 24-71

Server Operation Model with Tunable Parameters 24-71
Migrating AUTOSAR Development Kit Models 24-72

Demos and Further Reading . 24-73
AUTOSAR Demos . 24-73
Further Reading . 24-74

Integrating External Code and Generated
C and C++ Code

About External Code Integration Extensions

25

Generating S-Function Wrappers

26
About S-Function Wrapper Generation 26-2

Creating a SIL Block . 26-3

xx Contents

S-Function Wrapper Generation Limitations 26-4

Exporting Function-Call Subsystems

27
Overview . 27-2
Exported Subsystems Demo . 27-3
Additional Information . 27-3

Requirements for Exporting Function-Call
Subsystems . 27-4
Requirements for All Exported Subsystems 27-4
Requirements for Exported Virtual Subsystems 27-5

Techniques for Exporting Function-Call Subsystems . . 27-7
General Workflow . 27-7
Specifying a Custom Initialize Function Name 27-8
Specifying a Custom Description . 27-8

Optimizing Exported Function-Call Subsystems 27-10

Exporting Function-Call Subsystems That Depend on
Elapsed Time . 27-11

Function-Call Subsystem Export Example 27-12

Function-Call Subsystems Export Limitations 27-16

Nonvirtual Subsystem Modular Function Code
Generation

28
Overview . 28-2

xxi

Configuring Nonvirtual Subsystems for Generating
Modular Function Code . 28-4

Examples of Modular Function Code for Nonvirtual
Subsystems . 28-9
H File Differences for Nonvirtual Subsystem Function Data
Separation . 28-11

C File Differences for Nonvirtual Subsystem Function Data
Separation . 28-12

Nonvirtual Subsystem Modular Function Code
Limitations . 28-15

Controlling Generation of Function Prototypes

29
Overview . 29-2

Configuring Model Function Prototypes 29-4
Launching the Model Interface Dialog Boxes 29-4
Default Model Initialize and Step Functions View 29-4
Model Specific C Prototypes View . 29-5
Configuring Function Prototypes for Nonvirtual
Subsystems . 29-9

Model Function Prototypes Example 29-12

Configuring Model Function Prototypes
Programmatically . 29-18

Sample Script for Configuring Model Function
Prototypes . 29-22

Verifying Generated Code for Customized Functions . . 29-23

Model Function Prototype Control Limitations 29-24

xxii Contents

Controlling Generation of Encapsulated C++
Model Interfaces

30
Overview of C++ Encapsulation . 30-2

C++ Encapsulation Quick-Start Example 30-4

Generating and Configuring C++ Encapsulation
Interfaces to Model Code . 30-11
Selecting the C++ (Encapsulated) Option 30-11
Configuring Code Interface Options 30-12
Configuring the Step Method for Your Model Class 30-15
Configuring C++ Encapsulation Interfaces for Nonvirtual
Subsystems . 30-19

Configuring C++ Encapsulation Interfaces
Programmatically . 30-21

Sample Script for Configuring the Step Method for a
Model Class . 30-24

C++ Encapsulation Interface Control Limitations 30-26

Replacing Math Functions and Operators Using
Target Function Libraries

31
Introduction to Target Function Libraries 31-2
Overview of Target Function Libraries 31-2
Target Function Libraries General Workflow 31-7
Target Function Libraries Quick-Start Example 31-9

Creating Function Replacement Tables 31-16
Overview of Function Replacement Table Creation 31-16
Creating Table Entries . 31-20

xxiii

Example: Mapping Math Functions to Target-Specific
Implementations . 31-27

Example: Mapping the memcpy Function to a
Target-Specific Implementation . 31-34

Example: Mapping Nonfinite Support Utility Functions to
Target-Specific Implementations 31-38

Example: Mapping Scalar Operators to Target-Specific
Implementations . 31-43

Mapping Nonscalar Operators to Target-Specific
Implementations . 31-49

Mapping Fixed-Point Operators to Target-Specific
Implementations . 31-78

Remapping Operator Outputs to Implementation Function
Input Positions . 31-113

Refining TFL Matching and Replacement Using Custom
TFL Table Entries . 31-115

Replacing Math Functions Based on Computation
Method . 31-132

Specifying Build Information for Function
Replacements . 31-134

Adding Target Function Library Reserved Identifiers 31-137

Examining and Validating Function Replacement
Tables . 31-139
Overview of Function Replacement Table Validation 31-139
Invoking the Table Definition File . 31-139
Using the Target Function Library Viewer to Examine Your
Table . 31-140

Using the Target Function Library Viewer to Examine
Registered TFLs . 31-141

Tracing Code Generated Using Your Target Function
Library . 31-143

Examining TFL Cache Hits and Misses 31-144

Registering Target Function Libraries 31-148
Overview of TFL Registration . 31-148
Using the sl_customization API to Register a TFL with
Simulink Software . 31-149

Using the rtwTargetInfo API to Register a TFL with
MATLAB® Coder Software . 31-153

Registering Multiple TFLs . 31-154

Target Function Library Limitations 31-156

xxiv Contents

Setting Up Generated Code To Interface
With Components in the Run-Time
Environment

Configuring the Target Hardware Environment

32
Configuring Support for Numeric Data 32-2

Configuring Support for Time Values 32-3

Setting Up Support for Non-Inlined S-Functions 32-4

Configuring Model Function Generation and Argument
Passing . 32-5

Setting Up Support for Code Reuse 32-7

Configuring Target Function Libraries 32-8

Model Entry Points

33

Interfacing With Hardware That is Not Running
an Operating System (Bare Board)

34
About Standalone Program Execution 34-2

Generating a Standalone Program 34-3

xxv

Standalone Program Components 34-4

Main Program . 34-5
Overview of Operation . 34-5
Guidelines for Modifying the Main Program 34-5

rt_OneStep and Scheduling Considerations 34-7
Overview of Operation . 34-7
Single-Rate Single-tasking Operation 34-8
Multirate Multitasking Operation . 34-9
Multirate Single-Tasking Operation 34-11
Guidelines for Modifying rt_OneStep 34-12

Static Main Program Module . 34-14
Overview . 34-14
Rate Grouping and the Static Main Program 34-15
Modifying the Static Main Program 34-16

Rate Grouping Compliance and Compatibility
Issues . 34-19
Main Program Compatibility . 34-19
Making Your S-Functions Rate Grouping Compliant 34-19

Wind River Systems VxWorks Example Main
Program

35
Introduction to the VxWorks Example Main
Program . 35-2

Task Management . 35-3
Overview of Operation . 35-3
Single-Rate Single-tasking Operation 35-3
Multirate Multitasking Operation . 35-4
Multirate Single-tasking Operation 35-4

xxvi Contents

Verifying Generated Code Applications

Tracing Generated Code to Requirements

36
About Generated Code and Requirements
Traceability . 36-2

Goals of Generated Code and Requirements
Traceability . 36-3

Verifying Generated Code

37
Traceability for Production Code Generation 37-2
About Traceability . 37-2
Tracing Code to Model Objects Using Hyperlinks 37-2
Tracing Model Objects to Generated Code 37-4
Reloading Existing Traceability Information 37-6
Customizing Traceability Reports . 37-8
Generating a Traceability Matrix (DO Qualification Kit or
IEC Certification Kit) . 37-9

Traceability Limitations . 37-10

Checking Code Correctness . 37-11
About Checking Code Correctness . 37-11
How To Check Code Correctness . 37-11

Rapid Prototyping On a Target System

38
About On-Target Rapid Prototyping 38-2

Goals of On-Target Rapid Prototyping 38-3

xxvii

Optimizing Generated Code for an Embedded Processor
With On-Target Rapid Prototyping 38-4

Verifying Generated Code With SIL and PIL
Simulations

39
About SIL and PIL Simulations . 39-2
Overview . 39-2
What are SIL and PIL Simulations? 39-2
Why Use SIL and PIL . 39-3

How SIL and PIL Simulations Work 39-6

Comparison of SIL and PIL Simulation 39-7

Choosing a SIL or PIL Approach . 39-9
About Choosing a SIL or PIL Simulation 39-9
When to Use Top-Model SIL or PIL 39-9
When to Use Model Block SIL or PIL 39-9
When to Use the SIL or PIL Block . 39-14

Configuring a SIL or PIL Simulation 39-16
Top-Model SIL or PIL Simulation . 39-16
Model Block SIL or PIL Simulation 39-18
Using a SIL or PIL Block . 39-20
Verifying a SIL or PIL Configuration 39-22
Compatible Models . 39-23

Code Coverage . 39-25
Using a Code Coverage Tool in a SIL Simulation 39-25
Code Coverage for a PIL Simulation 39-32
Configuring Code Coverage Programmatically 39-32

Code Execution Profiling . 39-34
About Code Execution Profiling . 39-34
Configuring Code Execution Profiling 39-34
Viewing and Analyzing Code Execution Profiles 39-35

xxviii Contents

Tips and Limitations . 39-39

Running a Top Model as a SIL or PIL Simulation 39-41

Running a Referenced Model as a SIL or PIL
Simulation . 39-43
Verifying Internal Signals of a Component 39-43
Simulation Mode Override Behavior in Model Reference
Hierarchy . 39-44

SIL and PIL Code Interfaces . 39-47
Code Interface for Top-Model SIL or PIL 39-47
Code Interface for Model Block SIL or PIL 39-48

Configuring Hardware Implementation Settings for
SIL . 39-49
Compiling Generated Code That Supports Portable Word
Sizes . 39-51

Portable Word Sizes Limitations . 39-51

Programming PIL Support for Third-Party Tools and
Target Hardware . 39-53

Creating a Connectivity Configuration for a Target . . . 39-54
What Is a PIL Connectivity Configuration? 39-54
Overview of the Target Connectivity API 39-55
Creating a Connectivity API Implementation 39-58
Registering a Connectivity API Implementation 39-58
Demos of the Target Connectivity API 39-59

SIL and PIL Simulation Support and Limitations 39-60
About SIL and PIL Simulation Support and Limitations . . 39-61
Code Source Support . 39-62
Block Support . 39-65
Configuration Parameters Support 39-67
I/O Support . 39-71
Hardware Implementation Support 39-84
Other Feature Support . 39-88

xxix

Verifying a Component in the Target
Environment

40
About Component Verification in the Target
Environment . 40-2

Goals of Component Verification in the Target
Environment . 40-3

Maximizing Code Portability and Configurability 40-4

Simplifying Code Integration and Maximizing Code
Efficiency . 40-5

Running Component Tests in the Target
Environment . 40-7

Verifying a Component by Building a Complete
Real-Time Target Environment

41
About Component Verification With a Complete
Real-Time Target Environment 41-2

Goals of Component Verification With a Complete
Real-Time Target Environment 41-4

Testing a Component as Part of a Complete Real-Time
Target Environment . 41-5

xxx Contents

Verifying Numerical Equivalence of Results
with Code Generation Verification API

42
Verifying Numerical Equivalence with Code Generation
Verification . 42-2
Code Generation Verification API Overview 42-2
Verifying Numerical Equivalence with CGV Workflow . . . 42-2
Example of Verifying Numerical Equivalence Between Two
Modes of Execution of a Model . 42-3

Example of Plotting Output Signals 42-10

Embedded IDEs and Embedded Targets

Project and Build Configurations

43
Model Setup . 43-2
Block Selection . 43-2
Target Preferences . 43-4
Configuration Parameters . 43-7
Model Reference . 43-17

IDE Projects . 43-18
Third Party Product Setup . 43-18
Installation of MathWorks Products on 64-bit Host
Computers . 43-20

IDE Link Configuration . 43-20
Code Generation and Build . 43-21
Automation of IDE Tasks and Processes 43-22

Makefiles . 43-24
Using XMakefile to Generate and Build Software 43-24
Making an XMakefile Configuration Operational 43-31
Example: Creating a New XMakefile Configuration 43-31
XMakefile User Configuration Dialog Box 43-38

xxxi

Verification and Profiling

44
What Is Verification? . 44-2

Processor-in-the-Loop (PIL) Simulation 44-3
Overview . 44-3
Approaches . 44-4
Communications . 44-9
Definitions . 44-11
PIL Issues and Limitations . 44-13

Execution Profiling . 44-14
What Is Execution Profiling? . 44-14
Execution Profiling during Standalone Execution Mode . . 44-15
Execution Profiling during PIL Simulation 44-19

Stack Profiling . 44-21
What is Stack Profiling? . 44-21
Profiling System Stack Use . 44-22

Processor-Specific Optimizations

45
Target Function Library (TFL) . 45-2
About Target Function Libraries and Optimization 45-2
Using a Processor-Specific Target Function Library to
Optimize Code . 45-4

Process of Determining Optimization Effects Using
Real-Time Profiling Capability . 45-5

Reviewing Processor-Specific Target Function Library
Changes in Generated Code . 45-5

Reviewing Target Function Library Operators and
Functions . 45-8

Creating Your Own Target Function Library 45-8

xxxii Contents

Working with Altium TASKING IDE

46
Getting Started . 46-2
Overview . 46-2
Supported Altium TASKING Toolsets 46-6
Using This Guide . 46-7
Setting Target Preferences for Altium TASKING 46-8
Working with Configuration Sets . 46-13
Accessing Utilities for TASKING . 46-20
Option Sets . 46-24

Components . 46-27
Project Generator . 46-27
Automation Interface . 46-37

Verification . 46-50
Processor-in-the-Loop (PIL) Simulation 46-50
C Code Coverage Reports . 46-58
Execution Profiling . 46-60
Stack Profiling . 46-63
Bidirectional Traceability Between Code and Model 46-66
MISRA C Rule Checking . 46-67

Optimization . 46-69
Compiler / Linker Optimization Settings 46-69
Target Memory Placement / Mapping 46-69
Execution and Stack Profiling . 46-70
Target Specific Optimizations . 46-70
Model Advisor . 46-74

Tutorials . 46-75
Tutorial: Using Option Sets . 46-75
Tutorial: Creating New Template Projects 46-76
Tutorial: Configuring an Existing Model for Embedded
Coder Software . 46-81

Code Generation Pane — IDE Link 46-83
Overview . 46-84
Build Action . 46-85
Target Preference Configuration . 46-87

xxxiii

Add build directory suffix . 46-88
Build directory suffix . 46-89
Export EDE handle to MATLAB base workspace 46-90
EDE handle name . 46-90
Export CrossView Pro handle to MATLAB base
workspace . 46-92

CrossView Pro handle name . 46-92
Configure model to build PIL algorithm object code 46-94

Limitations and Tips . 46-95
General Issues . 46-95
Debugger Issues . 46-97
Build Process Issues . 46-98
Processor-in-the-Loop Issues . 46-107
Issues Using Simulink® Coder Software Without Embedded
Coder Software . 46-110

Working with Analog Devices™ VisualDSP++
IDE

47
Getting Started . 47-2
Overview . 47-2
Software Structure and Components 47-3
Software Requirements . 47-5
Installation and Configuration . 47-6

Automation Interface . 47-7
Getting Started with Automation Interface 47-7
Constructing Objects . 47-22
Properties and Property Values . 47-23
adivdsp Object Properties . 47-27

Project Generator . 47-30
Introducing Project Generator . 47-30
Project Generator Tutorial . 47-31
Model Reference . 47-35

Reported Limitations and Tips . 47-40

xxxiv Contents

Reported Issues . 47-40

Working with Eclipse IDE

48
Tested Software Versions . 48-2

Installing Third-Party Software for Eclipse 48-4
Installing Sun Java Runtime Environment (JRE) 48-4
Installing Eclipse IDE for C/C++ Developers 48-4
Verifying the GNU Tool Chain on Linux 48-5
Installing the GNU Tool Chain on Windows 48-7

Configuring Your MathWorks Software to Work with
Eclipse . 48-10
Additional Configuration Steps to Run Your Executable on
a Remote Embedded Linux Target 48-13

Troubleshooting with Eclipse IDE 48-15
SIGSEGV Segmentation Fault for GDB 48-15
GDB Stops on Each Semaphore Post 48-15
Build Errors . 48-16
Profiling is not available for Intel x86/Pentium and AMD
K5/K6/Athlon processors running Windows or Linux . . 48-16

Eclipse Message: “Can’t find a source file” 48-16
Eclipse Message: “Cannot access memory at address” 48-17

Working with Freescale MPC5xx Processors

49
Getting Started . 49-2
Overview . 49-2
Additional Blocks on MATLAB Central Web Site 49-8
Using This Guide . 49-8
CAN Hardware Requirements for Freescale MPC5xx 49-9

xxxv

Supported Cross-Development Tools for Freescale
MPC5xx . 49-9

Setting Up and Verifying Your Configuring the Host Vector
CAN Application ChannelInstallation 49-10

Setting Target Preferences for MPC5xx 49-11
Accessing Utilities for Freescale MPC555 49-18
Data Type Support and Scaling for Device Driver Blocks . . 49-20

Generating Stand-Alone Real-Time Applications 49-24
Overview . 49-24
Tutorial: Creating a New Application 49-26
Downloading Boot and Application Code 49-39
Parameter Tuning and Signal Logging 49-53
HTML Code Profile (RAM/ROM) Report 49-67
Execution Profiling . 49-68
Summary of the Real-Time Target . 49-76
Performance Tips . 49-79

PIL Simulation . 49-82
Overview of PIL Simulation . 49-82
Tutorial 1: Building and Running a PIL Simulation 49-84
Tutorial 2: Using the Demo Model in Simulation 49-97
PIL Target Summary . 49-98
Algorithm Export Target . 49-103
HTML Code Analysis (RAM/ROM) Report 49-104
Algorithm Export Target Summary 49-106

Configuration Parameters . 49-109
Code Generation Pane: ET MPC5xx (Algorithm Export)
Options . 49-109

Code Generation Pane: ET MPC5xx (Processor-in-the-Loop)
Options . 49-111

Code Generation Pane: ET MPC5xx Real-Time Options
(1) . 49-115

Code Generation Pane: ET MPC5xx Real-Time Options
(2) . 49-119

Toolchains and Hardware . 49-124
Setting Up Your Toolchain . 49-124
Setting Up Your Installation with Wind River Compiler and
Wind River Systems SingleStep Debugger 49-124

xxxvi Contents

Setting Up Your Installation with Freescale
CodeWarrior . 49-129

Setting Up Your Target Hardware 49-133
CAN Hardware and Drivers . 49-139
Configuration for Nondefault Hardware 49-141
Integrating External Blocksets . 49-144

Working with Green Hills® MULTI IDE

50
Getting Started . 50-2
Overview . 50-2
Software Structure and Components 50-3

Automation Interface . 50-10
Getting Started with Automation Interface 50-10
Constructing Objects . 50-26
Properties and Property Values . 50-27
ghsmulti Object Properties . 50-30

Project Generator . 50-33
Introducing Project Generator . 50-33
Project Generator Tutorial . 50-34
Model Reference . 50-39

Breakpoints and PIL . 50-44

Working with Infineon C166 Processors

51
Getting Started . 51-2
Overview . 51-2
Using This Guide . 51-4
Supported Hardware for Infineon C166 51-5
Supported Cross-Development Tools for Infineon C166 . . . 51-7

xxxvii

Switching Between Hardware Variants 51-7
Setting Up and Verifying Your Installation 51-8
Setting Up Your Target Hardware 51-12
Setting C166 Target Preferences . 51-14
Code Generation Configuration for Nondefault
Processors . 51-15

Supported Blocks and Data Types . 51-18
Accessing Utilities for Infineon® C166 51-20
Overview of C166 Options in the Configuration Parameters
Dialog Box . 51-20

Tutorial: Simple Example Applications for C166
Microcontrollers . 51-22
Introduction . 51-22
Tutorial: Creating a New Application 51-22
Debugging and Using The Code Profile Report 51-30
Parameter Tuning and Signal Logging 51-34

Integrating Your Own Device Drivers 51-38
Integrating Manually Coded Device Drivers with a
Simulink Model . 51-38

Preparing Input and Output Signals to the Device Driver
Functions . 51-39

Calling the Device Driver Functions from c166_main.c . . . 51-41
Adding the I/O Driver Source to the List of Files to Build . . 51-41
Tutorial: Using the Example Driver Functions 51-43

Custom Storage Class for C166 Microcontroller
Bit-Addressable Memory . 51-49
Specifying C166 Microcontroller Bit-Addressable
Memory . 51-49

Using the Bitfield Example Model . 51-50

Execution Profiling . 51-56
Overview of Execution Profiling . 51-56
Options for Execution Profiling . 51-60
Multitasking Demo Model . 51-62

Configuration Parameters . 51-71
Code Generation Pane: C166 Options 51-71

xxxviii Contents

Working with Linux Target

52
Disambiguation . 52-2

Preparing Models to Run on Linux 52-3

Scheduler . 52-4
Base Rate . 52-4
Running Target Applications on Multicore Processors 52-4
Avoiding Lock-Up in Free-Running, Multirate, Multitasking
Models . 52-6

Limitations . 52-6

Example: Build Generated Code on a BeagleBoard
Running Linux . 52-7
Overview . 52-7
Configure the Windows Host . 52-7
Configure the BeagleBoard . 52-7
Configure MATLAB . 52-8

Example: Build Generated Code on a Linux Host, Then
Run It Remotely on BeagleBoard 52-9
Overview . 52-9
Prerequisites . 52-9
Set up your environment for Linux-ARM Code
Generation . 52-9

Generate Code for Linux-ARM . 52-12
External Mode Simulation . 52-12

Embedded Linux Topics . 52-14
Troubleshooting “sched_setaffinity: Bad address” Error . . 52-14

Working with Microsoft Windows Target

53
Preparing Models to Run on Windows 53-2

xxxix

Scheduler . 53-3
Selecting the Operating System and Scheduling Mode . . . 53-3
Base Rate . 53-4
Running Target Applications on Multicore Processors 53-4
Limitations . 53-6

Working with Texas Instruments Code
Composer Studio IDE

54
Code Composer Studio . 54-2
Using Code Composer Studio with Embedded Coder
Software . 54-2

Default Project Configuration . 54-2

Getting Started . 54-4
Overview . 54-4
Configuration Information . 54-7

Automation Interface . 54-10
Getting Started with Automation Interface 54-10
Getting Started with RTDX . 54-27
Constructing ticcs Objects . 54-48
ticcs Properties and Property Values 54-50
Overloaded Functions for ticcs Objects 54-50
ticcs Object Properties . 54-51

Project Generator . 54-58
Introducing Project Generator . 54-58
Project Generation and Board Selection 54-58
Project Generator Tutorial . 54-60
Model Reference . 54-65

Exporting Filter Coefficients from FDATool 54-69
About FDATool . 54-69
Preparing to Export Filter Coefficients to Code Composer
Studio Projects . 54-70

xl Contents

Exporting Filter Coefficients to Your Code Composer Studio
Project . 54-74

Preventing Memory Corruption When You Export
Coefficients to Processor Memory 54-79

Tutorial: Using XMakefile with Code Composer Studio
4.x . 54-85
Introduction . 54-85
Set Up XMakefile for CCSv4 . 54-85
Prepare Your Model for CCSv4 and Makefiles 54-87
Create Target Configuration File in CCSv4 54-87
Load and Run the Embedded Software 54-88

Reported Limitations and Tips . 54-91
Demonstration Programs Do Not Run Properly Without
Correct GEL Files . 54-92

Changing Values of Local Variables Does Not Take
Effect . 54-92

Code Composer Studio Cannot Find a File After You Halt a
Program . 54-93

C54x XPC Register Can Be Modified Only Through the PC
Register . 54-94

Working with More Than One Installed Version of Code
Composer Studio . 54-95

Changing CCS Versions During a MATLAB Session 54-95
MATLAB Hangs When Code Composer Studio Cannot Find
a Board . 54-95

Using Mapped Drives . 54-97
Uninstalling Code Composer Studio 3.3 Prevents Embedded
Coder From Connecting . 54-97

PostCodeGenCommand Commands Do Not Affect
Embedded Coder Projects . 54-98

Working with Texas Intruments C2000
Processors

55
Setting Up and Configuring . 55-2
Installing and Configuring Software 55-2
Verifying the Configuration . 55-3

xli

Data Type Support . 55-5

Scheduling and Timing . 55-6
Overview . 55-6
Timer-Based Interrupt Processing . 55-6
Asynchronous Interrupt Processing 55-7

Sharing General Purpose Timers between C281x
Peripherals . 55-12
Example 1 . 55-13
Example 2 . 55-17

Overview of Creating Models for C2000 Processors . . . 55-21
Accessing the Embedded Coder Block Library 55-21
Building Your Model . 55-21

Using the c2000lib Blockset . 55-23
Introduction . 55-23
Hardware Setup . 55-23
Starting the c2000lib Library . 55-24
Setting Up the Model . 55-24
Adding Blocks to the Model . 55-26
Generating Code from the Model . 55-28

Configuring Timing Parameters for CAN Blocks 55-29
The CAN Blocks . 55-29
Setting Timing Parameters . 55-29
Parameter Tuning and Signal Logging 55-34

Configuring Acquisition Window Width for ADC
Blocks . 55-47
What Is an Acquisition Window? . 55-47
Configuring ADC Parameters for Acquisition Window
Width . 55-49

Using the IQmath Library . 55-53
About the IQmath Library . 55-53
Fixed-Point Numbers . 55-54
Building Models . 55-59

xlii Contents

Programming Flash Memory . 55-62
Introduction . 55-62
Installing TI Flash APIs . 55-62
Configuring the DSP Board Bootloader 55-63
Configuring the Software for Automatic Flash
Programming . 55-64

Selectively Erase, Program, or Verify Specific Flash
Sectors . 55-64

Placing Additional Code or Data on Unused Flash
Sectors . 55-65

Configuring LIN Communications 55-68
Overview . 55-68
Configuring Your Model . 55-68

Working with Texas Instruments C6000
Processors

56
Getting Started . 56-2
Overview . 56-2
Using This Guide . 56-2
Configuration Information . 56-3
Setting Up and Configuring . 56-4

Targeting C6000 DSP Hardware . 56-7
Introduction to Targeting . 56-7
C6000 and Code Composer Studio IDE 56-8
Targeting Tutorial — Single Rate Application 56-11
Schedulers and Timing . 56-21
Model Reference and Embedded Coder Software 56-34
Targeting Supported Boards . 56-38
Simulink Models and Targeting . 56-43
Targeting Tutorial II — A More Complex Application 56-43
Targeting Your C6713 DSK and Other Hardware 56-50
Creating Code Composer Studio Projects Without
Building . 56-54

Targeting Custom Hardware . 56-55
Using Embedded Coder Software . 56-69

xliii

Targeting with DSP/BIOS Options 56-71
Introducing DSP/BIOS . 56-71
DSP/BIOS and Targeting Your C6000 DSP 56-72
Code Generation with DSP/BIOS . 56-75
Profiling Generated Code . 56-79
Using DSP/BIOS with Your Target Application 56-92
Generating Code for Any C64x+ Processor or Board 56-93

Using the C62x and C64x DSP Libraries 56-99
About the C62x and C64x DSP Libraries 56-99
Fixed-Point Numbers . 56-101
Building Models . 56-106

Configuring Timing Parameters for CAN Blocks 56-109
Setting Timing Parameters . 56-109

Hardware Issues . 56-113
Configuring the D.signT DSK-91C111 to Use TCP/IP and
UDP . 56-113

Requirements for the DM642 EVM 56-113
Installing and Configuring the Avnet Board Support
Library . 56-116

Continuing Issues with Embedded Coder Software 56-118

Working with Wind River VxWorks Target

57
Overview of Support for Wind River VxWorks 57-2

Tutorial: Building and Running Embedded Software on
VxWorks . 57-4
Install and Set Up the Wind River Development
Environment . 57-4

Setting VxWorks Environment Variables and Starting
MATLAB . 57-5

Setting Up XMakefile for VxWorks 57-6
Customizing XMakefile to Automatically Download and
Build Your Software . 57-7

Prepare Your Model for VxWorks and Makefiles 57-8

xliv Contents

Build Your Embedded Software . 57-8

Generating Code for VxWorks Running on Other
Targets . 57-9

Schedulers . 57-10
Running Target Applications on Multicore Processors 57-10

Examples

A
Code Generation . A-2

Custom Storage Classes . A-2

Memory Sections . A-2

Advanced Code Generation . A-3

Target Function Libraries . A-3

Data Structures, Code Modules, and Program
Execution . A-4

Verifying Generated Code . A-4

Makefiles . A-4

Verification . A-4

Tutorials . A-4

Automation Interface . A-4

xlv

Working with adivdsp Objects . A-5

Project Generator . A-5

Real-Time Target . A-5

Processor-in-the-Loop Target . A-5

Algorithm Export Target . A-6

Working with ghsmulti Objects . A-6

Simple Example Applications . A-6

Integrating Manually Coded Device Drivers A-6

Bit-Addressable Memory . A-6

Execution Profiling . A-7

Working with ticcs Objects . A-7

Exporting Filter Coefficients from FDATool A-7

Q Format Examples . A-7

Targeting Tutorials . A-7

Asynchronous Scheduler . A-8

Profiling Code . A-8

Target Preferences . A-8

xlvi Contents

Index

xlvii

xlviii Contents

1

Introduction to the
Embedded Coder Product

The Embedded Coder™ product extends the Simulink® Coder™ product with
features that are important for embedded software development. Using the
Embedded Coder add-on product, you gain access to all aspects of Simulink
Coder technology and can generate code that has the clarity and efficiency of
professional handwritten code. For example, you can

• Generate code that is compact and fast, which is essential for real-time
simulators, on-target rapid prototyping boards, microprocessors used in
mass production, and embedded systems

• Customize the appearance of the generated code

• Optimize the generated code for a specific target environment

• Integrate existing (legacy) applications, functions, and data

• Enable tracing, reporting, and testing options that facilitate code
verification activities

For detailed information on how the Embedded Coder product fits into the
complete Simulink Coder technology picture, see “Product Overview” in the
Simulink Coder documentation. That topic positions the Embedded Coder in
terms of what you can accomplish with it, how it can fit into your development
process, how you might apply it to the V-model for system development, and
how you might apply it to relevant use cases.

Because Embedded Coder extends Simulink Coder for code generation, to
use the Embedded Coder product effectively, you should be familiar with
information in parts of the Simulink Coder documentation that align with
corresponding parts in the Embedded Coder documentation.

1 Introduction to the Embedded Coder™ Product

• “Introduction to Code Generation Technology”

• “Developing Models for Code Generation”

• “Defining Data Representation and Storage for Code Generation”

• “Preparing Models for Code Generation”

• “Generating Code and Building Executables”

• “Integrating External Code With Generated C and C++ Code”

• “Setting Up Generated Code To Interface With Components in the
Run-Time Environment”

• “Verifying Generated Code Applications”

1-2

2

Bug Reports

Software is inherently complex and is not free of errors. The output of a code
generator might contain bugs, some of which are not detected by a compiler.
MathWorks reports critical known bugs brought to its attention on its Bug
Report system at http://www.mathworks.com/support/bugreports/. Use the
Saved Searches and Watched Bugs tool with the search phrase “Incorrect
Code Generation” to obtain a report of known bugs that produce code that
might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release.
Examine periodically all bug reports for a release, as such reports may
identify inconsistencies between the actual behavior of a release you are using
and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and
validation strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

2 Bug Reports

2-2

Developing Models for Code
Generation

• Chapter 3, “Setting Up Your Modeling Environment”

• Chapter 4, “Architecture Considerations”

• Chapter 5, “Scheduling Considerations”

• Chapter 6, “Developing Model Patterns that Generate Specific C
Constructs”

3

Setting Up Your Modeling
Environment

When developing a system, it is important to use the correct combination of
products to model each system component based on the domain to which it
applies.

The following table guides you to information and demos that pertain to use
of the Embedded Coder product to meet goals for specific domains.

Goals Related Product
Information

Demos

Generate a
software design
description

Simulink® Report
Generator™

Simulink Report
Generator
documentation

rtwdemo_codegenrpt

Trace model
requirements to
generated code

Simulink®

Verification and
Validation™

“Including
Requirements
Information with
Generated Code”
in the Simulink
Verification
and Validation
documentation

rtwdemo_requirements

http://www.mathworks.com/products/SL_reportgenerator/
http://www.mathworks.com/products/SL_reportgenerator/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/

3 Setting Up Your Modeling Environment

Goals Related Product
Information

Demos

Implement
application
on fixed-point
processors

Simulink® Fixed
Point™

“Data Types and
Scaling” and “Code
Generation” in the
Simulink Fixed Point
documentation

rtwdemo_fixpt1
rtwdemo_fuelsys_fxp_publish
rtwdemo_dspanc_fixpt

Use an
integrated
development
environment
(IDE) to
integrate an
application on a
target processor
automatically

Embedded Targets
topics in the
Embedded Coder
documentation

Desktop Targets
topics in the Simulink
Coder documentation

In rtwdemos, select one
of the following folders:
Desktop IDEs, Desktop
Targets, Embedded IDEs, or
Embedded Targets

3-2

http://www.mathworks.com/products/simfixed/
http://www.mathworks.com/products/simfixed/

4

Architecture Considerations

• “Generating Code for Variant Systems” on page 4-2

• “Creating and Using Host-Based Shared Libraries” on page 4-17

4 Architecture Considerations

Generating Code for Variant Systems

In this section...

“Overview” on page 4-2

“Why Generate Code for Variant Systems?” on page 4-3

“How to Generate Preprocessor Conditionals for Variant Systems” on page
4-3

“Reviewing Code Variants in the Code Generation Report” on page 4-6

“Example of Model Variants in the Generated Code” on page 4-7

“Example of Variant Subsystems in the Generated Code” on page 4-9

“Restrictions on Code Generation of a Variant Subsystem” on page 4-13

“Special Considerations for Generating Preprocessor Conditionals” on page
4-14

“Limitations on Generating Code for Variants” on page 4-15

“Exceptions to Conditionally Compiled Components in the Generated Code”
on page 4-15

“Demos for Generating Code for Variants” on page 4-16

Overview
The Embedded Coder software generates code from a Simulink® model
containing one or more Model Variants blocks or Variant Subsystem blocks.
To learn how to create a model containing variant blocks, see “Modeling
Variant Systems” in the Simulink documentation.

By default, the Simulink Coder software generates code for the active variant.
The Embedded Coder software can generate code for only the active variant
or for all variants. Code generated for all variants is surrounded by C
preprocessor conditionals, #if, #elif, and #endif. Therefore, the active
variant is selected at C compile time and the preprocessor conditionals
determine which sections of the code to execute.

4-2

Generating Code for Variant Systems

Why Generate Code for Variant Systems?
When you implement variants in the generated code, you can:

• Reuse generated code from a set of application models that share
functionality with minor variations.

• Share generated code with a third party that activates one of the variants
in the code.

• Validate all of the supported variants for a model and then choose to
activate one variant for a particular application, without regenerating
and revalidating the code.

How to Generate Preprocessor Conditionals for
Variant Systems

Defining Variant Control Variables and Variant Objects for
Generating Code
To learn about variant control variables and variant objects, see Variant
Objects in the Simulink documentation. Variant control variables used for
code generation have additional requirements than variant control variables
used for simulation. Perform the following steps to define variant control
variables for generating code.

1 Open the Model Explorer and click the Base Workspace.

2 A variant control variable can be a Simulink.Parameter object or a
mpt.Parameter object. In the Model Explorer, select Add and choose either
Simulink Parameter or MPT Parameter. Specify a name for the new
parameter.

3 On the Simulink.Parameter or mpt.Parameter property dialog box, specify
the Value and Data type.

4 Specify the Storage class parameter by choosing one of the following:

• ImportedDefine(Custom) custom storage class.

• CompilerFlag(Custom) custom storage class.

4-3

4 Architecture Considerations

• A user-defined storage class created using the Custom Storage Class
Designer. Your storage class must have the Data initialization
parameter set to Macro and the Data scope parameter set to Imported.
See “Using the Custom Storage Class Designer” on page 8-12 for more
information.

5 Specify the value of the variant control variable. If the storage class is
either ImportedDefine(Custom) or a user-defined custom storage class,
do the following:

a Specify the Header File parameter as an external header file in the
Custom Attributes section of the Simulink.Parameter property dialog
box.

b Supply the values of the variant control variables in the external header
file.

Note The generated code refers to a variant control variable as a
user-defined macro. The generated code does not contain the value of
the macro. The value of the variant control variable determines the
active variant in the compiled code.

If the variant control variable is a CompilerFlag custom storage class the
value of the variant control variable is set at compile time. On the Code
Generation > General pane of the Configuration Parameters dialog box,
add a makefile option to the “Make command” parameter. For example,
for variant control variable, MODE, enter make_rtw OPTS="-DMODE=1" in
the Make command field.

Note If you want to modify the value of the variant control variable after
generating the makefile, use a makefile option when compiling your code.
For example, at a command line outside of MATLAB, enter:

makecommand -f model.mk OPTS="-DMODE=1"

4-4

Generating Code for Variant Systems

6 Follow the instructions for “Creating Variant Objects” to implement
variant objects for code generation. Ensure that only one variant object is
active in the generated code by implementing the condition expressions of
the variant objects such that only one evaluates to true. The generated
code includes a test of the variant objects to determine that there is only
one active variant. If this test fails, your code will not compile.

Note You can define the variant object condition values using
Simulink.Parameter object of enumerated type. This provides meaningful
names and improves the readability of the conditions. The generated
code includes preprocessor conditionals to check that the variant object
condition contains valid values of the enumerated type.

Configure Your Model for Generating Preprocessor Conditional
Directives
In order to generate preprocessor conditional directives configure your model
as follows:

1 On the Optimization > Signals and Parameters pane of the
Configuration Parameters dialog box, select Inline parameters.

2 On the Code Generation pane of the Configuration Parameter dialog box,
clear “Ignore custom storage classes”. In order to generate preprocessor
conditionals, you must use custom storage classes.

3 On the Interface pane of the Configuration Parameter dialog box,
select the Use Local Settings option of the Generate preprocessor
conditionals parameter. This parameter is a global setting for the parent
model. This setting enables the Generate preprocessor conditionals
parameter located in the Model Variants block parameters dialog box or
Variant Subsystem parameters dialog box. See “Generate preprocessor
conditionals” for more information.

4 Open the Model Variants block parameters dialog box or the Variant
Subsystem block parameter dialog box, depending on your application.
Select the Generate preprocessor conditionals parameter. If the block
parameters dialog box was already open, close and reopen the dialog box to
see the enabled Generate preprocessor conditionals parameter.

4-5

4 Architecture Considerations

5 Clear the parameter, Override variant conditions and use following
variant.

Build Your Model
After configuring your model to generate code, build your model.

Reviewing Code Variants in the Code Generation
Report
The Code Variants Report displays a list of the variant objects in alphabetical
order and their condition. The report also lists the model blocks that have
Variants, and the referenced models that use them. In the Contents section
of the code generation report, click the link to the Code Variants Report:

4-6

Generating Code for Variant Systems

Example of Model Variants in the Generated Code
To open a model for generating preprocessor conditionals, enter
rtwdemo_preprocessor.

4-7

4 Architecture Considerations

After building the model, look at the variants in the generated code.
rtwdemo_preprocessor_types.h includes the following:

• Call to external header file, rtwdemo_preprocessor_macros.h, which
contains the macro definition for the variant control variable, MODE.

/* Includes for objects with custom storage classes. */

#include "rtwdemo_importedmacros.h"

• Preprocessor directives defining the variant objects, LINEAR and NONLINEAR.
The values of these macros depend on the value of the variant control
variable, MODE. The condition expression associated with each macro,
LINEAR and NONLINEAR, determine the active variant.

/* Model Code Variants */

#ifndef LINEAR

#define LINEAR (MODE == 0)

#endif

#ifndef NONLINEAR

#define NONLINEAR (MODE == 1)

#endif

• A check to ensure that exactly one variant is active at a time:

/* Exactly one variant for '<Root>/Left Controller' should be active */

#if (LINEAR) + (NONLINEAR) != 1

#error Exactly one variant for '<Root>/Left Controller' should be active

#endif

Calls to the step and initialization functions are conditionally compiled as
shown in a portion of the step function, rtwdemo_preprocessor_step, in
ModRefVar.c:

#if LINEAR

/* ModelReference: '<Root>/Left Controller' */

mr_rtwdemo_linl(&rtb_Add, &rtb_LeftController_merge_1,

&(rtwdemo_preprocessor_DWork.LeftController_1_DWORK1.rtdw));

#elif NONLINEAR

4-8

Generating Code for Variant Systems

/* ModelReference: '<Root>/Left Controller' */

mr_rtwdemo_nlinl(&rtb_Add, &rtb_LeftController_merge_1,

&(rtwdemo_preprocessor_DWork.LeftController_2_DWORK1.rtdw));

#endif /* LINEAR */

and

#if LINEAR

/* ModelReference: '<Root>/Right Controller' */

mr_rtwdemo_linr(&rtb_Add1, &rtb_RightController_merge_1,

&(rtwdemo_preprocessor_DWork.RightController_1_DWORK1.rtdw));

#elif NONLINEAR

/* ModelReference: '<Root>/Right Controller' */

mr_rtwdemo_nlinr(&rtb_Add1, &rtb_RightController_merge_1,

&(rtwdemo_preprocessor_DWork.RightController_2_DWORK1.rtdw));

#endif /* LINEAR */

Example of Variant Subsystems in the Generated
Code

Open the Example Model
Open model, AutoSSVar.mdl, which contains a variant subsystem.

Define the Variant Control Variables
To recreate the variant control variables specifically for code generation:

1 Open the Model Explorer and click the Base Workspace.

2 A variant control variable can be a Simulink.Parameter object or a
mpt.Parameter object. In the Model Explorer, remove the current
variant control variables, EMIS and FUEL, and re-create them as

4-9

4 Architecture Considerations

Simulink.Parameter objects. Select Add and Simulink Parameter to
create two variant control variables, EMIS and FUEL.

3 In the Simulink.Parameter property dialog box, specify the Value as 1
and the Data type as int8 for both EMIS and FUEL.

4 Specify the Storage class parameter for both FUEL and EMIS as
ImportedDefine(Custom):

5 Specify the value of the variant control variable. Because the storage class
is ImportedDefine(Custom), specify the Header File parameter as an
external header file, AutoSSVar_variables.h, in the Custom Attributes
section of the Simulink.Parameter property dialog box.

6 Supply the values of the variant control variables in the external header
file.

#define FUEL 1
#define EMIS 1

Note The generated code refers to a variant control variable as a
user-defined macro. The generated code does not contain the value of the
macro. The value of the variant control variable determines the active
variant in the compiled code.

7 The variant objects for this model already reside in the base workspace.
For information on how to create the variant objects, follow the instructions
for “Creating Variant Objects”. Ensure that only one variant object is
active in the generated code by implementing the condition expressions of
the variant objects such that only one evaluates to true. The generated
code includes a test of the variant objects to determine that there is only
one active variant. If this test fails, your code does not compile.

4-10

Generating Code for Variant Systems

Make Each Child Subsystem an Atomic Subsystem

1 Double-click the Variant Subsystem block, Engine, to display the child
subsystems.

2 For each child subsystem, right-click the subsystem and select Subsystem
Parameters from the list. The Block parameters dialog box opens.

3 To specify each child subsystem as an atomic subsystem, in the Block
parameters dialog box, select the Treat as atomic unit parameter.

Configure Your Model for Generating Preprocessor Conditional
Directives
In order to generate preprocessor conditional directives configure your model
as follows:

1 On the Code Generation pane of the Configuration Parameter dialog box,
specify the System target file parameter as ert.tlc and clear “Ignore
custom storage classes”. In order to generate preprocessor conditionals, you
must use custom storage classes.

2 On the Optimization > Signals and ParametersMATLAB® pane of the
Configuration Parameters dialog box, select Inline parameters.

3 On the Code Generation > Interface pane of the Configuration
Parameter dialog box, select the Enable All option of the Generate
preprocessor conditionals parameter. This parameter is a global setting
for the parent model and enables generating preprocessor conditionals for
all variants of all variant blocks in the model. For more information, see
“Generate preprocessor conditionals”.

4 On the Code Generation > Report pane of the Configuration Parameter
dialog box, select Create code generation report.

View the Generated Code
The generated code contains all child subsystems of the Variant Subsystem
block protected by C preprocessor conditionals. In this case, the selection of
the active variant (subsystem) is deferred until the generated code is compiled.
Only one variant object, which is encoded in C macros, must evaluate to true.

4-11

4 Architecture Considerations

After building the model, look at the variants in the generated code.
AutoSSVar_types.h includes the following:

• Call to external header file, AutoSSVar_variables.h, which contains the
macro definitions for the variant control variables, FUEL and EMIS.

/* Includes for objects with custom storage classes. */

#include "AutoSSVar_variables.h"

• Preprocessor directives defining the variant objects. The values of these
macros depend on the value of the variant control variables, FUEL and
EMIS. The condition expression associated with each macro determine the
active variant.

/* Model Code Variants */

#ifndef DE

#define DE ((FUEL == 2) && (EMIS == 2))

#endif

#ifndef DU

#define DU ((FUEL == 2) && (EMIS == 1))

#endif

#ifndef GE

#define GE ((FUEL == 1) && (EMIS == 2))

#endif

#ifndef GU

#define GU ((FUEL == 1) && (EMIS == 1))

#endif

• A check to ensure that exactly one variant is active at a time:

/* Exactly one variant for '<Root>/Engine' should be active */
#if (GU) + (GE) + (DU) + (DE) != 1
#error Exactly one variant for '<Root>/Engine' should be active
#endif

Calls to the step and initialization functions are conditionally compiled as
shown in a portion of the step function, AutoSSVar_step, in AutoSSVar.c:

4-12

Generating Code for Variant Systems

#if DE

rtb_MergeForOutportOut1 = 2.2 * AutoSSVar_U.In1;

#elif DU

rtb_MergeForOutportOut1 = 2.1 * AutoSSVar_U.In1;

#elif GE

rtb_MergeForOutportOut1 = 1.2 * AutoSSVar_U.In1;

#elif GU

rtb_MergeForOutportOut1 = 1.1 * AutoSSVar_U.In1;

#endif /* DE */

Restrictions on Code Generation of a Variant
Subsystem
To generate preprocessor conditionals, the types of blocks that you can
place within the child subsystems of a Variant Subsystem block are limited.
Connections are not allowed in the Variant Subsystem block diagram.
However, during the code generation process, one Merge block is placed at the
input of each Outport block within the Variant Subsystem block diagram. All
of the child subsystems connect to each of the Merge blocks.

In the following example, the code generation process makes the following
connections and adds Merge blocks to the sldemo_variant_subsystems.

4-13

4 Architecture Considerations

The restrictions placed on Merge blocks apply to the contents of the Variant
Subsystem blocks. Furthermore, variant subsystems cannot contain
continuous states. The restriction checks are performed only when generating
code. In addition, the child subsystems of the Variant Subsystem block must
be atomic subsystems. In the Subsystem block parameters dialog box, select
the Treat as atomic unit parameter.

Special Considerations for Generating Preprocessor
Conditionals
When you select the Generate preprocessor conditionals parameter,
consider the following:

• The code generation process checks that the inports and outports of a
Variant Subsystem block or a Model Variants block must be identical
(same port numbers and names) to the corresponding inports and outports
of its variants. The build process for simulation does not make this check.

4-14

Generating Code for Variant Systems

Therefore, if your variant block contains mismatched inports or outports,
the code generation process issues an error for a model that previously
ran without error.

• The code generation process checks that there is at least one active
variant by using the variant control variable values stored in the base
workspace. If you are generating preprocessor conditionals and using an
external header file for the values of the variant control variables, the
code generator issues an error if the values in the base workspace do not
indicate an active variant.

• If you comment out any child subsystems listed in the Variant Choices
table in the Variant Subsystem block parameter dialog box, the code
generator does not generate code for the commented out subsystems.

Limitations on Generating Code for Variants
When you are generating code for Model Variants blocks and Variant
Subsystem blocks, the blocks cannot have:

• Continuous states or mass matrices

• Function call ports

• Non-mergeable output

• Outports with constant sample time

In addition, the Model Variants block and all of its referenced models must
have the same number of inports and outports. The Variant Subsystem
block and all of its active child subsystems must have the same number of
inports and outports. All of the port numbers and names for each active child
subsystem in a Variant Subsystem block must also match.

Exceptions to Conditionally Compiled Components in
the Generated Code
The following components in the generated code are not conditionally
compiled. This is true even if they are referenced only by code for variant
subsystems or models that are conditionally compiled.

• rtModel data structure fields

4-15

4 Architecture Considerations

• #include’s of utility files

• Global non-constant parameter structure fields; when the configuration
parameter Optimization > Signals and Parameters > Parameter
structure is set to NonHeirarchical

• Global constant parameter structure fields that are referenced by multiple
subsystems activated by different variants

• Parameters that are configured to use an imported, exported, or custom
code generation storage class, and are referenced by multiple subsystems
that are activated by different variants

• Parameters that are configured to use an imported, exported, or custom
code generation storage class, and are used by variant model blocks

Demos for Generating Code for Variants
To construct model reference variants and generate preprocessor directives in
the generated code, see the demo rtwdemo_preprocessor_script.

To construct variant subsystems and generate preprocessor directives in the
generated code, see the demo rtwdemo_preprocessor_subsys_script.

4-16

Creating and Using Host-Based Shared Libraries

Creating and Using Host-Based Shared Libraries

In this section...

“Overview” on page 4-17

“Generating a Shared Library Version of Your Model Code” on page 4-18

“Creating Application Code to Load and Use Your Shared Library File”
on page 4-19

“Host-Based Shared Library Limitations” on page 4-23

Overview
The Embedded Coder product provides an ERT target, ert_shrlib.tlc, for
generating a host-based shared library from your Simulink model. Selecting
this target allows you to generate a shared library version of your model code
that is appropriate for your host platform, either a Windows® dynamic link
library (.dll) file or a UNIX® shared object (.so) file. This feature can be
used to package your source code securely for easy distribution and shared
use. The generated .dll or .so file is shareable among different applications
and upgradeable without having to recompile the applications that use it.

Code generation for the ert_shrlib.tlc target exports

• Variables and signals of type ExportedGlobal as data

• Real-time model structure (model_M) as data

• Functions essential to executing your model code

To view a list of symbols contained in a generated shared library file, you can

• On Windows, use the Dependency Walker utility, downloadable from
http://www.dependencywalker.com

• On UNIX, use nm -D model.so

To generate and use a host-based shared library, you

1 Generate a shared library version of your model code

4-17

http://www.dependencywalker.com

4 Architecture Considerations

2 Create application code to load and use your shared library file

Generating a Shared Library Version of Your Model
Code
This section summarizes the steps needed to generate a shared library
version of your model code.

1 To configure your model code for shared use by applications, open your
model and select the ert_shrlib.tlc target on the Code Generation
pane of the Configuration Parameters dialog box. Click OK.

Selecting the ert_shrlib.tlc target causes the build process to generate a
shared library version of your model code into your current working folder.
The selection does not change the code that is generated for your model.

2 Build the model.

3 After the build completes, you can examine the generated code in the
model subfolder, and the .dll file or .so file that has been generated into
your current folder.

4-18

Creating and Using Host-Based Shared Libraries

Creating Application Code to Load and Use Your
Shared Library File
To illustrate how application code can load an ERT shared library file
and access its functions and data, MathWorks provides the demo model
rtwdemo_shrlib. Clicking the blue button in the demo model runs a script
that:

1 Builds a shared library file from the model (for example,
rtwdemo_shrlib_win32.dll on 32-bit Windows)

2 Compiles and links an example application, rtwdemo_shrlib_app, that will
load and use the shared library file

3 Executes the example application

Note It is recommended that you change directory to a new or empty folder
before running the rtwdemo_shrlib script.

The demo model uses the following example application files, which are
located in matlabroot/toolbox/rtw/rtwdemos/shrlib_demo.

File Description

rtwdemo_shrlib_app.h Example application header file

rtwdemo_shrlib_app.c Example application that loads and uses
the shared library file generated for the
demo model

run_rtwdemo_shrlib_app.m Script to compile, link, and execute the
example application

You can view each of these files by clicking white buttons in the demo model
window. Additionally, running the script places the relevant source and
generated code files in your current folder. The files can be used as templates
for writing application code for your own ERT shared library files.

The following sections present key excerpts of the example application files.

4-19

4 Architecture Considerations

Example Application Header File
The example application header file rtwdemo_shrlib_app.h contains type
declarations for the demo model’s external input and output.

#ifndef _APP_MAIN_HEADER_

#define _APP_MAIN_HEADER_

typedef struct {

int32_T Input;

} ExternalInputs_rtwdemo_shrlib;

typedef struct {

int32_T Output;

} ExternalOutputs_rtwdemo_shrlib;

#endif /*_APP_MAIN_HEADER_*/

Example Application C Code
The example application rtwdemo_shrlib_app.c includes the following code
for dynamically loading the shared library file. Notice that, depending on
platform, the code invokes Windows or UNIX library commands.

#if (defined(_WIN32)||defined(_WIN64)) /* WINDOWS */

#include <windows.h>

#define GETSYMBOLADDR GetProcAddress

#define LOADLIB LoadLibrary

#define CLOSELIB FreeLibrary

#else /* UNIX */

#include <dlfcn.h>

#define GETSYMBOLADDR dlsym

#define LOADLIB dlopen

#define CLOSELIB dlclose

#endif

int main()

{

void* handleLib;

4-20

Creating and Using Host-Based Shared Libraries

...

#if defined(_WIN64)

handleLib = LOADLIB("./rtwdemo_shrlib_win64.dll");

#else

#if defined(_WIN32)

handleLib = LOADLIB("./rtwdemo_shrlib_win32.dll");

#else /* UNIX */

handleLib = LOADLIB("./rtwdemo_shrlib.so", RTLD_LAZY);

#endif

#endif

...

return(CLOSELIB(handleLib));

}

The following code excerpt shows how the C application accesses the demo
model’s exported data and functions. Notice the hooks for adding user-defined
initialization, step, and termination code.

int32_T i;

...

void (*mdl_initialize)(boolean_T);

void (*mdl_step)(void);

void (*mdl_terminate)(void);

ExternalInputs_rtwdemo_shrlib (*mdl_Uptr);

ExternalOutputs_rtwdemo_shrlib (*mdl_Yptr);

uint8_T (*sum_outptr);

...

#if (defined(LCCDLL)||defined(BORLANDCDLL))

/* Exported symbols contain leading underscores when DLL is linked with

LCC or BORLANDC */

mdl_initialize =(void(*)(boolean_T))GETSYMBOLADDR(handleLib ,

"_rtwdemo_shrlib_initialize");

mdl_step =(void(*)(void))GETSYMBOLADDR(handleLib ,

"_rtwdemo_shrlib_step");

mdl_terminate =(void(*)(void))GETSYMBOLADDR(handleLib ,

"_rtwdemo_shrlib_terminate");

mdl_Uptr =(ExternalInputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

"_rtwdemo_shrlib_U");

4-21

4 Architecture Considerations

mdl_Yptr =(ExternalOutputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

"_rtwdemo_shrlib_Y");

sum_outptr =(uint8_T*)GETSYMBOLADDR(handleLib , "_sum_out");

#else

mdl_initialize =(void(*)(boolean_T))GETSYMBOLADDR(handleLib ,

"rtwdemo_shrlib_initialize");

mdl_step =(void(*)(void))GETSYMBOLADDR(handleLib ,

"rtwdemo_shrlib_step");

mdl_terminate =(void(*)(void))GETSYMBOLADDR(handleLib ,

"rtwdemo_shrlib_terminate");

mdl_Uptr =(ExternalInputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

"rtwdemo_shrlib_U");

mdl_Yptr =(ExternalOutputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

"rtwdemo_shrlib_Y");

sum_outptr =(uint8_T*)GETSYMBOLADDR(handleLib , "sum_out");

#endif

if ((mdl_initialize && mdl_step && mdl_terminate && mdl_Uptr && mdl_Yptr &&

sum_outptr)) {

/* === user application initialization function === */

mdl_initialize(1);

/* insert other user defined application initialization code here */

/* === user application step function === */

for(i=0;i<=12;i++){

mdl_Uptr->Input = i;

mdl_step();

printf("Counter out(sum_out): %d\tAmplifier in(Input): %d\tout(Output): %d\n",

*sum_outptr, i, mdl_Yptr->Output);

/* insert other user defined application step function code here */

}

/* === user application terminate function === */

mdl_terminate();

/* insert other user defined application termination code here */

}

else {

printf("Cannot locate the specified reference(s) in the shared library.\n");

return(-1);

}

4-22

Creating and Using Host-Based Shared Libraries

Example Application Script
The application script run_rtwdemo_shrlib_app.m loads and rebuilds the
demo model, and then compiles, links, and executes the demo model’s
shared library target file. You can view the script source file by opening
rtwdemo_shrlib and clicking the appropriate white button. The script
constructs platform-dependent command strings for compilation, linking,
and execution that may apply to your development environment. To run the
script, click the blue button.

Host-Based Shared Library Limitations
The following limitations apply to using ERT host-based shared libraries:

• Code generation for the ert_shrlib.tlc target exports only the following
as data:

- Variables and signals of type ExportedGlobal

- Real-time model structure (model_M)

• Code generation for the ert_shrlib.tlc target supports the C language
only (not C++). When you select the ert_shrlib.tlc target, language
selection is greyed out on the Code Generation pane of the Configuration
Parameters dialog box.

• On Windows systems, the ert_shrlib target by default does not generate
or retain the .lib file for implicit linking (explicit linking is preferred for
portability).

You can change the default behavior and retain the .lib file by modifying
the corresponding template makefile (TMF). If you do this, be aware that
the generated model.h file will need a small modification to be used together
with the generated ert_main.c for implicit linking. For example, if you
are using Visual C++®, you will need to declare __declspec(dllimport) in
front of all data to be imported implicitly from the shared library file.

• To reconstruct a model simulation using a generated host-based shared
library, the application author must maintain the timing between system
and shared library function calls in the original application. The timing
needs to be consistent to ensure correct simulation and integration results.

4-23

4 Architecture Considerations

4-24

5

Scheduling Considerations

• “Using Discrete and Continuous Time” on page 5-2

• “Optimizing Task Scheduling for Multirate Multitasking Models on RTOS
Targets” on page 5-4

5 Scheduling Considerations

Using Discrete and Continuous Time

In this section...

“Generating Code for Discrete and Continuous Time Blocks” on page 5-2

“Generating Code that Supports Continuous Solvers” on page 5-2

“Generating Code that Honors a Stop Time” on page 5-3

Generating Code for Discrete and Continuous Time
Blocks
The ERT target supports code generation for discrete and continuous time
blocks. If the Support continuous time option is selected, you can use any
such blocks in your models, without restriction.

Note that use of certain blocks is not recommended for production code
generation for embedded systems. The Simulink Block Data Type Support
table summarizes characteristics of blocks in the Simulink and Simulink
Fixed Point block libraries, including whether or not they are recommended
for use in production code generation. To view this table, execute the following
command and see the “Code Generation Support” column of the table that
appears:

showblockdatatypetable

Generating Code that Supports Continuous Solvers
The ERT target supports continuous solvers. In the Solver options dialog,
you can select any available solver in the Solver menu. (Note that the solver
Type must be fixed-step for use with the ERT target.)

Note Custom targets must be modified to support continuous time. The
required modifications are described in “Custom Targets” in the Simulink
Coder documentation.

5-2

Using Discrete and Continuous Time

Generating Code that Honors a Stop Time
The ERT target supports the stop time for a model. When generating
host-based executables, the stop time value is honored when any one of the
following is true:

• GRT compatible call interface is selected on the Interface pane

• External mode is selected in the Data exchange subpane of the
Interface pane

• MAT-file logging is selected on the Interface pane

Otherwise, the executable runs indefinitely.

Note The ERT target provides both generated and static examples of
the ert_main.c file. The ert_main.c file controls the overall model code
execution by calling the model_step function and optionally checking the
ErrorStatus/StopRequested flags to terminate execution. For a custom
target, if you provide your own custom static main.c, you should consider
including support for checking these flags.

5-3

5 Scheduling Considerations

Optimizing Task Scheduling for Multirate Multitasking
Models on RTOS Targets

In this section...

“Overview” on page 5-4

“Using rtmStepTask” on page 5-5

“Task Scheduling Code for Multirate Multitasking Model on Wind River
Systems VxWorks Target” on page 5-5

“Suppressing Redundant Scheduling Calls” on page 5-6

Overview
Using the rtmStepTask macro, targets that employ the task management
mechanisms of an RTOS can eliminate certain redundant scheduling calls
during the execution of tasks in a multirate, multitasking model, thereby
improving performance of the generated code.

To understand the optimization that is available for an RTOS target, consider
how the ERT target schedules tasks for bareboard targets (where no RTOS
is present). The ERT target maintains scheduling counters and event flags
for each subrate task. The scheduling counters are implemented within the
real-time model (rtM) data structure as arrays, indexed on task identifier
(tid).

The scheduling counters are updated by the base-rate task. The counters
are, in effect, clock rate dividers that count up the sample period associated
with each subrate task. When a given subrate counter reaches a value that
indicates it has a hit, the sample period for that rate has elapsed and the
counter is reset to zero. When this occurs, the subrate task must be scheduled
for execution.

The event flags indicate whether or not a given task is scheduled for execution.
For a multirate, multitasking model, the event flags are maintained by code in
the model’s generated example main program (ert_main.c) . For each task,
the code maintains a task counter. When the counter reaches 0, indicating
that the task’s sample period has elapsed, the event flag for that task is set.

5-4

Optimizing Task Scheduling for Multirate Multitasking Models on RTOS Targets

On each time step, the counters and event flags are updated and the base-rate
task executes. Then, the scheduling flags are checked in tid order, and any
task whose event flag is set is executed. This ensures that tasks are executed
in order of priority.

For bareboard targets that cannot rely on an external RTOS, the event
flags are mandatory to allow overlapping task preemption. However, an
RTOS target uses the operating system itself to manage overlapping task
preemption, making the maintenance of the event flags redundant.

Using rtmStepTask
The rtmStepTask macro is defined in model.h and its syntax is as follows:

boolean task_ready = rtmStepTask(rtm, idx);

The arguments are:

• rtm: pointer to the real-time model structure (rtM)

• idx: task identifier (tid) of the task whose scheduling counter is to be
tested

rtmStepTask returns TRUE if the task’s scheduling counter equals zero,
indicating that the task should be scheduled for execution on the current time
step. Otherwise, it returns FALSE.

If your target supports the Generate an example main program
parameter, you can generate calls to rtmStepTask using the TLC function
RTMTaskRunsThisBaseStep.

Task Scheduling Code for Multirate Multitasking
Model on Wind River Systems VxWorks Target
The following task scheduling code, from ertmainlib.tlc, is designed for
multirate multitasking operation on a Wind River® Systems VxWorks®

target. The example uses the TLC function RTMTaskRunsThisBaseStep to
generate calls to the rtmStepTask macro. A loop iterates over each subrate
task, and rtmStepTask is called for each task. If rtmStepTask returns TRUE,
the VxWorks semGive function is called, and the VxWorks RTOS schedules
the task to run.

5-5

5 Scheduling Considerations

%assign ifarg = RTMTaskRunsThisBaseStep("i")

for (i = 1; i < %<FcnNumST>; i++) {

if (%<ifarg>) {

semGive(taskSemList[i]);

if (semTake(taskSemList[i],NO_WAIT) != ERROR) {

logMsg("Rate for SubRate task %d is too fast.\n",i,0,0,0,0,0);

semGive(taskSemList[i]);

}

}

}

Suppressing Redundant Scheduling Calls
Redundant scheduling calls are still generated by default for backward
compatibility. To change this setting and suppress them, add the following
TLC variable definition to your system target file before the %include
"codegenentry.tlc" statement:

%assign SuppressSetEventsForThisBaseRateFcn = 1

5-6

6

Developing Model Patterns
that Generate Specific C
Constructs

• “About Modeling Patterns” on page 6-2

• “Standard Methods to Prepare a Model for Code Generation” on page 6-3

• “Types, Operators, and Expressions” on page 6-8

• “Control Flow” on page 6-25

• “Functions” on page 6-65

• “Preprocessor Directives” on page 6-77

• “Structures” on page 6-81

• “Arrays” on page 6-95

• “Pointers” on page 6-99

6 Developing Model Patterns that Generate Specific C Constructs

About Modeling Patterns
Several standard methods are available for setting up a model to generate
specific C Constructs in your code. For preparing your model for code
generation, some of these methods include: configuring signals and ports,
initializing states, and setting up configuration parameters for code
generation. Depending on the components of your model, some of these
methods are optional. Methods for configuring a model to generate specific C
constructs are organized by category, for example, the Control Flow category
includes constructs if-else, switch, for, and while. Refer to the name of
a construct to see how you should configure blocks and parameters in your
model. Different modeling methodologies are available, such as Simulink
blocks, Stateflow® charts, and MATLAB Function blocks, to implement a
C construct.

Model examples have the following naming conventions:

Model Components Naming Convention

Inputs u1, u2, u3, and so on

Outputs y1, y2, y3, and so on

Parameters p1, p2, p3, and so on

States x1, x2, x3, and so on

Input ports are named to reflect the signal names that they propagate.

6-2

Standard Methods to Prepare a Model for Code Generation

Standard Methods to Prepare a Model for Code
Generation

In this section...

“Configuring a Signal” on page 6-3

“Configuring Input and Output Ports” on page 6-4

“Initializing States” on page 6-4

“Setting Up Configuration Parameters for Code Generation” on page 6-4

“Setting Up an Example Model With a Stateflow Chart” on page 6-5

“Setting Up an Example Model With a MATLAB Function Block” on page
6-7

Configuring a Signal

1 Create a model in Simulink. See “Creating a Model” in the Simulink
documentation.

2 Right-click a signal line. Select Signal Properties. A Signal Properties
dialog box opens. See “Signal Properties Dialog Box” for more information.

3 Enter a signal name for the Signal name parameter.

4 On the same Signal Properties dialog box, select the Code Generation
tab. Use the drop down menu for the Storage class parameter to specify a
storage class. Examples in this chapter use Exported Global.

Note Alternatively, on the Signal Properties dialog box, select Signal
name must resolve to Simulink signal object. Then create a signal
data object in the base workspace with the same name as the signal.
See “Creating Simulink and mpt Data Objects” on page 12-4 for more
information on creating data objects in the base workspace. (Examples use
mpt.Signal and specify the Storage class as ExportedGlobal.

6-3

6 Developing Model Patterns that Generate Specific C Constructs

Configuring Input and Output Ports

1 In your model,

Double-click an Inport or Outport block. A Block Parameters dialog box
opens.

2 Select the Signal Attributes tab.

3 Specify the Port dimensions and Data type. Examples leave the default
value for Port dimensions as 1 (for inherited) and Data type as
Inherit: auto.

Initializing States

1 Double-click a block.

2 In the Block Parameters dialog box, select the Main tab.

3 Specify the Initial conditions and Sample time. See “Working with
Sample Times”.

4 Select the State Attributes pane. Specify the state name. See “Block
State Storage and Interfacing Considerations”.

5 You can also use the Data Object Wizard for creating data objects. A part of
this process initializes states. See “Creating Simulink Data Objects with
Data Object Wizard” on page 12-5.

Setting Up Configuration Parameters for Code
Generation

1 Open the Configuration Parameter dialog box by selecting
Simulation > Configuration parameters. You can also use the
keyboard shortcut Ctrl+E.

2 Open the Solver pane and select

• Solver type: Fixed-Step

• Solver: discrete (no continuous states)

6-4

Standard Methods to Prepare a Model for Code Generation

3 Open the Optimization > Signals and Parameters pane, and select
the Inline parameters parameter.

4 Open the Code Generation pane, and specify ert.tlc as the System
Target File.

5 Clear Generate makefile.

6 Select Generate code only.

7 Enable the HTML report generation by opening the Code Generation >
Report pane and selecting Create code generation report, Launch
report automatically, and Code-to-model. Enabling the HTML report
generation is optional.

8 Click Apply and then OK to exit.

Setting Up an Example Model With a Stateflow Chart

Follow this general procedure to create a simple model containing a Stateflow
chart.

1 From the Stateflow > Stateflow Chart library, add a Stateflow chart
to your model .

2 Add Inport blocks and Outport blocks according to the example model.

6-5

6 Developing Model Patterns that Generate Specific C Constructs

3 Open the Stateflow Editor by performing one of the following:

• Double-click the Stateflow chart.

• Select Tools > Explore.

• Press Ctrl+R.

4 Select Add > Data > Input from Simulink to add the inputs to the chart.
A Data dialog box opens for each input.

5 Specify the Name (u1, u2, ...) and the Type (Inherit: Same as
Simulink) for each input, unless specified differently in the example. Click
OK.

Click Apply and close each dialog box.

6 Select Add > Data > Output from Simulink to add the outputs to the
chart. A Data dialog opens for each output.

7 Specify the Name (y1, y2, ...) and Type (Inherit: Same as
Simulink) for each output, unless specified differently in the example.
Click OK.

8 Click Apply and close each dialog box.

9 In the Stateflow Editor, create the Stateflow diagram specific to the
example.

10 The inputs and outputs appear on the chart in your model.

11 Connect the Inport and Outport blocks to the Stateflow Chart.

12 Configure the input and output signals; see “Configuring a Signal” on page
6-3.

6-6

Standard Methods to Prepare a Model for Code Generation

Setting Up an Example Model With a MATLAB
Function Block

1 Add the number of Inport and Outport blocks according to a C construct
example included in this chapter.

2 From the Simulink User-defined Functions library drag a MATLAB
Function block into the model.

3 Double-click the block. The MATLAB Function Block Editor opens. Edit
the function to implement your application.

4 Click File > Save and close the MATLAB Function Block Editor.

5 Connect the Inport and Outport blocks to the MATLAB Function block. See
“Configuring a Signal” on page 6-3.

6 Save your model.

6-7

6 Developing Model Patterns that Generate Specific C Constructs

Types, Operators, and Expressions

In this section...

“Data Declaration” on page 6-8

“Data Type Conversion” on page 6-11

“Type Qualifiers” on page 6-15

“Relational and Logical Operators” on page 6-17

“Bitwise Operations” on page 6-21

Data Declaration

C Construct

int32 p1 = 3;

Declare a Variable for a Block Parameter Using a Data Object
You can specify certain block parameters as a variable. If you define the
variable as a data object, the variable is global. Where the variable is declared
in the generated code depends on the custom storage class that you choose
(and whether you select Inline Parameters on the Optimization > Signals
and Parameters pane). If you choose Inline Parameters, then the data
object name is used in the generated code. If you did not choose Inline
Parameters, the generated code creates a global structure that stores all of
the parameters. For more information on how to create a data object, see
Defining Data Representation and Storage for Code Generation on page 1.

Block Parameter

Constant Value

Gain Value

For Iterator Iteration Limit

There are several methods for configuring data objects:

6-8

Types, Operators, and Expressions

• For a model with many parameters, use the Data Object Wizard, which
analyzes your model and finds all of the unresolved data objects and data
types. You can then create the data objects in the Data Object Wizard. The
procedure for using the Data Object Wizard for a parameter is similar to
the procedure for a signal. For an example, see “Declare a Variable for a
Signal using a Data Object” on page 6-10.

• To add, delete, edit, and configure data objects, use the base workspace in
the Model Explorer.

• To create and configure data objects, use the MATLAB command line.

The following example demonstrates how to create a data object using the
Model Explorer. The declaration statement in the generated code is as follows:

int Kp = 3;

1 Create a model containing a Constant block and a Gain block.

2 Press Ctrl+E to open the Configuration Parameters dialog box.

3 On the Optimization > Signals and Parameters pane of the
Configuration Parameter dialog box, select Inline parameters.

4 Click Apply and OK. The Configuration Parameter dialog box closes.

5 In your model, double-click the Constant block. The Block Parameters
dialog box opens.

6 In the Value field, enter a variable name. In this example, the variable
name is p1.

7 In your model, double-click the Gain block. The Block Parameters dialog
box opens.

8 In the Value field, enter a variable name. In this example, the variable
name is p2.

9 Press Ctrl+H to open the Model Explorer. On the Model Hierarchy pane,
select the base workspace.

6-9

6 Developing Model Patterns that Generate Specific C Constructs

10 To add two MPT parameter objects, in the menu bar, select Add > MPT
Parameter in the menu bar twice. On the Contents of: Base Workspace
pane, you see the parameters.

11 Double-click each mpt.Parameter object and change their names to p1
and p2.

12 Click the p1 parameter. The data object parameters are displayed in the
right pane of the Model Explorer.

13 In the Value field, enter 3 for p1. For the Data type, select int32.
Because you chose an MPT parameter, the Storage Class is already set
to Global(Custom).

14 In the Value field, enter 5 for p2. For the Data type, select int32.

15 Press Ctrl+B to generate code.

In the model.c file you see:

int32 p1 = 3;
int32 p2 = 5;

Note Depending on the storage class, the global variable is represented
differently in the generated code. For more information, see “Parameter
Objects”.

C Construct

int p1 = 3;

Declare a Variable for a Signal using a Data Object

1 Create a model and label the signals.

2 In the model tool bar, click Tools > Data Object Wizard to open the Data
Object Wizard. If you are not familiar with creating Simulink Data
Objects using the wizard, refer to “Data Object Wizard” .

6-10

Types, Operators, and Expressions

3 Click Find. The list of unresolved parameters and objects populates the
Data Object Wizard. You can do mass edits for identical data objects.

4 Select the signals individually or select all signals by clicking Check All.

5 From the parameter Choose package for selected data objects
drop-down list, select the mpt package. Click Apply Package. When you
open the Model Explorer the data objects appear in the base workspace.

6 In the base workspace, click the p1 data object . The data object parameters
appear in the right pane of the Model Explorer.

7 From the Data type drop-down list, select int16.

8 You can also specify the storage class. The data object is an mpt.Parameter
object, therefore the Storage Class is automatically set to Global (Custom).

Note The Storage class alters the data object implementation in the
generated code. For more information, see “Signal Objects”.

Data Type Conversion

C Construct

y1 = (double)u1;

Modeling Patterns

• “Modeling Pattern for Data Type Conversion — Simulink Block” on page
6-12

• “Modeling Pattern for Data Type Conversion — Stateflow Chart” on page
6-13

• “Modeling Pattern for Data Type Conversion — MATLAB Function Block”
on page 6-14

6-11

6 Developing Model Patterns that Generate Specific C Constructs

Modeling Pattern for Data Type Conversion — Simulink Block
One method to create a data type conversion is to use a Data Type Conversion
block from the Simulink > Commonly Used Blocks library.

ex_data_type_SL

1 From the Commonly Used Blocks library, drag a Data Type Conversion
block into your model and connect to the Inport and Outport blocks.

2 Double-click on the Data Type Conversion block to open the Block
Parameters dialog box.

3 Select the Output data type parameter as double.

4 Press Ctrl+B to build the model and generate code.

The generated code appears in ex_data_type_SL.c, as follows:

int32_T u1;
real_T y1;

void ex_data_type_SL_step(void)
{
y1 = (real_T)u1;

}

The Embedded Coder type definition for double is real_T.

6-12

Types, Operators, and Expressions

Modeling Pattern for Data Type Conversion — Stateflow Chart

Stateflow Chart Type Conversion

Procedure.
1 Follow the steps for “Setting Up an Example Model With a Stateflow Chart”
on page 6-5 . This example contains one Inport block and one Outport block.

2 Name the example model ex_data_type_SF.

3 Double-click the Inport block and select the Signal Attributes tab. Specify
the Data Type as int32 from the drop down menu.

4 Double-click the Outport block and select the Signal Attributes tab.
Specify the Data Type as Inherit: auto from the drop down menu.

5 In the Stateflow Editor, specify the Data Type for y1 as Boolean

6 Press Ctrl+B to build the model and generate code.

Results. The generated code appears in ex_data_type_SF.c, as follows:

int32_T u1;

real_T y1;

void ex_data_type_SF_step(void)

{

y1 = (real_T)u1;

}

6-13

6 Developing Model Patterns that Generate Specific C Constructs

Modeling Pattern for Data Type Conversion — MATLAB
Function Block

Procedure.

1 Follow the steps for “Setting Up an Example Model With a MATLAB
Function Block” on page 6-7 . This example model contains one Inport
block and one Outport block.

2 Name the model ex_data_type_ML_Func.

3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = typeconv(u1)
y1 = double(u1);
end

4 Press Ctrl+B to build the model and generate code.

Results. The generated code appears in ex_data_type_ML_func.c, where
real32_T is a float and real_T is a double. Type conversion occurs across
assignments.

real32_T u1;

real_T y1;

void ex_data_type_ML_func_step(void)

{

y1 = u1;

}

Other Type Conversions in Modeling
Type conversions can also occur on the output of blocks where the output
variable is specified as a different data type. For example, in the Gain block,
you can select the Inherit via internal rule parameter to control the
output signal data type. Another example of type conversion can occur at
the boundary of a Stateflow chart. You can specify the output variable as
a different data type.

6-14

Types, Operators, and Expressions

Type Qualifiers

Modeling Patterns for Type Qualifiers

• “Using a Tunable Parameter in the Base Workspace” on page 6-15

• “Using a Data Object of the Const Custom Storage Class” on page 6-16

Using a Tunable Parameter in the Base Workspace
A tunable parameter is a block parameter whose value can be changed
at runtime. The storage class property of a parameter specifies how the
parameter is declared in the generated code.

ex_type_qual

Procedure.

1 Create a model containing a Constant block and an Outport block.

2 Double-click the Constant block. In the Constant value field, enter the
parameter name p1 .

3 In the base workspace, create a MATLAB variable for p1 and specify its
Value as 9.8 and its Data type as double.

4 Press Ctrl+E to open the Configuration Parameters dialog box and select
the Optimization > Signals and Parameters pane.

5 Select the Inline parameters parameter, which activates the Configure
button.

6 Click the Configure button to open the Model Parameter Configuration
dialog box.

6-15

6 Developing Model Patterns that Generate Specific C Constructs

7 To declare a tunable parameter, from the Source list, select the variable
p1.

8 Click the Add to table button to add p1 to the Global (tunable)
parameters section.

9 Click the Storage Class and select Exported Global.

10 Click the Storage Type Qualifier arrow and select const.

11 Click Apply to save all of the changes.

12 Press Ctrl+B to build the model and generate code.

Results. The generated code appears in ex_type_qual.c as follows:

/* Exported block parameters */

const real_T p1 = 9.8; /* Variable: p1

* Referenced by: '<Root>/Constant'

*/

Using a Data Object of the Const Custom Storage Class
One way to create a type qualifier in the generated code is to create a data
object and specify the appropriate custom storage class. Use the previous
model, ex_type_qual, for this example. Specify p1 differently as follows:

Procedure.

1 Press Ctrl+H to open the Model Explorer. On the Model Hierarchy pane,
select the base workspace.

2 In the menu bar, select Add > MPT Parameter to add an MPT parameter
object. The parameter is displayed in the Contents of: Base Workspace
pane.

3 Double-click the mpt.Parameter object and change the Name to p1.

4 Click the p1 parameter which displays the data object parameters on the
right pane of the Model Explorer.

6-16

Types, Operators, and Expressions

5 In the Value field, enter 9.8 for p1. Specify the Data type as auto for
64–bit double.

6 You can use the different type qualifiers by selecting a custom storage
class from the Storage class list. For this example, select ConstVolatile
(custom).

7 In the Configuration Parameters dialog box, on the
Optimization > Signals and Parameters pane, select the
Inline parameters.

8 Press Ctrl+B to build the model and generate code.

Results. The generated code produces the type qualifier in ex_type_qual.c:

const volatile real_T p1 = 9.8;

Relational and Logical Operators

Modeling Patterns for Relational and Logical Operators

• “Modeling Pattern for Relational or Logical Operators — Simulink Blocks”
on page 6-18

• “Modeling Pattern for Relational and Logical Operators —Stateflow Chart”
on page 6-19

• “Modeling Pattern for Relational and Logical Operators — MATLAB
Function Block” on page 6-20

6-17

6 Developing Model Patterns that Generate Specific C Constructs

Modeling Pattern for Relational or Logical Operators —
Simulink Blocks

ex_logical_SL

Procedure.

1 From the Logic and Bit Operations library, drag a Logical Operator
block into your model.

2 Double-click the block to configure the logical operation. Set the Operator
field to OR.

3 Name the blocks, as shown in the model ex_logical_SL.

4 Connect the blocks and name the signals, as shown in the model
ex_logical_SL.

5 Press Ctrl+B to build the model and generate code.

Note You can use the above procedure to implement relational operators by
replacing the Logical Operator block with a Relational Operator block.

Results. Code implementing the logical operator OR is in the
ex_logical_SL_step function in ex_logical_SL.c:

/* Exported block signals */
boolean_T u1; /* '<Root>/u1' */
boolean_T u2; /* '<Root>/u2' */

6-18

Types, Operators, and Expressions

boolean_T y1; /* '<Root>/Logical Operator'*/

/* Logic: '<Root>/Logical Operator' incorporates:
* Inport: '<Root>/u1'
* Inport: '<Root>/u2'
*/
y1 = (u1 || u2);

Modeling Pattern for Relational and Logical Operators
—Stateflow Chart

ex_logical_SF/Logical Operator Stateflow® Chart

Procedure.

1 Follow the steps for “Setting Up an Example Model With a Stateflow
Chart” on page 6-5. This example model contains two Inport blocks and
one Outport block.

2 Name the example model ex_logical_SF.

3 In the Stateflow Editor, specify the Data Type for y1 as Boolean.

4 In the Stateflow Editor, create the Stateflow diagram as shown. The
relational or logical operation actions are on the transition from one junction

6-19

6 Developing Model Patterns that Generate Specific C Constructs

to another. Relational statements specify conditions to conditionally allow
a transition. In that case, the statement would be within square brackets.

5 Press Ctrl+B to build the model and generate code.

Results. Code implementing the logical operator OR is in the
ex_logical_SF_step function in ex_logical_SF.c:

boolean_T u1; /* '<Root>/u1' */
boolean_T u2; /* '<Root>/u2' */
boolean_T y1; /* '<Root>/Chart' */

void ex_logical_SF_step(void)
{

y1 = (u1 || u2);
}

Modeling Pattern for Relational and Logical Operators —
MATLAB Function Block
This example demonstrates the MATLAB Function block method for
incorporating operators into the generated code using a relational operator.

Procedure.

1 Follow the steps for “Setting Up an Example Model With a MATLAB
Function Block” on page 6-7 . This example model contains two Inport
blocks and one Outport block.

2 Name the example model ex_rel_operator_ML.

3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(u1, u2)
y1 = u1 > u2;
end

4 Press Ctrl+B to build the model and generate code.

6-20

Types, Operators, and Expressions

Results. Code implementing the relational operator ’>’ is in the
ex_rel_operator_ML_step function in ex_rel_operator_ML.c:

real_T u1; /* '<Root>/u1' */
real_T u2; /* '<Root>/u2' */
boolean_T y; /* '<Root>/MATLAB Function' */

void ex_rel_operator_ML_step(void)
{

y = (u1 > u2);
}

Bitwise Operations

Simulink Bitwise-Operator Block

ex_bit_logic_SL

Procedure.

1 Drag a Bitwise Operator block from the Logic and Bit Operations
library into your model.

2 Double-click the block to open the Block Parameters dialog.

3 Select the type of Operator. In this example, select AND.

4 In order to perform Bitwise operations with a bit-mask, select Use bit
mask.

6-21

6 Developing Model Patterns that Generate Specific C Constructs

Note If another input uses Bitwise operations, clear the Use bit mask
parameter and enter the number of input ports.

5 In the Bit Mask field, enter a decimal number. Use bin2dec or hex2dec to
convert from binary or hexadecimal. In this example, enter hex2dec('D9').

6 Name the blocks, as shown in, model ex_bit_logic_SL.

7 Connect the blocks and name the signals, as shown in, model
ex_bit_logic_SL.

8 Press Ctrl+B to build the model and generate code.

Results. Code implementing the logical operator OR is in the
ex_bit_logic_SL_step function in ex_bit_logic_SL.c:

uint8_T u1;
uint8_T y1;

void ex_bit_logic_SL_step(void)
{

y1 = (uint8_T)(u1 & 217);
}

6-22

Types, Operators, and Expressions

Stateflow Chart

ex_bit_logic_SF/Bit_Logic Stateflow Chart

Procedure.

1 Follow the steps for “Setting Up an Example Model With a Stateflow Chart”
on page 6-5. This example contains one Inport block and one Outport block.

2 Name the example model ex_bit_logic_SF.

3 From the Stateflow Editor, selectTools > Explore to open the Model
Explorer.

4 In the Model Explorer, on the right pane, select Enable C-bit operations.

5 In the Stateflow Editor, create the Stateflow diagram,
ex_bit_logic_SF/Bit_Logic.

6 Press Ctrl+B to build the model and generate code.

Results. Code implementing the logical operator OR is in the
ex_bit_logic_SF_step function in ex_bit_logic_SF.c:

uint8_T u1;
uint8_T y1;

void bit_logic_SF_step(void)
{

y1 = (uint8_T)(u1 & 0xD9);

6-23

6 Developing Model Patterns that Generate Specific C Constructs

}

MATLAB Function Block
In this example, to demonstrate theMATLAB Function block method for
implementing bitwise logic into the generated code, use the bitwise OR, ’|’.

Procedure.

1 Follow the steps for “Setting Up an Example Model With a MATLAB
Function Block” on page 6-7. This example model contains two Inport
blocks and one Outport block.

2 Name your model ex_bit_logic_ML.

3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(u1, u2)

y1 = bitor(u1, u2);
end

4 Press Ctrl+B to build the model and generate code.

Results. Code implementing the bitwise operator OR is in the
ex_bit_logic_ML_step function in ex_bit_logic_ML.c:

uint8_T u1;
uint8_T u2;
uint8_T y1;

void ex_bit_logic_ML_step(void)
{
y1 = (uint8_T)(u1 | u2);

}

6-24

Control Flow

Control Flow

In this section...

“If-Else” on page 6-25

“Switch” on page 6-32

“For loop” on page 6-38

“While loop” on page 6-46

“Do While loop” on page 6-58

If-Else

C Construct

if (u1 > u2)
{

y1 = u1;
}
else
{

y1 = u2;
}

Modeling Patterns

• “Modeling Pattern for If-Else: Switch block” on page 6-26

• “Modeling Pattern for If-Else: Stateflow Chart” on page 6-28

• “Modeling Pattern for If-Else: MATLAB Function Block” on page 6-30

6-25

6 Developing Model Patterns that Generate Specific C Constructs

Modeling Pattern for If-Else: Switch block
One method to create an if-else statement is to use a Switch block from the
Simulink > Signal Routing library.

Model ex_if_else_SL

Procedure.

1 Drag the Switch block from the Simulink>Signal Routing library into
your model.

2 Connect the data inputs and outputs to the block.

3 Drag a Relational Operator block from the Logic & Bit Operations library
into your model.

4 Connect the signals that are used in the if-expression to the Relational
Operator block. The order of connection determines the placement of each
signal in the if-expression.

5 Configure the Relational Operator block to be a greater than operator.

6 Connect the controlling input to the middle input port of the Switch block.

6-26

Control Flow

7 Double-click the Switch block and set Criteria for passing first input
to u2~=0. This condition ensures that Simulink selects u1 if u2 is TRUE;
otherwise u2 passes.

8 Enter Ctrl+B to build the model and generate code.

Results. The generated code includes the following ex_if_else_SL_step
function in the file ex_if_else_SL.c:

/* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */

void ex_if_else_SL_step(void)

{

/* Switch: '<Root>/Switch' incorporates:

* Inport: '<Root>/u1'

* Inport: '<Root>/u2'

* Outport: '<Root>/y1'

* RelationalOperator: '<Root>/Relational Operator'

*/

if (U.u1 > U.u2) {

Y.y1 = U.u1;

} else {

Y.y1 = U.u2;

}

}

6-27

6 Developing Model Patterns that Generate Specific C Constructs

Modeling Pattern for If-Else: Stateflow Chart

ex_if_else_SF/Chart

Procedure.

1 Follow the steps for “Setting Up an Example Model With a Stateflow
Chart” on page 6-5. This example model contains two Inport blocks and
one Outport block.

2 Name your model ex_if_else_SF.

3 When configuring your Stateflow chart, select Patterns > Add
Decision > If-Else. The Stateflow Pattern dialog opens. Fill in the fields
as follows:

Description If-Else (optional)

If condition u1 > u2

If action y1 = u1

Else action y1 = u2

6-28

Control Flow

4 Press Ctrl+B to build the model and generate code.

Results. The generated code includes the following ex_if_else_SF_step
function in the file If_Else_SF.c:

/* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */

void ex_if_else_SF_step(void)

{

/* Stateflow: '<Root>/Chart' incorporates:

* Inport: '<Root>/u1'

* Inport: '<Root>/u2'

* Outport: '<Root>/y1'

*/

/* Gateway: Chart */

/* During: Chart */

/* Transition: '<S1>:14' */

/* If-Else */

if (U.u1 > U.u2) {

/* Transition: '<S1>:13' */

/* Transition: '<S1>:12' */

Y.y1 = U.u1;

/* Transition: '<S1>:11' */

} else {

/* Transition: '<S1>:10' */

Y.y1 = U.u2;

}

/* Transition: '<S1>:9' */

}

6-29

6 Developing Model Patterns that Generate Specific C Constructs

Modeling Pattern for If-Else: MATLAB Function Block

Procedure.

1 Follow the steps for “Setting Up an Example Model With a MATLAB
Function Block” on page 6-7. This example model contains two Inport
blocks and one Outport block.

2 Name your model ex_if_else_ML.

3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(u1, u2)
if u1 > u2;

y1 = u1;
else y1 = u2;
end

4 Press Ctrl+B to build the model and generate code.

Results. The generated code includes the following ex_if_else_ML_step
function in the file ex_if_else_ML.c:

/* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */

void ex_if_else_ML_step(void)

{

/* MATLAB Function Block: '<Root>/MATLAB Function' incorporates:

* Inport: '<Root>/u1'

* Inport: '<Root>/u2'

* Outport: '<Root>/y1'

*/

/* MATLAB Function 'MATLAB Function': '<S1>:1' */

if (U.u1 > U.u2) {

/* '<S1>:1:4' */

/* '<S1>:1:5' */

6-30

Control Flow

Y.y1 = U.u1;

} else {

/* '<S1>:1:6' */

Y.y1 = U.u2;

}

}

6-31

6 Developing Model Patterns that Generate Specific C Constructs

Switch

C Construct

switch (u1)
{
case 2:

y1 = u2;
break;

case 3:
y1 = u3;
break;

default:
y1 = u4;
break;

}

Modeling Patterns

• “Modeling Pattern for Switch: Switch Case block” on page 6-33

• “Modeling Pattern for Switch: MATLAB Function block” on page 6-36

• “Converting If-Elseif-Else to Switch statement” on page 6-37

6-32

Control Flow

Modeling Pattern for Switch: Switch Case block
One method for creating a switch statement is to use a Switch Case block
from the Simulink > Ports and Subsystems library.

Model ex_switch_SL

Procedure.

1 Drag a Switch Case block from the Simulink > Ports and Subsystems
library into your model.

2 Double-click the block. In the Block Parameters dialog box, fill in the Case
Conditions parameter. In this example, the two cases are: {2,3}.

3 Select the Show default case parameter. The default case is optional in
a switch statement.

4 Connect the condition input u1 to the input port of the Switch block.

6-33

6 Developing Model Patterns that Generate Specific C Constructs

5 Drag Switch Case Action Subsystem blocks from the Simulink>Ports and
Subsystems library to correspond with the number of cases.

6 Configure the Switch Case Action Subsystem subsystems.

7 Drag a Merge block from the Simulink > Signal Routing library to
merge the outputs.

8 The Switch Case block takes an integer input, therefore, the input signal
u1 is type cast to an int32.

9 Enter Ctrl+B to build the model and generate code.

Results. The generated code includes the following ex_switch_SL_step
function in the file ex_switch_SL.c:

/* Exported block signals */

int32_T u1; /* '<Root>/u1' */

/* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */

void ex_switch_SL_step(void)

{

/* SwitchCase: '<Root>/Switch Case' incorporates:

* ActionPort: '<S1>/Action Port'

* ActionPort: '<S2>/Action Port'

* ActionPort: '<S3>/Action Port'

* Inport: '<Root>/u1'

* SubSystem: '<Root>/Switch Case Action Subsystem'

* SubSystem: '<Root>/Switch Case Action Subsystem1'

* SubSystem: '<Root>/Switch Case Action Subsystem2'

*/

switch (u1) {

case 2:

/* Inport: '<S1>/u2' incorporates:

* Inport: '<Root>/u2'

6-34

Control Flow

* Outport: '<Root>/y1'

*/

Y.y1 = U.u2;

break;

case 3:

/* Inport: '<S2>/u3' incorporates:

* Inport: '<Root>/u3'

* Outport: '<Root>/y1'

*/

Y.y1 = U.u3;

break;

default:

/* Inport: '<S3>/u4' incorporates:

* Inport: '<Root>/u4'

* Outport: '<Root>/y1'

*/

Y.y1 = U.u4;

break;

}

}

6-35

6 Developing Model Patterns that Generate Specific C Constructs

Modeling Pattern for Switch: MATLAB Function block

Procedure.

1 Follow the steps for “Setting Up an Example Model With a MATLAB
Function Block” on page 6-7. This example model contains four Inport
blocks and one Outport block.

2 Name your model ex_switch_ML.

3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(u1, u2, u3, u4)

switch u1
case 2

y1 = u2;
case 3

y1 = u3;
otherwise

y1 = u4;
end

4 Press Ctrl+B to build the model and generate code.

Results. The generated code includes the following ex_switch_ML_step
function in the file ex_switch_ML.c:

/* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */

void ex_switch_ML_step(void)

{

/* MATLAB Function Block: '<Root>/MATLAB Function' incorporates:

* Inport: '<Root>/u1'

* Inport: '<Root>/u2'

* Inport: '<Root>/u3'

6-36

Control Flow

* Inport: '<Root>/u4'

* Outport: '<Root>/y1'

*/

/* MATLAB Function 'MATLAB Function': '<S1>:1' */

/* '<S1>:1:4' */

switch (U.u1) {

case 2:

/* '<S1>:1:6' */

Y.y1 = U.u2;

break;

case 3:

/* '<S1>:1:8' */

Y.y1 = U.u3;

break;

default:

/* '<S1>:1:10' */

Y.y1 = U.u4;

break;

}

}

Converting If-Elseif-Else to Switch statement
If a MATLAB Function block or a Stateflow chart uses if-elseif-else
decision logic, you can convert it to a switch statement by using a
configuration parameter. In the Configuration Parameters dialog box, on
the Code Generation > Code Style pane, select the “Convert if-elseif-else
patterns to switch-case statements” parameter. For more information, see
“Converting If-Elseif-Else Code to Switch-Case Statements” in the Simulink
documentation. For more information on this conversion using a Stateflow
chart, see “Converting If-Elseif-Else Code to Switch-Case Statements” and
“Example of Converting Code for If-Elseif-Else Decision Logic to Switch-Case
Statements” in the Stateflow documentation.

6-37

6 Developing Model Patterns that Generate Specific C Constructs

For loop

C Construct

y1 = 0;
for(inx = 0; inx <10; inx++)
{

y1 = u1[inx] + y1;
}

Modeling Patterns:

• “Modeling Pattern for For Loop: For-Iterator Subsystem block” on page 6-39

• “Modeling Pattern for For Loop: Stateflow Chart” on page 6-42

• “Modeling Pattern for For Loop: MATLAB Function block” on page 6-45

6-38

Control Flow

Modeling Pattern for For Loop: For-Iterator Subsystem block
One method for creating a for loop is to use a For Iterator Subsystem block
from the Simulink > Ports and Subsystems library.

Model ex_for_loop_SL

For Iterator Subsystem

Procedure.

1 Drag a For Iterator Subsystem block from the Simulink > Ports and
Subsystems library into your model.

2 Connect the data inputs and outputs to the For Iterator Subsystem block.

6-39

6 Developing Model Patterns that Generate Specific C Constructs

3 Open the Inport block.

4 In the Block Parameters dialog box, select the Signal Attributes pane and
set the Port dimensions parameter to 10.

5 Double-click the For Iterator Subsystem block to open the subsystem.

6 Drag an Index Vector block from the Signal-Routing library into the
subsystem.

7 Open the For Iterator block. In the Block Parameters dialog box set the
Index-mode parameter to Zero-based and the Iteration limit parameter
to 10.

8 Connect the controlling input to the topmost input port of the Index Vector
block, and the other input to the second port.

9 Drag an Add block from theMath Operations library into the subsystem.

10 Drag a Unit Delay block from Commonly Used Blocks library into the
subsystem.

11 Double-click the Unit Delay block and set the Initial Conditions
parameter to 0. This parameter initializes the state to zero.

12 Connect the blocks as shown in the model diagram.

13 Save the subsystem and the model.

14 Enter Ctrl+B to build the model and generate code.

Results. The generated code includes the following ex_for_loop_SL_step
function in the file ex_for_loop_SL.c:

/* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */

void ex_for_loop_SL_step(void)

6-40

Control Flow

{

int32_T s1_iter;

int32_T rtb_y1;

/* Outputs for iterator SubSystem: '<Root>/For Iterator Subsystem' incorporates:

* ForIterator: '<S1>/For Iterator'

*/

for (s1_iter = 0; s1_iter < 10; s1_iter++) {

/* Sum: '<S1>/Add' incorporates:

* Inport: '<Root>/u1'

* MultiPortSwitch: '<S1>/Index Vector'

* UnitDelay: '<S1>/Unit Delay'

*/

rtb_y1 = U.u1[s1_iter] + DWork.UnitDelay_DSTATE;

/* Update for UnitDelay: '<S1>/Unit Delay' */

DWork.UnitDelay_DSTATE = rtb_y1;

}

/* end of Outputs for SubSystem: '<Root>/For Iterator Subsystem' */

/* Outport: '<Root>/y1' */

Y.y1 = rtb_y1;

}

6-41

6 Developing Model Patterns that Generate Specific C Constructs

Modeling Pattern for For Loop: Stateflow Chart

Procedure.

1 Follow the steps for “Setting Up an Example Model With a Stateflow
Chart” on page 6-5. This example model contains one Inport block and
one Outport block.

2 Name the model ex_for_loop_SF.

3 Enter Ctrl+R to open the Model Explorer.

4 In the Model Explorer, select the output variable, u1, and in the right pane,
select the General tab and set the Initial Value to 0.

5 In the Stateflow Editor, select Patterns > Add Loop > For. The
Stateflow Pattern dialog opens.

6 Fill in the fields in the Stateflow Pattern dialog box as follows:

6-42

Control Flow

Description For Loop (optional)

Initializer expression inx = 0

Loop test expression inx < 10

Counting expression inx++

For loop body y1 = u1[inx] + y1

The Stateflow diagram is shown.

7 Press Ctrl+B to build the model and generate code.

Results. The generated code includes the following ex_for_loop_SF_step
function in the file ex_for_loop_SF.c:

/* Block signals (auto storage) */

BlockIO B;

/* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */

void ex_for_loop_SF_step(void)

{

int32_T sf_inx;

/* Stateflow: '<Root>/Chart' incorporates:

* Inport: '<Root>/u1'

*/

/* Gateway: Chart */

/* During: Chart */

/* Transition: '<S1>:24' */

/* For Loop */

/* Transition: '<S1>:25' */

for (sf_inx = 0; sf_inx < 10; sf_inx++) {

/* Transition: '<S1>:22' */

/* Transition: '<S1>:23' */

B.y1 = U.u1[sf_inx] + B.y1;

6-43

6 Developing Model Patterns that Generate Specific C Constructs

/* Transition: '<S1>:21' */

}

/* Transition: '<S1>:20' */

/* Outport: '<Root>/y1' */

Y.y1 = B.y1;

}

6-44

Control Flow

Modeling Pattern for For Loop: MATLAB Function block

Procedure.

1 Follow the directions for “Setting Up an Example Model With a MATLAB
Function Block” on page 6-7. This example model contains one Inport block
and one Outport block.

2 Name your model ex_for_loop_ML.

3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(u1)

y1 = 0;

for inx=1:10
y1 = u1(inx) + y1 ;

end

4 Press Ctrl+B to build the model and generate code.

Results. The generated code includes the following ex_for_loop_ML_step
function in the file ex_for_loop_ML.c:

/* Exported block signals */

real_T u1[10]; /* '<Root>/u1' */

real_T y1; /* '<Root>/MATLAB Function' */

/* Model step function */

void ex_for_loop_ML_step(void)

{

int32_T inx;

/* MATLAB Function Block: '<Root>/MATLAB Function' incorporates:

* Inport: '<Root>/u1'

*/

/* MATLAB Function 'MATLAB Function': '<S1>:1' */

/* '<S1>:1:3' */

y1 = 0.0;

for (inx = 0; inx < 10; inx++) {

6-45

6 Developing Model Patterns that Generate Specific C Constructs

/* '<S1>:1:5' */

/* '<S1>:1:6' */

y1 = u1[inx] + y1;

}

}

While loop

C Construct

while(flag && (num_iter <= 100)
{

flag = func ();
num_iter ++;

}

Modeling Patterns

• “Modeling Pattern for While Loop: While Iterator Subsystem block” on
page 6-47

• “Modeling Pattern for While Loop: Stateflow Chart” on page 6-51

• “Modeling Pattern for While Loop: MATLAB Function Block” on page 6-55

6-46

Control Flow

Modeling Pattern for While Loop: While Iterator Subsystem
block
One method for creating a while loop is to use a While Iterator Subsystem
block from the Simulink > Ports and Subsystems library.

Model ex_while_loop_SL

ex_while_loop_SL/While Iterator Subsystem

Procedure.

1 Drag a While Iterator Subsystem block from the Simulink > Ports and
Subsystems library into the model.

6-47

6 Developing Model Patterns that Generate Specific C Constructs

2 Drag a Constant block from the Simulink > Commonly Used Blocks
library into the model. In this case, set the Initial Condition to 1 and the
Data Type to Boolean. You do not always have to set the initial condition
to FALSE. The initial condition can be dependent on the input to the block.

3 Connect the Constant block to the While Iterator Subystem block.

4 Double-click the While Iterator Subsystem block to open the subsystem.

5 Place a Subsystem block next to the While Iterator block.

6 Right-click the subsystem and select Subsystem Parameters. The Block
Parameters dialog box opens.

7 Select the Treat as atomic unit parameter to configure the subsystem to
generate a function. This enables parameters on the Code Generation
tab.

8 Select the Code Generation tab. From the Function packaging list,
select the option, Function.

9 From the Function name options list, select the option, User
specified. The Function name parameter is displayed.

10 Specify the name as func.

11 Click Apply.

12 Double-click the func subsystem block. In this example, function func()
has an output flag set to 0 or 1 depending on the result of the algorithm in
func(). Create the func() algorithm as shown in the following diagram:

6-48

Control Flow

func

13 Double-click the While Iterator block to set the Maximum number of
iterations to 100.

14 Connect blocks as shown in the model and subsystem diagrams.

Results. The generated code includes the following ex_while_loop_SL_step
function in the file ex_while_loop_SL.c:

/* Exported block signals */

boolean_T IC; /* '<Root>/Initial Condition SET to TRUE' */

boolean_T flag; /* '<S2>/Relational Operator' */

/* Block states (auto storage) */

D_Work DWork;

/* Start for atomic system: '<S1>/func() Is a function that updates the flag' */

void func_Start(void)

{

/* Start for RandomNumber: '<S2>/Random Number' */

DWork.RandSeed = 1144108930U;

DWork.NextOutput = rt_NormalRand(&DWork.RandSeed) * 1.7320508075688772E+000;

}

/* Output and update for atomic system:

* '<S1>/func() Is a function that updates the flag' */

void func(void)

{

6-49

6 Developing Model Patterns that Generate Specific C Constructs

/* RelationalOperator: '<S2>/Relational Operator' incorporates:

* Constant: '<S2>/Constant1'

* RandomNumber: '<S2>/Random Number'

*/

flag = (DWork.NextOutput > 1.0);

/* Update for RandomNumber: '<S2>/Random Number' */

DWork.NextOutput = rt_NormalRand(&DWork.RandSeed) * 1.7320508075688772E+000;

}

/* Model step function */

void ex_while_loop_SL_step(void)

{

int32_T s1_iter;

boolean_T loopCond;

/* Outputs for iterator SubSystem:

* '<Root>/While Iterator Subsystem' incorporates:

* WhileIterator: '<S1>/While Iterator'

*/

s1_iter = 1;

loopCond = IC;

while (loopCond && (s1_iter <= 100)) {

/* Outputs for atomic SubSystem:

* '<S1>/func() Is a function that updates the flag' */

func();

/* end of Outputs for SubSystem:

* '<S1>/func() Is a function that updates the flag' */

loopCond = flag;

s1_iter++;

}

/* end of Outputs for SubSystem: '<Root>/While Iterator Subsystem' */

}

6-50

Control Flow

Modeling Pattern for While Loop: Stateflow Chart

Model ex_while_loop_SF

ex_while_loop_SF/Chart Executes the desired while-loop

6-51

6 Developing Model Patterns that Generate Specific C Constructs

Procedure.

1 Add a Stateflow Chart to your model from the Stateflow > Stateflow
Chart library.

2 Double-click the chart and select Tools > Explore or enter Ctrl+R to open
the Model Explorer.

3 Add the input, flag, and output, func, to the chart and specify their data
type.

4 Connect the data input and output to the Stateflow chart as shown in the
model diagram.

5 In the Model Explorer, select the output variable, then, in the right pane,
select the General tab and set the Initial Value to 0.

6 Select Patterns > Add Loop > While. The Stateflow Pattern dialog
opens.

7 Fill in the fields for the Stateflow Pattern dialog box as follows:

Description While Loop (optional)

While condition (flag) && (num_iter<=100)

Do action func; num_iter++;

8 Place a Subsystem block in your model.

9 Right-click the subsystem and select Subsystem Parameters. The Block
Parameters dialog box opens.

10 Select the Treat as atomic unit parameter to configure the subsystem to
generate a function. This enables parameters on the Code Generation
tab.

11 Select the Code Generation tab. From the Function packaging list,
select the option, Function.

12 From the Function name options list, select the option, User specified.
The Function name parameter is displayed.

6-52

Control Flow

13 Specify the name as func.

14 Click Apply to apply all changes.

15 Double-click the func subsystem block. In this example, function func
has an output flag set to 0 or 1 depending on the result of the algorithm
in func(). The Trigger block parameter Trigger type is function-call.
Create the func() algorithm, as shown in the following diagram:

ex_while_loop_SF/func A function that updates the flag

16 Save and close the subsystem.

17 Connect blocks to the Stateflow chart as shown in the model diagram for
ex_while_loop_SF.

18 Save your model.

Results. The generated code includes the following ex_while_loop_SF_step
function in the file ex_while_loop_SF.c:

/* Exported block signals */

int32_T num_iter; /* '<Root>/Chart Executes the desired while-loop' */

boolean_T flag; /* '<S2>/Relational Operator' */

/* Block states (auto storage) */

D_Work DWork;

/* Model step function */

void ex_while_loop_SF_step(void)

{

6-53

6 Developing Model Patterns that Generate Specific C Constructs

/* Stateflow: '<Root>/Chart Executes the desired

* while-loop' incorporates:

* SubSystem: '<Root>/func() A function that

* updates the flag'

*/

/* Gateway: Chart

Executes the desired while-loop */

/* During: Chart

Executes the desired while-loop */

/* Transition: '<S1>:2' */

num_iter = 1;

while (flag && (num_iter <= 100)) {

/* Transition: '<S1>:3' */

/* Transition: '<S1>:4' */

/* Event: '<S1>:12' */

func();

num_iter = num_iter + 1;

/* Transition: '<S1>:5' */

}

/* Transition: '<S1>:1' */

}

6-54

Control Flow

Modeling Pattern for While Loop: MATLAB Function Block

Model ex_while_loop_ML

Procedure.

1 In the Simulink Library Browser, click Simulink > User Defined
Functions, and drag a MATLAB Function block into your model.

2 Double-click the MATLAB Function block. The MATLAB Function Block
Editor opens.

3 In the MATLAB Function Block Editor enter the function, as follows:

function fcn(func_flag)

flag = true;
num_iter = 1;

while(flag && (num_iter<=100))
func;
flag = func_flag;
num_iter = num_iter + 1;

end

4 Click File > Save and close the MATLAB Function Block Editor.

6-55

6 Developing Model Patterns that Generate Specific C Constructs

5 Place a Subsystem block in your model, right-click the subsystem and
select Subsystem Parameters. The Block Parameters dialog box opens.

6 Select the Treat as atomic unit parameter to configure the subsystem to
generate a function. This enables parameters on the Code Generation
tab.

7 Select the Code Generation tab. From the Function packaging list,
select the option, Function.

8 From the Function name options list, select the option, User specified.
The Function name parameter is displayed.

9 Specify the name as func.

10 Click Apply.

11 Double-click the func() subsystem block. In this example, function func()
has an output flag set to 0 or 1 depending on the result of the algorithm
in func(). The Trigger block parameter Trigger type is function-call.
Create the func() algorithm, as shown in the following diagram:

12 Save and close the subsystem.

13 Connect the MATLAB Function block to the func() subsystem.

14 Save your model.

6-56

Control Flow

Results. The generated code includes the following while_loop_ML_step
function in the file while_loop_EML.c. In some cases an equivalent for loop
might be generated instead of a while loop.

/* Exported block signals */

boolean_T func_flag; /* '<S2>/Relational Operator' */

/* Block states (auto storage) */

D_Work DWork;

/* Model step function */

void while_loop_ML_step(void)

{

boolean_T func_flag_0;

boolean_T flag;

int32_T num_iter;

/* MATLAB Function Block: '<Root>/MATLAB Function Executes

* the desired While-Loop' incorporates:

* SubSystem: '<Root>/func() updates the "flag"'

*/

func_flag_0 = func_flag;

/* MATLAB Function 'MATLAB Function

* Executes the desired While-Loop': '<S1>:1' */

/* '<S1>:1:3' */

flag = TRUE;

/* '<S1>:1:4' */

num_iter = 1;

while (flag && (num_iter <= 100);

num_iter++) {

/* '<S1>:1:6' */

/* '<S1>:1:7' */

func();

/* '<S1>:1:8' */

flag = func_flag_0;

/* '<S1>:1:9' */

6-57

6 Developing Model Patterns that Generate Specific C Constructs

num_iter++;

}

}

Do While loop

C Construct

num_iter = 1;
do {

flag = func();
num_iter++;
}

while (flag && num_iter <= 100)

Modeling Patterns

• “Modeling Pattern for Do While Loop: While Iterator Subsystem block”
on page 6-59

• “Modeling Pattern for Do While Loop: Stateflow Chart” on page 6-62

6-58

Control Flow

Modeling Pattern for Do While Loop: While Iterator Subsystem
block
One method for creating a while loop is to use a While Iterator Subsystem
block from the Simulink > Ports and Subsystems library.

ex_do_while_loop_SL

ex_do_while_loop_SL/While Iterator Subsystem

Procedure.

1 Drag a While Iterator Subsystem block from the Simulink > Ports and
Subsystems library into the model.

2 Double-click the While Iterator Subsystem block to open the subsystem.

3 Place a Subsystem block next to the While Iterator block.

6-59

6 Developing Model Patterns that Generate Specific C Constructs

4 Right-click the subsystem and select Subsystem Parameters. The Block
Parameters dialog box opens.

5 Select the Treat as atomic unit parameter to configure the subsystem to
generate a function. This enables parameters on the Code Generation
tab.

6 Select the Code Generation tab. From the Function packaging list,
select the option, Function.

7 From the Function name options list, select the option, User
specified. The Function name parameter is displayed.

8 Specify the name as func.

9 Click Apply.

10 Double-click the func subsystem block. In this example, function func has
an output flag set to 0 or 1 depending on the result of the algorithm in
func. Create the func algorithm as shown in the following diagram:

ex_do_while_loop_SL/While Iterator Subsystem/func

11 Double-click the While Iterator block. This opens the Block Parameters
dialog.

12 Set the Maximum number of iterations to 100.

13 Specify the While loop type as do-while.

6-60

Control Flow

14 Connect blocks as shown in the model and subsystem diagrams.

15 Enter Ctrl+B to generate code.

Results.

void func(void)

{

flag = (DWork.NextOutput > (real_T)P.Constant1_Value);

DWork.NextOutput =

rt_NormalRand(&DWork.RandSeed) * P.RandomNumber_StdDev +

P.RandomNumber_Mean;

}

void ex_do_while_loop_SL_step(void)

{

int32_T s1_iter;

s1_iter = 1;

do {

func();

s1_iter++;

} while (flag && (s1_iter <= 100));

}

6-61

6 Developing Model Patterns that Generate Specific C Constructs

Modeling Pattern for Do While Loop: Stateflow Chart

ex_do_while_loop_SF

ex_do_while_loop_SF/Chart

1 Add a Stateflow Chart to your model from the Stateflow > Stateflow
Chart library.

6-62

Control Flow

2 Double-click the chart and select Tools > Explore or enter Ctrl+R to open
the Model Explorer.

3 Add the inputs and outputs to the chart and specify their data type.

4 Connect the data input and output to the Stateflow chart.

5 In the Model Explorer, select the output variable, then, in the right pane,
select the General tab and set the Initial Value to 0.

6 Select Patterns > Add Loop > While. The Stateflow Pattern dialog
opens.

7 Fill in the fields for the Stateflow Pattern dialog box as follows:

Description While Loop (optional)

While condition (flag) && (num_iter<=100)

Do action func; num_iter++;

8 Place a Subsystem block in your model.

9 Right-click the subsystem and select Subsystem Parameters. The Block
Parameters dialog box opens.

10 Select the Treat as atomic unit parameter to configure the subsystem to
generate a function. This enables parameters on the Code Generation
tab.

11 Select the Code Generation tab. From the Function packaging list,
select the option, Function.

12 From the Function name options list, select the option, User specified.
The Function name parameter is displayed.

13 Specify the name as func.

14 Click Apply to apply all changes.

15 Double-click the func subsystem block. In this example, function func
has an output flag set to 0 or 1 depending on the result of the algorithm

6-63

6 Developing Model Patterns that Generate Specific C Constructs

in func. The Trigger block parameter Trigger type is function-call.
Create the func algorithm, as shown in the following diagram:

ex_do_while_loop_SF/func Updates the flag

16 Save and close the subsystem.

17 Connect blocks to the Stateflow chart as shown in the model diagram for
ex_do_while_loop_SF.

18 Save your model.

Results.

void ex_do_while_loop_SF_step(void)

{

int32_T sf_num_iter;

num_iter = 1;

do {

func();

num_iter++;

} while (flag && (sf_num_iter <= 100));

}

6-64

Functions

Functions

In this section...

“Function Call” on page 6-65

“Function Prototyping” on page 6-67

“External C Functions” on page 6-70

Function Call
To generate a function call, add a subsystem, which implements the
operations that you want.

C Construct

void add_function(void)
{

y1 = u1 + u2;
}

ex_function_call

Procedure

1 Create a model containing a subsystem. In this example, the subsystem
has two inputs and returns one output.

2 Double-click the subsystem. Create Add_Subsystem, as shown.

6-65

6 Developing Model Patterns that Generate Specific C Constructs

ex_function_call/Add_Subsystem

3 Right-click the subsystem to open the Subsystem Parameters dialog box.

4 Select the Treat as atomic unit parameter. This enables parameters on
the Code Generation tab.

Select the Code Generation tab. For the Function packaging
parameter, from the drop-down list, select Function.

5 For the Function name options parameter, from the drop-down list,
select User specified.

6 In the Function name field, enter the subsystem name, add_function.

7 Click Apply and OK.

8 Press Ctrl+B to build and generate code.

Results
In ex_function_call.c, the function is called from ex_function_call_step:

void ex_function_call_step(void)

{

add_function();

}

The function prototype is externed through the subsystem file,
add_function.h.

extern void add_function(void);

The function definition is in the subsystem file add_function.c:

6-66

Functions

void add_function(void)

{

function_call_Y.y1 = u1 + u2;

}

Function Prototyping

C Construct

double add_function(double u1, double u2)
{

return u1 + u2;
}

Modeling Patterns

• “Function Call Using Graphical Functions” on page 6-67

• “Control Function Prototype of the model_step Function” on page 6-69

Function Call Using Graphical Functions

Procedure.

1 Follow the steps for“Setting Up an Example Model With a Stateflow
Chart” on page 6-5. This example model contains two Inport blocks and
one Outport block.

2 Name the example model ex_func_SF.

3

In the Stateflow Editor, create a graphical function by clicking the f()
button and dragging a graphical function into the Stateflow chart.

4 Edit the graphical function signature to: output = add_function(u1,
u2).

5 Add the transition action, as shown in the following diagram.

6-67

6 Developing Model Patterns that Generate Specific C Constructs

ex_func_SF/Chart
In the Stateflow chart is an example of a simple transition that calls
add_function.

6 Open the Model Explorer. From the Model Hierarchy tree, select
ex_func_SF > Chart > f()add_function. On the right pane, specify the
Function Inline Option as Function.

7 From the Model Hierarchy tree, click Chart and on the right pane
select the Export Chart Level Graphical Functions(Make Global)
parameter. This makes the function available globally to the entire model.

8 Press Ctrl+B to build the model and generate code.

Results. ex_func_SF.c contains the generated code:

extern real_T add_function(real_T sf_in1, real_T sf_in2)

{

return sf_in1 + sf_in2;

}

.

6-68

Functions

.

.

void ex_func_SF_step(void)

{

ex_func_SF_B.y1 = add_function(u1, u2);

ex_func_SF_Y.y1 = ex_func_SF_B.y1;

}

Control Function Prototype of the model_step Function

ex_control_step_function

Procedure.

1 Create the model, ex_control_step_function. See “Configuring a Signal”
on page 6-3 and “Configuring Input and Output Ports” on page 6-4, for
more information.

2 Press Ctrl+E to open the Configuration Parameters dialog box.

3 On the Code Generation > Interface pane, click Configure Model
Functions to open the Model Interface dialog box.

4 Specify the Function specification parameter as Model specific C
prototypes.

6-69

6 Developing Model Patterns that Generate Specific C Constructs

5 Click Get Default Configuration to update the Configure model
initialize and step functions section and list the input and output
arguments.

6 To configure the function output argument to pass a pointer, in the Step
function arguments table, specify the Category for the Outport as a
Pointer. In addition, you can specify the step function arguments order
and type qualifiers.

7 To validate your changes, click Validate.

8 Press Ctrl+B to build the model and generate code.

Results. ex_control_step_function.c contains the generated code:

void ex_control_step_function_custom(real_T arg_u1, real_T arg_u2, ...

real_T *arg_y1)

{

(*arg_y1) = arg_u1 + arg_u2;

}

External C Functions

C Construct

extern double add(double, double);

#include "add.h"
double add(double u1, double u2)
{

double y1;
y1 = u1 + u2;
return (y1);

}

6-70

Functions

Modeling Patterns
There are several methods for integrating legacy C functions into the
generated code. These methods either create an S-function or make a
call to an external C function. For more information on S-functions, see
“Introduction to S-Functions for Code Generation”.

• “Using the Legacy Code Tool to Create S-functions” on page 6-71

• “Using a Stateflow Chart to Make Calls to C Functions” on page 6-73

• “Using a MATLAB Function Block to Make Calls to C Functions” on page
6-75

Using the Legacy Code Tool to Create S-functions
This method uses the Legacy Code Tool to create an S-function and generate
a TLC file. The code generation software uses the TLC file to generate code
from this S-function. The advantage of using the Legacy Code Tool is that the
generated code is fully inlined and does not need any wrapper functions to
access the custom code.

Procedure.

1 Create a C header file named add.h that contains the function signature:

extern double add(double, double);

2 Create a C source file named add.c that contains the function body:

double add(double u1, double u2)
{

double y1;
y1 = u1 + u2;
return (y1);

}

3 To build an S-function for use in both simulation and code generation, Run
the following script or execute each of these commands at the MATLAB
command line:

%% Initialize legacy code tool data structure
def = legacy_code('initialize');

6-71

6 Developing Model Patterns that Generate Specific C Constructs

%% Specify Source File
def.SourceFiles = {'add.c'};

%% Specify Header File
def.HeaderFiles = {'add.h'};

%% Specify the Name of the generated S-function
def.SFunctionName = 'add_function';

%% Create a c-mex file for S-function
legacy_code('sfcn_cmex_generate', def);

%% Define function signature and target the Output method
def.OutputFcnSpec = ['double y1 = add(double u1, double u2)'];

%% Compile/Mex and generate a block that can be used in simulation
legacy_code('generate_for_sim', def);

%% Create a TLC file for Code Generation
legacy_code('sfcn_tlc_generate', def);

%% Create a Masked S-function Block
legacy_code('slblock_generate', def);

The output of this script produces:

• A new model containing the S-function block

• A TLC file named add_function.tlc.

• A C source file named add_function.c.

• A mexw32 dll file named add_function.mexw32

4 Add inport blocks and an outport block and make the connections, as
shown in the model.

6-72

Functions

ex_function_call_lct

5 Name and save your model. In this example, the model is named
ex_function_call_lct.mdl.

6 Press Ctrl+B to build the model and generate code.

Results. The following code is generated in ex_function_call_lct.c:

real_T u1;

real_T u2;

real_T y1;

void ex_function_call_lct_step(void)

{

y1 = add(u1, u2);

}

The user-specified header file, add.h, is included in ex_function_call_lct.h:

#include "add.h"

Using a Stateflow Chart to Make Calls to C Functions

Procedure.

1 Create a C header file named add.h that contains the example function
signature.

2 Create a C source file named add.c that contains the function body.

6-73

6 Developing Model Patterns that Generate Specific C Constructs

3 Follow the steps for “Setting Up an Example Model With a Stateflow
Chart” on page 6-5. This example model contains two Inport blocks and
one Outport block.

4 Name the example model ex_exfunction_call_SF.

5 Double-click the Stateflow chart and edit the chart as shown. Place the call
to the add function within a transition action.

ex_exfunction_call_SF/Chart

6 On the Stateflow Editor, select Tools > Open Simulation Target. The
Configuration Parameters dialog box opens with the Simulation Target
pane displayed.

7 On the Configuration Parameters dialog box, select Simulation Target >
Custom Code. In the Include custom C code in generated section, on
the left pane, select Header file and in the Header file field, enter the
#include statement:

#include "add.h"

8 In the Include list of additional section, select Source files and in the
Source files field, enter add.c.

9 Press Ctrl+B to build the model and generate code.

6-74

Functions

Results. ex_exfunction_call_SF.c contains the following code in the step
function:

real_T u1;

real_T u2;

real_T y1;

void exfunction_call_SF_step(void)

{

y1 = (real_T)add(u1, u2);

}

ex_exfunction_call_SF.h contains the include statement for add.h:

#include "add.h"

Using a MATLAB Function Block to Make Calls to C Functions

Procedure.

1 Create a C header file named add.h that contains the example function
signature.

2 Create a C source file named add.c that contains the function body.

3 In the Simulink Library Browser, click Simulink > User Defined
Functions, and drag a MATLAB Function block into your model.

4 Double-click the MATLAB Function block. The MATLAB Function Block
Editor opens.

5 Edit the function to include the statement:

function y1 = add_function(u1, u2)

%Set the class and size of output
y1 = u1;

%Call external C function
y1 = coder.ceval('add',u1,u2);

6-75

6 Developing Model Patterns that Generate Specific C Constructs

end

6 In the MATLAB Function Block Editor, select Tools > Open Simulation
Target. The Configuration Parameters dialog box opens with the
Simulation Target pane displayed.

7 On the left pane of the Configuration Parameters dialog box under
Simulation Target, select Custom Code. In the Include custom C
code in generated section, on the left pane, select Header file and in the
Header file field, enter the statement, :

#include "add.h"

8 In the Include list of additional section, select Source files and in the
Source files field, enter add.c.

9 Add two Inport blocks and one Outport block to the model and connect to
the MATLAB Function block.

10 Configure the signals: u1, u2, and y1, as described in “Configuring a
Signal” on page 6-3.

11 Save the model as ex_exfunction_call_ML.mdl.

12 Press Ctrl+B to build the model and generate code.

Results. ex_exfunction_call_ML.c contains the following code:

real_T u1;

real_T u2;

real_T y1;

void ex_exfunction_call_ML_step(void)

{

y1 = add(u1, u2);

}

ex_exfunction_call_ML.h contains the #include statement for add.h:

#include "add.h"

6-76

Preprocessor Directives

Preprocessor Directives

In this section...

“Macro Definitions (#define)” on page 6-77

“Conditional Inclusions (#if / #endif)” on page 6-79

Macro Definitions (#define)

C Construct

#define p_1 9.8;

Modeling Patterns
“Using a ’Define’ Custom Storage Class” on page 6-77

“Using a Custom Header File” on page 6-78

Using a ’Define’ Custom Storage Class

Procedure.

1 Create a model containing a Gain block.

2 Press Ctrl+E to open the Configuration Parameters dialog box.

3 In the Configuration Parameter dialog box, on theOptimization > Signals
and Parameters pane, select Inline parameters.

4 Click Apply and OK.

6-77

6 Developing Model Patterns that Generate Specific C Constructs

5 In your model, double-click the Gain block. The Block Parameters dialog
box opens.

6 In the Value field, enter a variable name. In this example, the variable
name is p1.

7 Press Ctrl+H to open the Model Explorer. On the Model Hierarchy pane,
select the Base Workspace.

8 To add an MPT parameter object, in the menu bar, select Add > MPT
Parameter. The parameter appears in the Contents of: Base
Workspace pane.

9 Double-click the mpt.Parameter object and change its name to p1.

10 Click the p1 parameter. The data object parameters are displayed in the
right pane of the Model Explorer.

11 In the Value field, enter 9.8. In the Code generation options section,
click the Storage Class drop-down list and select Define(Custom).

12 Press Ctrl+B to generate code.

Results. The generated code includes the inlined parameter, p1, in
ex_define_data_object.c:

/* Model step function */
void ex_define_data_object_step(void)
{

rtY.y1 = p1 * rtU.u1;

}

Using a Custom Header File

Procedure.

1 Follow steps 1 through 10 of “Using a ’Define’ Custom Storage Class” on
page 6-77.

6-78

Preprocessor Directives

2 In the Simulink.Parameter dialog box for p1, in the Value field, enter
9.8. In the Code generation options section, click the Storage Class
drop-down list and select ImportFromFile(Custom).

3 In the Header file parameter, enter the name of the header file, in this
example, external_params.h.

4 Click Apply and OK.

5 Create the C header file, external_params.h that contains the #define
statement:

#ifndef _EXTERNAL_PARAMS
#define _EXTERNAL_PARAMS

#define p1 9.8

#endif

/* EOF */

6 Press Ctrl+B to generate code.

Results. The generated code includes the inlined parameter, p1, in
ex_define_data_object.c:

/* Model step function */
void ex_define_data_object_step(void)
{

ex_define_data_object_Y.Out1 = p1 * ex_define_data_object_U.In1;

}

Conditional Inclusions (#if / #endif)
You can generate preprocessor conditional directives in your code by
implementing variant blocks (Model Variants block or Variant Subsystem
block) in your model. In the generated code, preprocessor conditional
directives select a section of code to execute at compile time. To implement
variants in your model, see “Modeling Variant Systems” in the Simulink

6-79

6 Developing Model Patterns that Generate Specific C Constructs

documentation. To generate code for variants, see “Generating Code for
Variant Systems” on page 4-2.

6-80

Structures

Structures

In this section...

“Typedef” on page 6-81

“Structures for Parameters” on page 6-83

“Structures for Signals” on page 6-85

“Nested Structures” on page 6-89

“Bitfields” on page 6-92

Typedef
To generate a typedef definition, use a Simulink.AliasType data object.

C Construct
typedef double float_64;

Procedure
1 Create the ex_get_typedef model with a Gain block.

2 In the Gain block parameter dialog box, select the Parameter Attributes
tab, and specify the Parameter data type as double.

3 Right-click the u1 signal and select Signal Properties. In the Signal
Properties dialog box, select Signal name must resolve to Simulink
signal object.

4 Right-click the y1 signal and select Signal Properties. In the Signal
Properties dialog box, select the Code Generation tab, and specify the
Storage class parameter as ExportedGlobal.

6-81

6 Developing Model Patterns that Generate Specific C Constructs

5 Create a new alias type by using a Simulink.AliasType data object. At
the MATLAB command line, enter:

float_64 = Simulink.AliasType;

6 In the base workspace, double-click float_64. The Simulink.AliasType
dialog box opens.

7 Specify the Base type parameter as double. Click Apply and OK.

8 Create a data object for the u1 signal. In the base workspace, select
Add > Simulink Signal, and name it u1. Specify theData type parameter
as float_64 and the Storage class parameter as Global(custom).

Note You can also specify an output data type for Simulink blocks using
the new alias type.

9 Click Apply and OK.

10 Press Ctrl+B to generate code.

Note An alternative method for defining a typedef is to import the alias
type from a custom header file. If you want to import all the typedefs from a
C header file, using this alternative method is useful.

Results
The generated code includes the typedef definition, which is declared within
#ifndef and #endif statements in the ex_get_typedef_types.h file.

#ifndef _DEFINED_TYPEDEF_FOR_float_64_
#define _DEFINED_TYPEDEF_FOR_float_64_

typedef real_T float_64;
typedef creal_T cfloat_64;

#endif

6-82

Structures

Note real_T is the Embedded Coder typedef for double .

The generated code also includes the declaration of the Simulink data objects
of the alias type in ex_get_typedef.c.

float_64 y1;
float_64 u1;

Structures for Parameters
To generate a structure containing parameters, use a mpt.Parameter object
with a Struct (custom) storage class.

C Construct
typdef struct {

double p1;
double p2;
double p3;

} my_struct_type;

my_struct_type my_struct={1.0,2.0,3.0};

Procedure
1 Create the ex_struct_param model with three Constant blocks and three
Outport blocks.

6-83

6 Developing Model Patterns that Generate Specific C Constructs

2 Create a data object for each parameter, p1, p2, and p3. At the MATLAB
command line, enter:

p1 = mpt.Parameter;
p2 = mpt.Parameter;
p3 = mpt.Parameter;

3 In the base workspace, double-click one of the parameter data objects to
open the mpt.Parameter dialog box.

4 Specify a Value parameter for each parameter object.

5 Specify the Storage class parameter as Struct (Custom) for each
parameter object.

6 In the Custom Attributes section, specify the Struct name as my_struct.
Click Apply and OK.

7 Press Ctrl+E to open the Configuration Parameters dialog box.

8 Open the Optimization > Signals and Parameters pane, and select
the Inline parameters parameter.

9 Click Apply and OK.

10 Press Ctrl+B to generate code.

6-84

Structures

Results
The generated code includes the typedef definition for a structure, which is
declared in the ex_struct_param_types.h file.

/* Type definition for custom storage class: Struct */
typedef struct my_struct_tag {

real_T p1;
real_T p2;
real_T p3;

} my_struct_type;

The generated code also includes the declaration of my_struct in
ex_struct_param.c.

/* Definition for custom storage class: Struct */
my_struct_type my_struct = {

/* p1 */
1.0,

/* p2 */
2.0,

/* p3 */
3.0

};

Structures for Signals
To generate a structure containing parameters, use a mpt.Signal object with
a Struct (custom) storage class or a Simulink non-virtual bus object.

C Construct
typedef struct {

double u1;
double u2;
double u3;

} my_signals;

6-85

6 Developing Model Patterns that Generate Specific C Constructs

Modeling Patterns
“Structure for Signals Using a ’Struct’ Custom Storage Class” on page 6-86

“Structure for Signals Using a Simulink Non-Virtual Bus Object” on page 6-87

Structure for Signals Using a ’Struct’ Custom Storage Class

Procedure.

1 Create the ex_signal_struct_csc model using the blocks shown and
follow the steps to configure the signals and model.

2 Double-click a Gain block to open the block parameter dialog box. Set the
values of the Gain blocks as shown in the model diagram.

3 Right-click the u1 signal and select Signal Properties. In the Signal
Properties dialog box, select Signal name must resolve to Simulink
signal object. Repeat for signals u2 and u3.

4 At the MATLAB command line, create a mpt.Signal data object for each
input signal.

u1 = mpt.Signal;
u2 = mpt.Signal;
u3 = mpt.Signal;

6-86

Structures

Note You can also create a data object in the Model Explorer base
workspace, by selecting Add > MPT Signal.

5 In the base workspace, configure each of the data objects, u1, u2, and u3.
Double-click a data object, to open the mpt.Signal parameter dialog box.

6 Specify the Data type parameter as auto and the Storage class
parameter as Struct (custom).

7 Click Apply and OK.

8 Press Ctrl+B to generate code.

Results. The generated code includes the typedef definition for a structure,
which is declared in the ex_signal_struct_csc_types.h file.

/* Type definition for custom storage class: Struct */
typedef struct my_signal_struct_tag {

real_T u1;
real_T u2;
real_T u3;

} my_signal_struct_type;

The generated code also includes the declaration of my_signal_struct in
ex_signal_struct_csc.c.

/* Definition for custom storage class: Struct */
my_signal_struct_type my_signals;

Structure for Signals Using a Simulink Non-Virtual Bus Object

Procedure.
1 Create the ex_signal_struct_bus model using the blocks shown and
follow the steps to configure the bus object and model.

6-87

6 Developing Model Patterns that Generate Specific C Constructs

2 Add the Inport blocks, an Outport block, and a Bus Creator block to your
diagram.

3 Double-click the Bus Creator block to open the block parameter dialog box.

4 Specify the Number of inputs parameter as 3. Click Apply.

5 In your model diagram, connect the three Inport blocks to the three inports
of the Bus Creator block. Also, connect the outport of the Bus Creator
block to the Outport block.

6 Label the signals as shown in the model diagram.

7 In the Bus Creator block parameter dialog box, Signals in bus now
displays the signals connected to the Bus Creator block.

8 Create a bus object named MySignals that includes signals u1,u2, and
u3. For more information on creating bus objects, see “Using the Bus
Editor”. Once the bus object, MySignals, is created, it appears in the base
workspace.

9 In the Bus Creator block parameter dialog box, select the Output as
nonvirtual bus parameter, which specifies that bus signals must be
grouped into a structure in the generated code.

10 Click Apply and OK.

11 Press Ctrl+B to generate code.

6-88

Structures

Results. The generated code includes the typedef definition for a structure,
which is declared in the signal_struct_bus_types.h file.

typedef struct {
real_T u1;
real_T u2;
real_T u3;

} MySignals;

Nested Structures
One way to create nested structures of signals in the generated code is by
using multiple non-virtual bus objects. When nesting bus objects, all of the
bus objects must either be non-virtual, or all of them must be virtual.

C Construct
typedef struct {

double u1;
double u2;
double u3;

} my_signals123;

typedef struct {
double u4;
double u5;
double u6;

} my_signals456;

typedef struct {
my_signals123 y1;
my_signals456 y2;

} nested_signals;

Procedure

1 Create the ex_nested_structure model using the blocks shown and follow
the steps to configure the bus objects and model.

6-89

6 Developing Model Patterns that Generate Specific C Constructs

2 For each bus in the model, follow the instructions for “Structure for Signals
Using a Simulink Non-Virtual Bus Object” on page 6-87, creating bus
objects My_Signals_123 and My_Signals_456.

3 Drag a Bus Creator block into your model. Configure the Bus Creator block
so that it takes in signals from different buses.

4 Double-click the Bus Creator block to open the block parameter dialog box.

5 Specify the Number of inputs parameter as 2. Click Apply.

6 In your model diagram, connect the two bus outports to the inports of the
new Bus Creator block.

7 Label the signals as shown in the model diagram.

8 In the Bus Creator block parameter dialog box, Signals in bus now
displays the signals, y1 and y2, connected to the Bus Creator block.

6-90

Structures

9 Create a bus object named Nested_Signals that includes signals y1 and
y2, where the DataType for y1 is My_Signals_123 and the DataType
for y2 is My_Signals_456.

For more information on creating bus objects, see “Using the Bus Editor”.
Once the bus object, Nested_Signals, is created, it appears in the base
workspace.

10 In the Bus Creator block parameter dialog box, select the Output as
nonvirtual bus parameter, which specifies that bus signals must be
grouped into a structure in the generated code.

11 Click Apply and OK.

12 Press Ctrl+B to generate code.

Results
The generated code includes the typedef definitions for structures, which are
declared in the ex_nested_structure_types.h file.

#ifndef _DEFINED_TYPEDEF_FOR_My_Signals_123_
#define _DEFINED_TYPEDEF_FOR_My_Signals_123_

typedef struct {

6-91

6 Developing Model Patterns that Generate Specific C Constructs

real_T u1;
real_T u2;
real_T u3;

} My_Signals_123;

#endif

#ifndef _DEFINED_TYPEDEF_FOR_My_Signals_456_
#define _DEFINED_TYPEDEF_FOR_My_Signals_456_

typedef struct {
real_T u4;
real_T u5;
real_T u6;

} My_Signals_456;

#endif

#ifndef _DEFINED_TYPEDEF_FOR_Nested_Signals_
#define _DEFINED_TYPEDEF_FOR_Nested_Signals_

typedef struct {
My_Signals_123 y1;
My_Signals_456 y2;

} Nested_Signals;

#endif

Bitfields
One way to create bitfields in the generated code is by using a mpt.Parameter
object with Bitfield (Custom) storage class.

C Construct
typedef struct {

unsigned int p1 : 1;
unsigned int p2 : 2;
unsigned int p3 : 3;

} my_struct_type

6-92

Structures

Procedure
1 Using the model, ex_struct_param, in “Structures for Parameters” on page
6-83, rename the model as ex_struct_bitfield_CSC.

2 Create a data object for each parameter, p1, p2, and p3. At the MATLAB
command line, enter:

p1 = mpt.Parameter;
p2 = mpt.Parameter;
p3 = mpt.Parameter;

3 In the base workspace, double-click one of the parameter data objects to
open the mpt.Parameter dialog box.

4 Specify the Value parameter for each parameter object.

5 Specify the Storage class parameter as Bitfield (Custom) for each
parameter object.

6 In the Custom Attributes section, specify the Struct name as my_struct.
Click Apply and OK.

7 Specify the data objects for each parameter.

8 Press Ctrl+E to open the Configuration Parameters dialog box.

9 Open the Optimization > Signals and Parameters pane, and select
the Inline parameters parameter.

6-93

6 Developing Model Patterns that Generate Specific C Constructs

10 Click Apply and OK.

11 Press Ctrl+B to generate code.

Results
The generated code of the model, ex_struct_bitfield_CSC, includes
the typedef definition for a Bitfield, which is declared in the
ex_struct_bitfield_CSC_types.h file.

/* Type definition for custom storage class: BitField */
typedef struct my_struct_tag {

uint_T p1 : 1;
uint_T p2 : 1;
uint_T p3 : 1;

} my_struct_type;

6-94

Arrays

Arrays

In this section...

“Arrays for Parameters” on page 6-95

“Arrays for Signals” on page 6-97

Arrays for Parameters
To create an array in the generated code, you can use a constant parameter in
the base workspace, or a mpt.Parameter.

C Construct

int params[5]= {1,2,3,4,5};

Procedure

1 Create a model, ex_array_params, containing the Constant blocks and
Outport blocks and label the blocks as shown in the model diagram.

2 Double-click the Constant1 block and give the Constant value the name
of a parameter, params1.

3 Double-click the Constant2 block and give the Constant value the name
of a parameter, params2.

6-95

6 Developing Model Patterns that Generate Specific C Constructs

4 To create the parameters in the base workspace, at the MATLAB command
line, enter:

params1 = [1,2,3,4,5];
params2 = mpt.Parameter;

5 In the base workspace, double-click params2 to open the mpt.Parameter
dialog box.

6 In the Value field, specify the five dimensional array, [1 2 3 4 5].

7 Press Ctrl+E to open the Configuration Parameters dialog box.

8 Open the Optimization > Signals and Parameters pane, and select
the Inline parameters parameter.

9 Click Apply and OK.

10 Press Ctrl+B to generate code.

Results
The generated code includes the array, params2, in the ex_array_params.c
file:

int16_T params2[5] = { 1, 2, 3, 4, 5 } ;

The data object, params1, is defined in the array_params_data.c file:

/* Constant parameters (auto storage) */
const ConstParam_array_params array_params_ConstP = {

/* Computed Parameter: Constant1_Value
* Referenced by: '/Constant1'
*/

{ 1, 2, 3, 4, 5 }
};

where ConstParam_array_params is a structure containing the array and
defined in the array_params.h file.

typedef struct {
/* Computed Parameter: Constant1_Value

6-96

Arrays

* Referenced by: '/Constant1'
*/
int16_T Constant1_Value[5];

} ConstParam_array_params;

Arrays for Signals
To create an array in the generated code for signal data, you can specify a
signal as ExportedGlobal, or use a mpt.Signal object.

C Construct

int u1[5];
int y1[5];

Procedure

1 Create the ex_array_signals model using the blocks shown and follow the
steps to configure the signals and model.

2 Double-click the Inport block to open the Inport block parameter dialog box.

3 Select the Signal Attributes tab and specify the Port dimensions
parameter as 5, for an array of length 5.

4 Click OK.

5 Right-click the u1 signal line and select Signal Properties.

6 Select the Code Generation tab and specify the Storage Class parameter
as ExportedGlobal.

7 Repeat steps 5 and 6 for signal y1.

8 Press Ctrl+B to generate code.

6-97

6 Developing Model Patterns that Generate Specific C Constructs

Note Alternatively, you can use Simulink data objects (mpt.Signal) to
specify the storage class and dimensions for the signals, u1 and y1.

Results
The generated code includes arrays for u1 and y1 in the ex_array_signals.c
file:

int16_T u1[5];
int16_T y1[5];

In this case, a for loop is generated to carry out the gain operations on all
elements of the input signal.

int32_T i;
for (i = 0; i < 5; i++) {

y1[i] = (int16_T)(5 * u1[i]);
}

However, if the dimension of the array is less than a threshold value (typically
5), code generation might not include a for loop for array operations.

6-98

Pointers

Pointers

In this section...

“Pointers for Signals” on page 6-99

“Pointers for Signals and Parameters Using Simulink Data Objects” on
page 6-100

Pointers for Signals
To create a pointer in the generated code, you can configure a signal to
use the ImportedExternPointer storage class or use an mpt.Signal (or
mpt.Parameter for parameters) object with an ImportedExternPointer
storage class.

C Construct
extern double *u1;

Procedure
This is a quick method to obtain pointers in the generated code. You cannot
control the data type, which is decided by the model compilation process.

1 Create the ex_pointer_signal model using the blocks shown and follow
the steps to configure the signals and model.

2 Label the signal to be imported as a pointer, in this example, u1.

3 Right-click the u1 signal line and select Signal Properties.

4 Select the Code Generation tab and specify the Storage Class parameter
as ImportedExternPointer.

6-99

6 Developing Model Patterns that Generate Specific C Constructs

5 Click OK.

6 Press Ctrl+B to generate code.

Results
The generated code includes the extern declaration for the pointer in the
ex_pointer_signal_private.h file.

extern real_T *u1;

Pointers for Signals and Parameters Using Simulink
Data Objects

C Construct
extern double *u1;

Procedure
You can control the data type by using a Simulink data object to generate a
pointer. You can use this procedure for either a signal or parameter. To create
a pointer for a parameter, use an mpt.Parameter instead of an mpt.Signal
data object described in step 3.

1 Create the ex_pointer_signal_data_object model using the blocks
shown and follow the steps to configure the signals and model.

2 Label the signal to be imported as a pointer, in this example, u1.

3 At the MATLAB command line, create a data object for signal u1.

u1 = mpt.Signal;

6-100

Pointers

4 In the base workspace, double-click u1 to open the mpt.Signal dialog box.

5 Specify the Storage class parameter as ImportedExternPointer.

6 Click Apply and OK.

7 Press Ctrl+B to generate code.

Results
The generated code includes the extern declaration for the pointer in the
ex_pointer_signal_data_object_private.h file.

extern real_T *u1;

The ex_pointer_signal_data_object_private.h file imports the pointer
into the generated code. To compile the code, you must declare and define the
pointer in the main program.

6-101

6 Developing Model Patterns that Generate Specific C Constructs

6-102

Defining Data Representation
and Storage for Code
Generation

• Chapter 7, “Using mpt Data Objects”

• Chapter 8, “Creating and Using Custom Storage Classes”

• Chapter 9, “Memory Sections”

• Chapter 10, “Optimizing Buses for Code Generation”

• Chapter 11, “Renaming and Replacing Data Types”

• Chapter 12, “Managing Data Definitions and Declarations With the
Data Dictionary”

• Chapter 13, “Managing Placement of Data Definitions and
Declarations”

• Chapter 14, “Specifying the Persistence Level for Signals and
Parameters”

7

Using mpt Data Objects

The following table describes the properties and property values for all
mpt.Parameter and mpt.Signal data objects that appear in the Model
Explorer.

Note You can create mpt.Signal and mpt.Parameter objects in the base
MATLAB or model workspace. However, if you create the object in a model
workspace, the object’s storage class must be set to auto.

The figure below shows an example of the Model Explorer. When you select an
mpt.Parameter or mpt.Signal data object in the middle pane, its properties
and property values display in the rightmost pane.

In the Properties column, the table lists the properties in the order in which
they appear on the Model Explorer. Another table describes the effects that
example changes to property values have on the generated code.

7 Using mpt Data Objects

Parameter and Signal Property Values

Class:
Parameter,
Signal, or
Both Property

Available
Property Values
(* Indicates
Default) Description

Both User object
type

*auto Prenamed and predefined property
sets that are registered in the
sl_customization.m file. (See
“Registering mpt User Object Types” on
page 12-48.) This field is unavailable if
no user object type is registered.

Select auto if this field is available but
you do not want to apply the properties
of a user object type to a selected data
object. The fields on the Model Explorer
are populated with default values.

7-2

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or
Both Property

Available
Property Values
(* Indicates
Default) Description

Any user object type
name listed

Select a user object type name to
apply the properties and values that
you associated with this name in the
sl_customization.m file. The fields on
the Model Explorer are automatically
populated with those values.

Parameter Value *0 The data type and numeric value of
the data object. For example, int8(5).
The numeric value is used as an initial
parameter value in the generated code.

Both Data type Used to specify the data type for an
mpt.Signal data object, but not for an
mpt.Parameter data object. The data
type for an mpt.Parameter data object
is specified in the Value field above.
See “Working with Data Types” in the
Simulink documentation.

Both Units *null Units of measurement of the signal or
parameter. (Enter text in this field.)

Both Dimensions *-1 The dimension of the signal or
parameter. For a parameter, the
dimension is derived from its value.

Both Complexity *auto

real

complex

Complexity specifies whether the signal
or parameter is a real or complex
number. Select auto for the code
generator to decide. For a parameter,
the complexity is derived from its value.

Signal Sample time *-1 Model or block execution rate.

7-3

7 Using mpt Data Objects

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or
Both Property

Available
Property Values
(* Indicates
Default) Description

Signal Sample mode *auto Determines how the signal propagates
through the model. Select auto for the
code generator to decide.

Sample based The signal propagates through the
model one sample at a time.

Frame based The signal propagates through the
model in batches of samples.

Both Minimum *0.0 The minimum value to which the
parameter or signal is expected to be
bound.

Any number within
the minimum range
of the parameter
or signal. (Based
on the data type
and resolution of
the parameter or
signal.)

Both Maximum *0.0 Maximum value to which the parameter
or signal is expected to be bound. (Enter
information using a dialog box.)

Code
generation
options

Storage class Note that an auto selection for a storage
class tells the build process to decide
how to declare and store the selected
parameter or signal.

7-4

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or
Both Property

Available
Property Values
(* Indicates
Default) Description

Both Default
(Custom)

Code generation decides how to declare
the data object.

Both Global
(Custom)

Global (Custom) is
the default storage
class for mpt data
objects.

Ensures that the code generator
places no qualifier in the data object’s
declaration.

Both Memory
section

*Default Memory section allows you to specify
storage directives for the data object.
Default ensures that the code generator
places no type qualifier and no pragma
statement with the data object’s
declaration.

Parameter MemConst Places the const type qualifier in the
declaration.

Both MemVolatile Places the volatile type qualifier in
the declaration.

Parameter MemConstVolatile Places the const volatile type
qualifier in the declaration.

Both Header file Name of the file used to import or export
the data object. This file contains the
declaration (extern) to the data object.

Also, you can specify this header
filename between the double-quotation
or angle-bracket delimiter. You can
specify the delimiter with or without the
.h extension. For example, "object.h"
or "object" has the same effect. For
the selected data object, this overrides
the general delimiter selection in the

7-5

7 Using mpt Data Objects

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or
Both Property

Available
Property Values
(* Indicates
Default) Description

#include file delimiter field on the
Configuration Parameters dialog box.

Both Owner *Blank The name of the module that owns this
signal or parameter. This is used to help
determine the ownership of a definition.
For details, see “Ownership Settings” on
page 13-10 and “Effects of Ownership
Settings” on page 13-22.

Both Definition file *Blank Name of the file that defines the data
object.

Any valid text string

Both Persistence
level

The number you specify is relative to
Signal display level or Parameter
tune level on the Code Placement
pane of the Configuration Parameters
dialog box. For a signal, allows you
to specify whether or not the code
generator declares the data object as
global data. For a parameter, allows
you to specify whether or not the code
generator declares the data object
as tunable global data. See Signal
display level and Parameter tune
level in “Code Generation Pane: Code
Placement”.

Both Bitfield
(Custom)

Embeds Boolean data in a named bit
field.

Struct name Name of the struct into which the
object’s data will be packed.

7-6

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or
Both Property

Available
Property Values
(* Indicates
Default) Description

Parameter Const (Custom) Places the const type qualifier in the
declaration.

Parameter Header file See above.

Parameter Owner See above.

Parameter Definition file See above.

Parameter Persistence
level

See above.

Both Volatile
(Custom)

Places the volatile type qualifier in
the declaration.

Both Header file See above.

Both Owner See above.

Both Definition file See above.

Both Persistence
level

See above.

Parameter ConstVolatile
(Custom)

Places the const volatile type
qualifier in declaration.

Parameter Header file See above.

Parameter Owner See above.

Parameter Definition file See above.

Parameter Persistence
level

See above.

Parameter Define
(Custom)

Represents parameters with a #define
macro.

Parameter Header file See above.

7-7

7 Using mpt Data Objects

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or
Both Property

Available
Property Values
(* Indicates
Default) Description

Both ExportToFile
(Custom)

Generates global variable definition,
and generates a user-specified header
(.h) file that contains the declaration
(extern) to that variable.

Both Memory
section

See above.

Both Header file See above.

Both Definition file See above.

Both ImportFromFile
(Custom)

Includes predefined header files
containing global variable declarations,
and places the #include in a
corresponding file. Assumes external
code defines (allocates memory) for the
global variable.

Both Data access *Direct Allows you to specify whether the
identifier that corresponds to the
selected data object stores data of a data
type (Direct) or stores the address of
the data (a pointer).

Both Pointer If you select Pointer, the code generator
places * before the identifier in the
generated code.

Header file See above.

Both Struct
(Custom)

Embeds data in a named struct to
encapsulate sets of data.

Both Struct name See above.

Signal GetSet
(Custom)

Reads (gets) and writes (sets) data using
functions.

7-8

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or
Both Property

Available
Property Values
(* Indicates
Default) Description

Signal Header file See above.

Signal Get function Specify the Get function.

Signal Set function Specify the Set function.

Both Alias *null As explained in detail in “Applying
Naming Rules to Identifiers Globally”
on page 12-30, for a Simulink or mpt
data object (identifier), specifying a
name in the Alias field overrides the
global naming rule selection you make
on the Configuration Parameters dialog
box.

Any valid ANSI®1

C/C++ variable
name

Both Description *null Text description of the parameter or
signal. Appears as a comment beside
the signal or parameter’s identifier in
the generated code.

Any text string

1. ANSI® is a registered trademark of the American National Standards Institute, Inc.

7-9

7 Using mpt Data Objects

Some Examples of the Effect of Property Value Changes on Generated Code

What I noticed when
inspecting the .c/.cpp file

Change I made to property
value settings

What I noticed after
regenerating and
reinspecting the file

Example 1:
Parameter data objects can
be declared or defined as
constants. I know that
the data object GAIN is a
parameter. I want this to
be declared or defined in the
.c file as a variable. But I
notice that GAIN is declared as
a constant by the statement
const real_T GAIN = 5.0;.
Also, this statement is in the
constant section of the file.

In the Model Explorer, I clicked
the data object GAIN. I noticed
that the property value for its
Memory section property is set
at MemConst. I changed this to
Default.

I notice two differences. One
is that now GAIN is declared
as a variable with the
statement real_T GAIN =
5.0;. The second difference
is that the declaration now
is located in the MemConst
memory section in the .c or
.cpp file.

Example 2:
I notice again the declaration
of GAIN in the .c file mentioned
in Example 1. It appears as
real_T GAIN = 5.0;. But
I have changed my mind. I
want data object GAIN to be
#define.

I changed the Storage class
selection to Define (Custom).

GAIN is no longer declared
in the .c file as a MemConst
parameter. Rather, it now is
defined as a #define macro
by the code #define GAIN
5.0, and this is located
near the top of the .c file
with the other preprocessor
directives.

7-10

Some Examples of the Effect of Property Value Changes on Generated Code (Continued)

What I noticed when
inspecting the .c/.cpp file

Change I made to property
value settings

What I noticed after
regenerating and
reinspecting the file

Example 3:
I changed my mind again
after doing Example 2. I
do want GAIN defined using
the #define preprocessor
directive. But I do not want
to include the #define in this
file. I know it exists in another
file and I want to reference
that file.

On the Model Explorer, I notice
that the property value for the
Header file property is blank.
I changed this to filename.h.
(I chose the ANSI C/C++
double quote mechanism for the
#include, but could have chosen
the angle bracket mechanism.)
Also, it is necessary that I make
the user-defined filename.h
available to the compiler, placing
it either in the system path or
local directory.

The #define GAIN 5.0 is
no longer in this .c file.
Instead, the #include
filename.h code appears as
a preprocessor directive at
the top of the file.

Example 4:
I have one more change I
want to make. Let us say that
we have declared the data
object data_in, and that its
declaration statement in the
.c file reads
real_T data_in = 0.0;. I
want to replace this in all
locations in the .c file with an
alias.

In the Model Explorer, I selected
the data object data_in. I
noticed that the Alias field
is blank. I changed this to
data_in_alias, which I know
is a valid ANSI C/C++ variable
name.

The identifier
data_in_alias now appears
in the .c file everywhere
data_in appeared.

7-11

7 Using mpt Data Objects

7-12

8

Creating and Using Custom
Storage Classes

• “Introduction to Custom Storage Classes” on page 8-2

• “Resources for Defining Custom Storage Classes” on page 8-5

• “Simulink Package Custom Storage Classes” on page 8-6

• “Creating Packages that Support CSC Definitions” on page 8-8

• “Designing Custom Storage Classes and Memory Sections” on page 8-12

• “Applying CSCs to Parameters and Signals” on page 8-37

• “Generating Code with Custom Storage Classes” on page 8-58

• “Defining Advanced Custom Storage Class Types” on page 8-62

• “GetSet Custom Storage Class for Data Store Memory” on page 8-66

• “Custom Storage Class Implementation” on page 8-70

• “Custom Storage Class Limitations” on page 8-72

8 Creating and Using Custom Storage Classes

Introduction to Custom Storage Classes

In this section...

“Custom Storage Class Memory Sections” on page 8-3

“Registering Custom Storage Classes” on page 8-3

“Custom Storage Class Demos” on page 8-4

During the build process, the storage class specification of a signal, tunable
parameter, block state, or data object specifies how that entity is declared,
stored, and represented in generated code. Note that in the context of the
build process, the term “storage class” is not synonymous with the term
“storage class specifier”, as used in the C language.

The Simulink Coder software defines four built-in storage classes for
use with all targets: Auto, ExportedGlobal, ImportedExtern, and
ImportedExternPointer. These storage classes provide limited control over
the form of the code generated for references to the data. For example,
data of storage class Auto is typically declared and accessed as an element
of a structure, while data of storage class ExportedGlobal is declared
and accessed as unstructured global variables. For information about
built-in storage classes, see “Signal Considerations” and “Defining Data
Representation and Storage for Code Generation” in the Simulink Coder
documentation.

The built-in storage classes are suitable for many applications, but embedded
system designers often require greater control over the representation of
data. Embedded Coder custom storage classes (CSCs) extend the built-in
storage classes provided by the Simulink Coder software. CSCs can provide
application-specific control over the constructs required to represent data in
an embedded algorithm. For example, you can use CSCs to:

• Define structures for storage of parameter or signal data.

• Conserve memory by storing Boolean data in bit fields.

• Integrate generated code with legacy software whose interfaces cannot
be modified.

8-2

Introduction to Custom Storage Classes

• Generate data structures and definitions that comply with your
organization’s software engineering guidelines for safety-critical code.

Custom storage classes affect only code generated for ERT targets. When
Configuration Parameters > Code Generation > Target Selection >
System target file specifies a GRT target, the names of custom storage
classes sometimes appear in dialog boxes, but selecting a CSC is functionally
the same as selecting Auto. See “Selecting and Configuring a Target” for
information about ERT and GRT targets.

Custom Storage Class Memory Sections
Every custom storage class has an associated memory section definition. A
memory section is a named collection of properties related to placement of an
object in memory; for example, in RAM, ROM, or flash memory. Memory
section properties let you specify storage directives for data objects. For
example, you can specify const declarations, or compiler-specific #pragma
statements for allocation of storage in ROM or flash memory sections.

See “Creating and Editing Memory Section Definitions” on page 8-31 for
details about using the Custom Storage Class designer to define memory
sections. While memory sections are often used with data in custom storage
classes, they can also be used with various other constructs. See Chapter
9, “Memory Sections” for more information about using memory sections
with custom storage classes, and complete information about using memory
sections with other constructs.

Registering Custom Storage Classes
CSCs are associated with Simulink data class packages (such as the Simulink
package) and with classes within packages (such as the Simulink.Parameter
and Simulink.Signal classes). The custom storage classes associated
with a package are defined by a CSC registration file. For example, a
CSC registration file exists for the Simulink package. This registration
file provides predefined CSCs for use with the Simulink.Signal and
Simulink.Parameter classes, and with subclasses derived from these classes.
The predefined CSCs are sufficient for a wide variety of applications.

If you use only predefined CSCs, you do not need to be concerned with CSC
registration files. You cannot add or change CSCs associated with built-in

8-3

8 Creating and Using Custom Storage Classes

packages and classes, but you can create your own packages and subclasses,
then associate CSCs with those. See “Custom Storage Class Implementation”
on page 8-70 for more information.

Custom Storage Class Demos
Three demos are available that show Custom Storage Class capabilities:

rtwdemo_cscpredef — Shows predefined custom storage classes and
embedded signal objects

rtwdemo_importstruct — Shows custom storage classes used to access
imported data efficiently

rtwdemo_advsc — Shows how custom storage classes can support data
dictionary driven modeling

To launch a demo, click the demo’s name above, or type its name in the
MATLAB Command Window.

8-4

Resources for Defining Custom Storage Classes

Resources for Defining Custom Storage Classes
The resources for working with custom storage class definitions are:

• The Simulink Data Class Designer, which you can use to create a data
object package and enable the ability to define your own CSC definitions
for classes contained in the package. For information about the Data Class
Designer, see “Subclassing Simulink Data Classes” and “Creating Packages
that Support CSC Definitions” on page 8-8.

• A set of ready-to-use CSCs. These CSCs are designed to be useful in code
generation for embedded systems development. CSC functionality is
integrated into the Simulink.Signal and Simulink.Parameter classes;
you do not need to use special object classes to generate code with CSCs. If
you are unfamiliar with the Simulink.Signal and Simulink.Parameter
classes and objects, read the “Defining Data Representation and Storage
for Code Generation” section in the Simulink Coder documentation.

• The Custom Storage Class Designer (cscdesigner) tool, which is described
in this chapter. This tool lets you define CSCs that are tailored to your code
generation requirements. The Custom Storage Class Designer provides a
graphical user interface that you can use to implement CSCs. You can use
your CSCs in code generation immediately, without any Target Language
Compiler (TLC) or other programming. See “Designing Custom Storage
Classes and Memory Sections” on page 8-12 for details.

8-5

8 Creating and Using Custom Storage Classes

Simulink Package Custom Storage Classes
The Simulink package includes a set of built-in custom storage classes. These
are categorized as custom storage classes, even though they are built-in,
because they:

• Extend the storage classes provided by the Simulink Coder software

• Are functionally the same as if you had defined them yourself using the
CSC Designer

MathWorks provides the built-in CSCs because they provide specifications
that many users need. Otherwise, all such users would have to define the
needed CSCs manually, causing a needless duplication of effort.

You cannot change the CSCs built into the Simulink package, but you can
subclass the package and add CSCs to the subclass, following the steps in
“Resources for Defining Custom Storage Classes” on page 8-5.

Some CSCs in the Simulink package are valid for parameter objects but not
signal objects and vice versa. For example, you can assign the storage class
Const to a parameter but not to a signal, because signal data is not constant.
The next table defines the CSCs built into the Simulink package and shows
where each of the CSCs can be used.

CSC Name Purpose Signals? Parameters?

BitField Generate a struct declaration that
embeds Boolean data in named bit
fields.

Y Y

CompilerFlag Supports preprocessor conditionals
defined via compiler flag. See
“Generating Code for Variant
Systems” on page 4-2.

N Y

Const Generate a constant declaration with
the const type qualifier.

N Y

ConstVolatile Generate declaration of volatile
constant with the const volatile
type qualifier.

N Y

8-6

Simulink® Package Custom Storage Classes

CSC Name Purpose Signals? Parameters?

Default Default is a placeholder CSC that
the code generator assigns to the
RTWInfo.CustomStorageClass
property of signal and parameter
objects when they are created.
You cannot edit the Default CSC
definition.

Y Y

Define Generate #define directive. N Y

ExportToFile Generate header (.h) file, with
user-specified name, containing
global variable declarations.

Y Y

GetSet Supports specialized function calls
to read and write the memory
associated with a Data Store Memory
block. See “GetSet Custom Storage
Class for Data Store Memory” on
page 8-66.

Y Y

ImportedDefine Supports preprocessor conditionals
defined via legacy header file.
See “Generating Code for Variant
Systems” on page 4-2.

N Y

ImportFromFile Generate directives to include
predefined header files containing
global variable declarations.

Y Y

Struct Generate a struct declaration
encapsulating parameter or signal
object data.

Y Y

Volatile Use volatile type qualifier in
declaration.

Y Y

8-7

8 Creating and Using Custom Storage Classes

Creating Packages that Support CSC Definitions
You can create a package and associate your own CSC definitions with classes
contained in the package. You do this by creating a data object package
containing classes derived from Simulink.Parameter or Simulink.Signal.
The procedure below shows how to create and configure such a package. For
additional information, see “Subclassing Simulink Data Classes”.

1 Open the Simulink Data Class Designer by choosing Tools > Data Class
Designer in the model window, or typing the following at the MATLAB
command prompt:

sldataclassdesigner

2 The Data Class Designer loads all packages that exist on the MATLAB
path.

3 To create a new package, click New next to the Package name field. If
desired, edit the Package name. Then, click OK.

4 In the Parent directory field, enter the path to the directory where you
want to store the new package.

Note Do not create class package directories under matlabroot. Packages
in these directories are treated as built-in and will not be visible in the
Data Class Designer.

5 Click on the Classes tab.

6 Create a new class by clicking New next to the Class name field. If
desired, edit the Class name. Then, click OK.

7 In the Derived from menus, select Simulink.Signal or
Simulink.Parameter.

8 The Create your own custom storage classes for this class option is
now enabled. This option is enabled when the selected class is derived from
Simulink.Signal or Simulink.Parameter. You must select this option to
create CSCs for the new class. If the Create your own custom storage

8-8

Creating Packages that Support CSC Definitions

classes for this class option is not selected, the new class inherits the
CSCs of the parent class.

Note To create a CSC registration file for a package, the Create your
own custom storage classes for this class option must be selected for at
least one of the classes in the package.

In the figure below, a new package called mypkg has been created. This
package contains a new class, derived from Simulink.Signal, called sig.
The Create your own custom storage classes for this class option
is selected.

Complete instructions for using the Data Class Designer appear in
“Subclassing Simulink Data Classes” in the Simulink documentation. See

8-9

8 Creating and Using Custom Storage Classes

also the instructions that appear when you click the Custom Storage
Classes tab.

9 If desired, repeat steps 6–8 to add other derived classes to the package and
associate CSCs with them.

10 Click Confirm Changes. In the Confirm Changes pane, select the
package you created. Add the parent directory to the MATLAB path if
necessary. Then, click Write Selected.

The package directories and files, including the CSC registration file, are
written out to the parent directory.

11 Click Close.

12 You can now view and edit the CSCs belonging to your package in the
Custom Storage Class Designer, which you open with the MATLAB
command cscdesigner. Initially, the package contains only the Default
CSC definition, as shown in the figure below.

8-10

Creating Packages that Support CSC Definitions

13 Add and edit your CSC and memory section definitions, as described
in “Designing Custom Storage Classes and Memory Sections” on page
8-12. After you have created CSC definitions for your package, you can
instantiate objects of the classes belonging to your package, and assign
CSCs to them.

You need to restart your MATLAB session before you can use the new
CSCs with objects of your new classes.

8-11

8 Creating and Using Custom Storage Classes

Designing Custom Storage Classes and Memory Sections

In this section...

“Using the Custom Storage Class Designer” on page 8-12

“Editing Custom Storage Class Properties” on page 8-19

“Using Custom Storage Class References” on page 8-26

“Creating and Editing Memory Section Definitions” on page 8-31

“Using Memory Section References” on page 8-34

Using the Custom Storage Class Designer
The Custom Storage Class Designer (cscdesigner) is a tool for creating and
managing custom storage classes and memory sections. You can use the
Custom Storage Class Designer to:

• Load existing custom storage classes and memory sections and view and
edit their properties

• Create new custom storage classes and memory sections

• Create references to custom storage classes and memory sections defined in
other packages

• Copy and modify existing custom storage class and memory section
definitions

• Verify the correctness and consistency of custom storage class and memory
section definitions

• Preview pseudocode generated from custom storage class and memory
section definitions

• Save custom storage class and memory section definitions

To open the Custom Storage Class Designer, type the following command at
the MATLAB prompt:

cscdesigner

8-12

Designing Custom Storage Classes and Memory Sections

When first opened, the Custom Storage Class Designer scans all data
class packages on the MATLAB path to detect packages that have a CSC
registration file. A message is displayed while scanning proceeds. When the
scan is complete, the Custom Storage Class Designer window appears:

The Custom Storage Class Designer window is divided into several panels:

• Select package: Lets you select from a menu of data class packages that
have CSC definitions associated with them. See “Selecting a Data Class
Package” on page 8-14 for details.

• Custom Storage Class / Memory Section properties: Lets you select,
view, edit, copy, verify, and perform other operations on CSC definitions or
memory section definitions. The common controls in the Custom Storage
Class /Memory Section properties panel are described in “Selecting and
Editing CSCs, Memory Sections, and References” on page 8-15.

8-13

8 Creating and Using Custom Storage Classes

- When the Custom Storage Class tab is selected, you can select a CSC
definition or reference from a list and edit its properties. See “Editing
Custom Storage Class Properties” on page 8-19 for details.

- When the Memory Section tab is selected, you can select a memory
section definition or reference from a list and edit its properties. See
“Creating and Editing Memory Section Definitions” on page 8-31 for
details.

• Filename: Displays the filename and location of the current CSC
registration file, and lets you save your CSC definition to that file. See
“Saving Your Definitions” on page 8-18 for details.

• Pseudocode preview: Displays a preview of code that is generated
from objects of the given class. The preview is pseudocode, since the
actual symbolic representation of data objects is not available until code
generation time. See “Previewing Generated Code” on page 8-33 for details.

• Validation result: Displays any errors encountered when the currently
selected CSC definition is validated. See “Validating CSC Definitions” on
page 8-25 for details.

Selecting a Data Class Package
A CSC or memory section definition or reference is uniquely associated with a
Simulink data class package. The link between the definition/reference and
the package is formed when a CSC registration file (csc_registration.m)
is located in the package directory.

You never need to search for or edit a CSC registration file directly: the
Custom Storage Class Designer locates all available CSC registration files.
The Select package menu contains names of all data class packages that
have a CSC registration file on the MATLAB search path. At least one such
package, the Simulink package, is always present.

When you select a package, the CSCs and memory section definitions
belonging to the package are loaded into memory and their names are
displayed in the scrolling list in the Custom storage class panel. The name
and location of the CSC registration file for the package is displayed in the
Filename panel.

8-14

Designing Custom Storage Classes and Memory Sections

If you select a user-defined package, by default you can use the Custom
Storage Class Designer to edit its custom storage classes and memory
sections. If you select a built-in package, you cannot edit its custom storage
classes or memory sections. See “Custom Storage Class Implementation”
on page 8-70 for more information.

Selecting and Editing CSCs, Memory Sections, and References
The Custom Storage Class / Memory Section panel lets you select, view,
and (if the CSC is writable) edit CSC and memory section definitions and
references. In the next figure and the subsequent examples, the selected
package is mypkg. Instructions for creating a user-defined package like mypkg
appear in “Creating Packages that Support CSC Definitions” on page 8-8.

8-15

8 Creating and Using Custom Storage Classes

The list at the top of the panel displays the definitions/references for the
currently selected package. To select a definition/reference for viewing
and editing, click on the desired list entry. The properties of the selected
definition/reference appear in the area below the list. The number and type of
properties vary for different types of CSC and memory section definitions. See:

• “Editing Custom Storage Class Properties” on page 8-19 for information
about the properties of the predefined CSCs.

• “Creating and Editing Memory Section Definitions” on page 8-31 for
information about the properties of the predefined memory section
definitions.

The buttons to the right of the list perform these functions, which are common
to both custom storage classes and memory definitions:

• New: Creates a new CSC or memory section with default values.

• New Reference: Creates a reference to a CSC or memory section
definition in another package. The default initially has a default name and
properties. See “Using Custom Storage Class References” on page 8-26 and
“Using Memory Section References” on page 8-34.

• Copy: Creates a copy of the selected definition / reference. The copy
initially has a default name using the convention:

definition_name_n

where definition_name is the name of the original definition, and n is an
integer indicating successive copy numbers (for example: BitField_1,
BitField_2, ...)

• Up: Moves the selected definition one position up in the list.

• Down: Moves the selected definition one position down in the list

• Remove: Removes the selected definition from the list.

• Validate: Performs a consistency check on the currently selected
definition. Errors are reported in the Validation result panel.

For example, if you click New, a new custom storage class is created with
a default name:

8-16

Designing Custom Storage Classes and Memory Sections

You can now rename the new class by typing the desired name into the Name
field, and set other fields as needed. The changes take effect when you click
Apply or OK. For example, you could set values for the new custom storage
class as follows:

8-17

8 Creating and Using Custom Storage Classes

Saving Your Definitions
After you have created or edited a CSC or memory section definition or
reference, you must save the changes to the CSC registration file. To do this,
click Save in the Filename panel. When you click Save, the current CSC
and memory section definitions that are in memory are validated, and the
definitions are written out.

If errors occur, they are reported in the Validation result panel. The
definitions are saved whether or not errors exist. However, you should correct
any validation errors and resave your definitions. Trying to use definitions
that were saved with validation errors can cause additional errors. Such
problems can occur even it you do not try to use the specific parts of the
definition that contain the validation errors, making the problems difficult
to diagnose.

Restarting MATLAB After Changing Definitions
If you add, change, or delete custom storage class or memory section
definitions for any user-defined class, and objects of that class already exist,

8-18

Designing Custom Storage Classes and Memory Sections

you must restart MATLAB to put the changed definitions into effect and
eliminate obsolete objects. A message warning you to restart MATLAB
appears when you save the changed definitions. This warning message does
not affect the success of the save operation itself.

Editing Custom Storage Class Properties
To view and edit the properties of a CSC, click the Custom Storage Class
tab in the Custom Storage Class / Memory Section panel. Then, select a
CSC name from the Custom storage class definitions list.

The CSC properties are divided into several categories, selected by tabs.
Selecting a class, and setting property values for that class, can change the
available tabs, properties, and values. As you change property values, the
effect on the generated code is immediately displayed in the Pseudocode
preview panel. In most cases, you can define your CSCs quickly and easily
by selecting the Pseudocode preview panel and using the Validate button
frequently.

The property categories and corresponding tabs are as follows:

General
Properties in the General category are common to all CSCs. In the next
figure and the subsequent examples, the selected custom storage class is
ByteField. Instructions for creating a user-defined custom storage class
like ByteField appear in “Selecting and Editing CSCs, Memory Sections,
and References” on page 8-15.

8-19

8 Creating and Using Custom Storage Classes

Properties in the General category, and the possible values for each property,
are as follows:

• Name: The CSC name, selected from the Custom storage class
definitions list. The name cannot be any TLC keyword. Violating this
rule causes an error.

• Type: Specifies how objects of this class are stored. Values:

- Unstructured: Objects of this class generate unstructured storage
declarations (for example, scalar or array variables), for example:

datatype dataname[dimension];

- FlatStructure: Objects of this class are stored as members of a struct.
A Structure Attributes tab is also displayed, allowing you to specify
additional properties such as the struct name. See “Structure Attributes”
on page 8-23.

- Other: Used for certain data layouts, such as nested structures,
that cannot be generated using the standard Unstructured and
FlatStructure custom storage class types. If you want to generate other
types of data, you can create a new custom storage class from scratch
by writing the necessary TLC code. See “Defining Advanced Custom
Storage Class Types” on page 8-62 for more information.

• For parameters and For signals: These options let you enable a CSC
for use with only certain classes of data objects. For example, it does not
make sense to assign storage class Const to a Simulink.Signal object.
Accordingly, the For signals option for the Const class is deselected, while
the For parameters is selected.

• Memory section: Selects one of the memory sections defined in the
Memory Section panel. See “Creating and Editing Memory Section
Definitions” on page 8-31.

• Data scope: Controls the scope of symbols generated for data objects of
this class. Values:

- Auto: Symbol scope is determined internally by code generation. If
possible, symbols have File scope. Otherwise, they have Exported scope.

8-20

Designing Custom Storage Classes and Memory Sections

- Exported: Symbols are exported to external code in the header file
specified by the Header File field. If no Header File is specified,
symbols are exported to external code in model.h.

- Imported: Symbols are imported from external code in the header file
specified by the Header File field. If you do not specify a header file, an
extern directive is generated in model_private.h. For imported data, if
the Data initialization value is Macro, a header file must be specified.

- File: The scope of each symbol is the file that defines it. File scope
requires each symbol to be used in a single file. If the same symbol is
referenced in multiple files, an error occurs at code generation time.

- Instance specific: Symbol scope is defined by the Data scope field of
the RTWInfo.CustomAttributes property of each data object.

• Data initialization: Controls how storage is initialized in generated code.
Values:

- Auto: Storage initialization is determined internally by the code
generation. Parameters have Static initialization, and signals have
Dynamic initialization.

- None: No initialization code is generated.

- Static: A static initializer of the following form is generated:

datatype dataname[dimension] = {...};

- Dynamic: Variable storage is initialized at runtime, in the
model_initialize function.

- Macro: A macro definition of the following form is generated:

#define data numeric_value

The Macro initialization option is available only for use with
unstructured parameters. It is not available when the class is configured
for generation of structured data, or for signals. If the Data scope value
is Imported, a header file must be specified.

- Instance specific: Initialization is defined by theData initialization
property of each data object.

8-21

8 Creating and Using Custom Storage Classes

Note When necessary, the code generator includes dynamic initialization
code for signals and states even if the CSC has Data initialization set to
None or Static.

• Data access: Controls whether imported symbols are declared as variables
or pointers. This field is enabled only when Data scope is set to Imported
or Instance-specific. Values:

- Direct: Symbols are declared as simple variables, such as

extern myType myVariable;

- Pointer: Symbols are declared as pointer variables, such as

extern myType *myVariable;

- Instance specific: Data access is defined by the Data access
property of each data object.

• Header file: Defines the name of a header file that contains exported or
imported variable declarations for objects of this class. Values:

- Specify: An edit field is displayed to the right of the property. This lets
you specify a header file for exported or imported storage declarations.
Specify the full filename, including the filename extension (such as .h).
Use quotes or brackets as in C code to specify the location of the header
file. Leave the edit field empty to specify no header file.

- Instance specific: The header file for each data object is defined by
the Header file property of the object. Leave the property undefined to
specify no header file for that object.

If the Data scope is Exported, specifying a header file is optional. If you
specify a header file name, the custom storage class generates a header file
containing the storage declarations to be exported. Otherwise, the storage
declarations are exported in model.h.

If the Data scope of the class is Imported, and Data initialization is
Macro, you must specify a header file name. A #include directive for the
header file is generated.

8-22

Designing Custom Storage Classes and Memory Sections

Comments. The Comments panel lets you specify comments to be generated
with definitions and declarations.

Comments must conform to the ANSI C standard (/*...*/). Use \n to specify
a new line.

Properties in the Comments tab are as follows:

• Comment rules: If Specify is selected, edit fields are displayed for
entering comments. If Default is selected, comments are generated under
control of the code generation software.

• Type comment: The comment entered in this field precedes the typedef
or struct definition for structured data.

• Declaration comment: Comment that precedes the storage declaration.

• Definition comment: Comment that precedes the storage definition.

Structure Attributes
The Structure Attributes panel gives you detailed control over code
generation for structs (including bitfields). The Structure Attributes tab

8-23

8 Creating and Using Custom Storage Classes

is displayed for CSCs whose Type parameter is set to FlatStructure. The
following figure shows the Structure Attributes panel.

Structure Attributes Panel

The Structure Attributes properties are as follows:

• Struct name: If you select Instance specific, specify the struct name
when configuring each instance of the class.

If you select Specify, an edit field appears (as shown in Structure
Attributes Panel on page 8-24) for entry of the name of the structure to be
used in the struct definition. Edit fields Type tag, Type token, and
Type name are also displayed.

• Is typedef: When this option is selected a typedef is generated for the
struct definition, for example:

typedef struct {
...

} SignalDataStruct;

Otherwise, a simple struct definition is generated.

• Bit-pack booleans: When this option is selected, signals and/or
parameters that have Boolean data type are packed into bit fields in the
generated struct.

• Type tag: Specifies a tag to be generated after the struct keyword in
the struct definition.

• Type token: Some compilers support an additional token (which is simply
another string) after the type tag. To generate such a token, enter the
string in this field.

8-24

Designing Custom Storage Classes and Memory Sections

• Type name: Specifies the string to be used in typedef definitions. This
field is visible if Is typedef is selected.

The following listing is the pseudocode preview corresponding to the
Structure Attributes properties displayed in Structure Attributes Panel
on page 8-24.

Header file:

No header file is specified. By default, data is
exported with the generated model.h file.

Type definition:

/* CSC type comment generated by default */

typedef struct aToken myTag {
:

} myType;

Declaration:

/* CSC declaration comment generated by default */

extern myType MyStruct;

Definition:

/* CSC definition comment generated by default */

myType MyStruct = {...};

Validating CSC Definitions
To validate a CSC definition, select the definition on the Custom Storage
Class panel and click Validate. The Custom Storage Class Designer then
checks the definition for consistency. The Validation result panel displays

8-25

8 Creating and Using Custom Storage Classes

any errors encountered when the selected CSC definition is validated. The
next figure shows the Validation result panel with a typical error message:

Validation is also performed whenever CSC definitions are saved. In this
case, all CSC definitions are validated. (See “Saving Your Definitions” on
page 8-18.)

Using Custom Storage Class References
Any package can access and use custom storage classes that are defined in
any other package, including both user-defined packages and predefined
packages such as Simulink and mpt. Only one copy of the storage class exists,
in the package that first defined it. Other packages refer to it by pointing to
it in its original location. Thus any changes to the class, including changes
to a predefined class in later MathWorks® product releases, are immediately
available in every referencing package.

To configure a package to use a custom storage class that is defined in another
package:

1 Type cscdesigner to launch the Custom Storage Class Designer. The
relevant part of the designer window initially looks like this:

8-26

Designing Custom Storage Classes and Memory Sections

2 Select the Custom Storage Class tab.

3 Use Select Package to select the package in which you want to reference
a class or section defined in some other package. The selected package
must be writable.

4 In the Custom storage class definitions pane, select the existing
definition below which you want to insert the reference. For example:

8-27

8 Creating and Using Custom Storage Classes

5 Click New Reference.

A new reference with a default name and properties appears below the
previously selected definition. The new reference is selected, and a
Reference tab appears that shows the reference’s initial properties. A
typical appearance is:

8-28

Designing Custom Storage Classes and Memory Sections

6 Use the Name field to enter a name for the new reference. The name must
be unique in the importing package, but can duplicate the name in the
source package. The name cannot be any TLC keyword. Violating this
rule causes an error.

7 Set Refer to custom storage class in package to specify the package
that contains the custom storage class you want to reference.

8 Set Custom storage class to reference to specify the custom storage
class to be referenced. Trying to create a circular reference generates an
error and leaves the package unchanged.

9 Click OK or Apply to save the changes to memory. See “Saving
Your Definitions” on page 8-18 for information about saving changes
permanently.

For example, the next figure shows the custom storage class ConstVolatile
imported from the Simulink package into mypkg, and given the same name

8-29

8 Creating and Using Custom Storage Classes

that it has in the source package. Any other name could have been used
without affecting the properties of the storage class.

You can use Custom Storage Class Designer capabilities to copy, reorder,
validate, and otherwise manage classes that have been added to a class by
reference. However, you cannot change the underlying definitions. You can
change a custom storage class only in the package where it was originally
defined.

Changing Existing CSC References
To change an existing CSC reference, select it in the Custom storage
class definitions pane. The Reference tab appears, showing the current
properties of the reference. Make any needed changes, then click OK or
Apply to save the changes to memory. See “Saving Your Definitions” on page
8-18 for information about saving changes permanently.

8-30

Designing Custom Storage Classes and Memory Sections

Creating and Editing Memory Section Definitions
Memory section definitions add comments, qualifiers, and #pragma directives
to generated symbol declarations. TheMemory Section tab lets you create,
view, edit, and verify memory section definitions. The steps for creating a
memory section definition are essentially the same as for creating a custom
storage class definition:

1 Select a writable package in the Select package field.

2 Select the Memory Section tab. In a new package, only a Default
memory section initially appears.

3 Select the existing memory section below which you want to create a new
memory section.

4 Click New.

A new memory section definition with a default name appears below the
selected memory section.

5 Set the name and other properties of the memory section as needed.

6 Click OK or Apply.

The next figure shows mypkg with a memory section called MyMemSect:

8-31

8 Creating and Using Custom Storage Classes

The Memory section definitions list lets you select a memory section
definition to view or edit. The available memory section definitions also
appear in the Memory section name menu in the Custom Storage Class
panel. The properties of a memory section definition are as follows:

• Memory section name: Name of the memory section (displayed in
Memory section definitions list).

8-32

Designing Custom Storage Classes and Memory Sections

• Is const: If selected, a const qualifier is added to the symbol declarations.

• Is volatile: If selected, a volatile qualifier is added to the symbol
declarations.

• Qualifier: The string entered into this field is added to the symbol
declarations as a further qualifier. Note that no verification is performed
on this qualifier.

• Memory section comment: Comment inserted before declarations
belonging to this memory section. Comments must conform to the ANSI C
standard (/*...*/). Use \n to specify a new line.

• Pragma surrounds: Specifies whether the pragma should surround All
variables or Each variable. When Pragma surrounds is set to Each
variable, the %<identifier> token is allowed in pragmas and will be
replaced by the variable or function name.

• Pre-memory section pragma: pragma directive that precedes the storage
definition of data belonging to this memory section. The directive must
begin with #pragma.

• Post-memory section pragma: pragma directive that follows the storage
definition of data belonging to this memory section. The directive must
begin with #pragma.

Previewing Generated Code
If you click Validate on the Memory Section panel, the Pseudocode
preview panel displays a preview of code that is generated from objects of the
given class. The panel also displays messages (in blue) to highlight changes
as they are made. The code preview changes dynamically as you edit the class
properties. The next figure shows a code preview for the MemConstVolatile
memory section.

8-33

8 Creating and Using Custom Storage Classes

Using Memory Section References
Any package can access and use memory sections that are defined in any
other package, including both user-defined packages and predefined packages
such as Simulink and mpt. Only one copy of the section exists, in the package
that first defined it; other packages refer to it by pointing to it in its original
location. Thus any changes to the section, including changes to a predefined
section in later MathWorks product releases, are immediately available in
every referencing package.

To configure a package to use a memory section that is defined in another
package:

1 Type cscdesigner to launch the Custom Storage Class Designer.

2 Select the Memory Section tab.

3 Use Select Package to select the package in which you want to reference
a class or section defined in some other package.

4 In the Memory section definitions pane, select the existing definition
below which you want to insert the reference.

5 Click New Reference.

8-34

Designing Custom Storage Classes and Memory Sections

A new reference with a default name and properties appears below the
previously selected definition. The new reference is selected, and a
Reference tab appears that shows the reference’s initial properties.

6 Use the Name field to enter a name for the new reference. The name
must be unique in the importing package, but can duplicate the name in
the source package.

7 Set Refer to memory section in package to specify the package that
contains the memory section you want to reference.

8 Set Memory section to reference to specify the memory section to be
referenced. Trying to create a circular reference generates an error and
leaves the package unchanged.

9 Click OK or Apply to save the changes to memory. See “Saving
Your Definitions” on page 8-18 for information about saving changes
permanently.

For example, the next figure shows the memory section MemConstVolatile
imported from the Simulink package into mypkg, and given the same name
that it has in the source package. Any other name could have been used
without affecting the properties of the memory section.

8-35

8 Creating and Using Custom Storage Classes

You can use Custom Storage Class Designer capabilities to copy, reorder,
validate, and otherwise manage memory sections that have been added to a
class by reference. However, you cannot change the underlying definitions.
You can change a memory section only in the package where it was originally
defined.

Changing Existing Memory Section References
To change an existing memory section reference, select it in the Memory
section definitions pane. The Reference tab appears, showing the current
properties of the reference. Make any needed changes, then click OK or
Apply to save the changes to memory. See “Saving Your Definitions” on page
8-18 for information about saving changes permanently.

8-36

Applying CSCs to Parameters and Signals

Applying CSCs to Parameters and Signals

In this section...

“About Applying Custom Storage Classes” on page 8-37

“Applying a Custom Storage Class to a Parameter” on page 8-38

“Applying a Custom Storage Class to a Signal” on page 8-40

“Applying a CSC Using a Base Workspace Signal Object” on page 8-41

“Applying a CSC Using an Embedded Signal Object” on page 8-43

“Specifying a Custom Storage Class Using the GUI” on page 8-50

“Specifying a Custom Storage Class Using the API” on page 8-53

About Applying Custom Storage Classes
You can apply a custom storage class to a parameter or a signal using the
GUI or the API.

• To apply a custom storage class to a parameter, you specify the storage
class in the Simulink.Parameter object that defines the parameter in
the base workspace.

• To apply a custom storage class to a signal, you specify the storage class
in a Simulink.Signal object that is bound to the signal. You can provide
this object in two ways:

- Create the object in the base workspace, then bind it to the signal as
described in “Resolving Symbols”. When you save the model, you must
save the object in a separate file, as with any base workspace object.

- Use the Signal Properties dialog box to embed the object in the model on
the port where the signal originates. When you save the model, Simulink
automatically saves the embedded signal object as part of the model file.

Most of the GUI techniques, and most of the API techniques, are the same for
parameter and signal objects, and for base workspace and embedded signal
objects. Only the initial steps differ, after which you apply the same GUI or
API instructions within the context that you established in the initial steps.

8-37

8 Creating and Using Custom Storage Classes

The following instructions assume that you have already created any needed
packages, custom storage classes, and memory sections, as described in
“Creating Packages that Support CSC Definitions” on page 8-8 and “Designing
Custom Storage Classes and Memory Sections” on page 8-12.

Applying a Custom Storage Class to a Parameter
To apply a custom storage class to a parameter, you specify the storage class
in the Simulink.Parameter object that defines the parameter in the base
workspace. The instructions that begin in this section show you how to create
that object using the GUI or API. Later instructions show you how to specify a
custom storage class and custom attributes.

For information about using parameter objects to specify block parameter
values, see “Working with Block Parameters” in the Simulink documentation.
For information about parameter storage in generated code, see “Parameter
Considerations” in the Simulink Coder documentation.

Providing a Parameter Object Using the GUI

1 In the Model window, choose View > Model Explorer.

2 In the Model Hierarchy pane, select the Base Workspace.

3 Click the Add Parameter tool or choose Add > Simulink Parameter.

Simulink creates a Simulink.Parameter object with a default name:

8-38

Applying CSCs to Parameters and Signals

4 Change the parameter name as needed by editing it in the Contents pane.
Example: MyParam.

5 Set parameter attributes other than Code generation options in the
Dialog pane.

6 Follow the instructions in “Specifying a Custom Storage Class Using the
GUI” on page 8-50.

Providing a Parameter Object Using the API

1 In the MATLAB Command Window, enter:

ParamName=ParamClass

where ParamClass is Simulink.Parameter or any subclass of it that you
have defined.

2 Simulink creates a ParamClass object with the specified name:

MyParam =

Simulink.Parameter (handle)

8-39

8 Creating and Using Custom Storage Classes

Value: []
RTWInfo: [1x1 Simulink.ParamRTWInfo]

Description: ''
DataType: 'auto'

Min: -Inf
Max: Inf

DocUnits: ''
Complexity: 'real'
Dimensions: [0 0]

3 Set parameter attributes other than RTWInfo, which controls custom
storage classes.

4 Follow the instructions in “Specifying a Custom Storage Class Using the
API” on page 8-53.

Applying a Custom Storage Class to a Signal
To apply a custom storage class to a signal, you specify the storage class in a
Simulink.Signal object. This object can exist in either of two locations:

• In the MATLAB base workspace

• On the port where the signal originates

The object itself is the same in either case; only its location and some of the
techniques for managing it differ. The instructions that begin in this section
show you how to create a signal object in either location using the GUI or
API. Later instructions show you how to specify the custom storage class
and custom attributes.

A given signal can be associated with at most one signal object under any
circumstances. The signal can refer to the object more that once, but every
reference must resolve to exactly the same object. A different signal object
that has exactly the same properties will not meet the requirement for
uniqueness. A compile-time error occurs if a model associates more than one
signal object with any signal.

Assigning a signal to any non-Auto storage class automatically makes the
signal a test point, overriding the setting of Signal Properties > Logging

8-40

Applying CSCs to Parameters and Signals

and accessibility > Test point. See “Working with Test Points”for more
information.

For information about using signal objects to specify signal attributes, see
“Working with Signals” in the Simulink documentation. For information
about signal storage in generated code, see “Signal Considerations” in the
Simulink Coder documentation.

Applying a CSC Using a Base Workspace Signal
Object
The first step is to create the signal object in the base workspace, after which
you specify any needed signal attributes and the custom storage class and
attributes.

Providing a Base Workspace Signal Object Using the GUI

1 In the Model window, choose View > Model Explorer.

2 In the Model Hierarchy pane, select the Base Workspace.

3 Click the Add Signal tool or choose Add > Simulink Signal.

Simulink creates a Simulink.Signal object with a default name:

8-41

8 Creating and Using Custom Storage Classes

4 Change the signal name as needed by editing it in the Contents pane.
Example: MySig.

5 Set signal attributes other than Code generation options in the Dialog
pane.

6 Give the signal the same name as the signal object, as described in “About
Signal Names”.

7 Arrange for the signal to resolve to the object, as described in “Resolving
Symbols”.

8 Follow the instructions in “Specifying a Custom Storage Class Using the
GUI” on page 8-50.

Providing a Base Workspace Signal Object Using the API

1 In the MATLAB Command Window, enter:

SignalName=SignalClass

where SignalClass is Simulink.Signal or any subclass of it that you
have defined.

8-42

Applying CSCs to Parameters and Signals

2 Simulink creates a SignalClass object with the specified name:

MySig =

Simulink.Signal (handle)
RTWInfo: [1x1 Simulink.SignalRTWInfo]

Description: ''
DataType: 'auto'

Min: -Inf
Max: Inf

DocUnits: ''
Dimensions: -1
Complexity: 'auto'
SampleTime: -1

SamplingMode: 'auto'
InitialValue: ''

3 Set parameter attributes other than RTWInfo, which controls custom
storage classes.

4 Give the signal the same name as the signal object, as described in “About
Signal Names”.

5 Arrange for the signal to resolve to the object, as described in “Resolving
Symbols”.

6 Follow the instructions in “Specifying a Custom Storage Class Using the
API” on page 8-53.

Applying a CSC Using an Embedded Signal Object
You can use the GUI or the API to apply a CSC using an embedded signal
object.

• If you use the GUI, you use the Signal Properties dialog box to specify the
attributes you want. The software then creates a Simulink.Signal object
and assigns it to the output port where the signal originates.

• If you use the API, you instantiate Simulink.Signal or a subclass of it, set
the attribute values that you want, and assign the object to the output port
where the signal originates.

8-43

8 Creating and Using Custom Storage Classes

In either case, the effect on code generation is the same as if you had created a
base workspace signal object that specified the same name, CSC, and custom
attributes as the embedded signal object. See “Applying a CSC Using a Base
Workspace Signal Object” on page 8-41 for details.

The advantages of using embedded signal objects are that they do not clutter
the base workspace, and they do not need to be saved separately from the
model, as base workspace objects do. When you save a model, Simulink saves
any embedded signal objects in the model file, and reloads the objects when
you later reload the model.

The disadvantage of embedded signal objects is that you can use such an
object only to specify a custom storage class, custom attributes, and an alias;
you must accept the default values for all other signal attributes. You cannot
work around this restriction by providing additional information in a base
workspace signal object on the same signal, because a signal object can have
at most one associated signal object, as described in “Multiple Signal Objects”.

Providing an Embedded Signal Object using the GUI

1 Give the signal a name, which must be a valid ANSI C identifier. Example:
MySig.

2 Right-click the signal and choose Signal Properties from the context
menu.

The Signal Properties dialog box opens:

8-44

Applying CSCs to Parameters and Signals

3 Do not select Signal name must resolve to Simulink signal object.
Selecting it would require a base workspace signal object, which would
conflict with the embedded signal object.

4 Click the Code Generation tab:

8-45

8 Creating and Using Custom Storage Classes

5 The Package is initially ---None---. When no package is specified, only
the non-custom built-in storage classes defined for both GRT and ERT
targets are available:

Applying a storage class when the package is ---None--- sets internal
storage class attributes rather than creating an embedded signal object.
For more information, see “Signal Considerations” and “Defining Data
Representation and Storage for Code Generation” in the Simulink Coder
documentation.

6 To apply a custom storage class, you must first specify the package where it
is defined. Initially, viewing the Package menu displays only the built-in
Simulink and mpt packages:

8-46

Applying CSCs to Parameters and Signals

7 Click Refresh to load any other available packages, including user-defined
packages, available on the MATLAB path. After a brief delay, a timer box
tracks the progress of the package search. After the search completes,
viewing the Package menu displays all available packages:

8-47

8 Creating and Using Custom Storage Classes

Once you have used Refresh in any Signal Properties dialog, Simulink
saves the information for later use, so you do not have to click Refresh
again during the current MATLAB session.

8 Select the package that contains the custom storage class you want to
apply, e.g. Simulink:

9 Follow the instructions in “Specifying a Custom Storage Class Using the
GUI” on page 8-50.

Deleting an Embedded Signal Object Using the GUI
To delete an embedded signal object with the GUI, delete the name of the
signal to which the object applies, by editing the name in the graphical model
or in the Signal Properties dialog box. Simulink automatically deletes the
embedded signal object as soon as its signal has no name.

Providing an Embedded Signal Object using the API
To provide an embedded signal object using the API, you create the object,
set its custom storage class and any custom attributes, then assign the object
to the output port on which it will be embedded.

8-48

Applying CSCs to Parameters and Signals

1 Name the signal if it does not already have a name. The name must be
a valid ANSI C identifier.

2 In the MATLAB Command Window, enter:

SignalName=SignalClass

where SignalClass is Simulink.Signal or any subclass of it that you have
defined. The name of the signal object does not need to match the name
of the signal to which the object will be applied.

3 Simulink creates a SignalClass object with the specified name. Example:

MySig =

Simulink.Signal (handle)
RTWInfo: [1x1 Simulink.SignalRTWInfo]

Description: ''
DataType: 'auto'

Min: -Inf
Max: Inf

DocUnits: ''
Dimensions: -1
Complexity: 'auto'
SampleTime: -1

SamplingMode: 'auto'
InitialValue: ''

4 Do not set any attributes. An embedded signal object can specify only
custom storage class information.

5 Follow the instructions in “Specifying a Custom Storage Class Using the
API” on page 8-53. After specifying the custom storage class, be sure to
assign the signal object to its output port, as described under “Assigning an
Embedded Signal Object to an Output Port” on page 8-57.

Changing an Embedded Signal Object Using the API
To change an embedded signal object using the API, you obtain a copy of the
object from the output port on which it is embedded, change the object as
needed, then assign the changed object back to the port.

8-49

8 Creating and Using Custom Storage Classes

1 Obtain a copy of the signal object using a handle to the output port.
Example:

hps=get_param(gcb,'PortHandles')
hp=hps.Outport(1)
MySig=get_param(hp,'SignalObject')

2 Change the signal object using the techniques described in “Specifying
a Custom Storage Class Using the API” on page 8-53. After making the
changes, be sure to copy the signal object to its output port, as described in
“Assigning an Embedded Signal Object to an Output Port” on page 8-57.

Deleting an Embedded Signal Object Using the API
To delete an embedded signal object with the API, obtain a handle to
the output port where the signal object is embedded, then set the port’s
SignalObject parameter to []:

hps=get_param(gcb,'PortHandles')
hp=hps.Outport(1)
set_param(hp,'SignalObject',[])

Specifying a Custom Storage Class Using the GUI
The initial steps for applying a CSC with the GUI differ depending on whether
you are applying the CSC to a parameter using a base workspace object, to a
signal using a base workspace object, or to a signal using an embedded object.
The initial steps for each of these three cases appear in:

• “Providing a Parameter Object Using the GUI” on page 8-38

• “Providing a Base Workspace Signal Object Using the GUI” on page 8-41

• “Providing an Embedded Signal Object using the GUI” on page 8-44

After the initial steps, applying a CSC with the GUI is the same in all three
cases. The following instructions show you how to finish applying a CSC
with the GUI. The instructions assume that you have completed one of the
previous sets of instructions, and that the dialog you used to execute those
instructions is still open. If necessary, return to the relevant section and
restore the situation that existed at its end, then return to this section.

8-50

Applying CSCs to Parameters and Signals

The instructions given in this section apply to all packages, but the available
custom storage classes and custom attributes depend on the package that you
select. The examples in this section assume that you are using the Simulink
package.

The dialog that you used to begin the process of applying a CSC with the GUI
by providing an object contains two fields: one for specifying a custom storage
class and one for optionally specifying an alias. These fields are the same in
all three of the dialogs that you might use:

Storage class is Auto because that is the default storage class in the
Simulink package. Other packages may have different defaults. You can
specify an Alias whenever the Storage class is not Auto. If Storage class is
Auto, Simulink deletes any alias you try to specify, leaving the field blank.
If you specify an alias, it appears in generated code instead of the name of
the object.

To specify a custom storage class and its custom attributes:

1 View the Storage Class menu, which looks like this for the Simulink
package:

8-51

8 Creating and Using Custom Storage Classes

Each custom storage class has (custom) suffixed to its name. The
storage classes SimulinkGlobal, ExportedGlobal, ImportedExtern, and
ImportedExternPointer are the built-in non-custom storage classes
described in “Signal Considerations” and “Defining Data Representation
and Storage for Code Generation” in the Simulink Coder documentation.

2 Choose the desired custom storage class from Storage class, for example,
Struct.

If the storage class defines any custom attributes, fields for defining them
appear:

3 Provide values for any custom attributes. Struct has only one, Struct
name. For example, set Struct name to MyStruct:

8-52

Applying CSCs to Parameters and Signals

4 Click Apply.

In generated code, all data whose storage is controlled by this custom
storage class specification will appear in a structure named MyStruct. See
“Generating Code with Custom Storage Classes” on page 8-58 for an example.

Specifying a Custom Storage Class Using the API
The initial steps for applying a CSC with the API differ depending on whether
you are applying the CSC to a parameter using a base workspace object, to a
signal using a base workspace object, or to a signal using an embedded object.
The initial steps for each of these three cases appear in:

• “Providing a Parameter Object Using the API” on page 8-39

• “Providing a Base Workspace Signal Object Using the API” on page 8-42

• “Providing an Embedded Signal Object using the API” on page 8-48

After the initial steps, applying a CSC with the API is the same in all three
cases, except for an assignment needed only by an embedded signal object.
The following instructions show you how to finish applying a CSC with the
API. The instructions assume that you have completed one of the previous sets
of instructions, and that the resulting objects an attributes are unchanged. If
necessary, return to the relevant section and restore the situation that existed
at its end, then return to this section.

The instructions given in this section apply to all packages, but the available
custom storage classes and custom attributes depend on the package that you
select. The examples in this section assume that you are using the Simulink
package. The examples also assume that the object for which you want to
specify a custom storage class is named MyObj, which is a parameter or

8-53

8 Creating and Using Custom Storage Classes

signal object that exists in the base workspace, or a signal object that will be
assigned to an output port.

The rest of this section provides information that is specific to custom storage
classes in Embedded Coder. See “Simulink Package Custom Storage Classes”
on page 8-6 for a list of the custom storage classes that are built into the
Simulink package for use by Embedded Coder software.

RTWInfo Properties
Each Simulink parameter object or signal object defines properties called
RTWInfo properties. Code generation software uses these properties to control
storage class assignment in the generated code. The RTWInfo properties and
their default values are:

StorageClass: 'Auto'

Alias: ''

CustomStorageClass: 'Default'

CustomAttributes: [1x1 SimulinkCSC.AttribClass_Simulink_Default]

For more information about RTWInfo properties, see “Signal Considerations”
and “Defining Data Representation and Storage for Code Generation” in the
Simulink Coder documentation.

Specifying a Custom Storage Class
To specify a custom storage class using RTWInfo properties:

1 Set StorageClass to 'Custom'.

2 Set CustomStorageClass to the name of the storage class.

For example, to specify the Struct custom storage class:

MyObj.RTWInfo.StorageClass='Custom'
MyObj.RTWInfo.CustomStorageClass='Struct'

Whenever you have specified a custom storage class other than Auto, you
can specify an alias by setting the Alias attribute. If you specify an alias, it
appears in generated code instead of the name of the object.

8-54

Applying CSCs to Parameters and Signals

Specifying Instance-Specific Attributes
A custom storage class can have properties that define attributes that
are specific to that CSC. Such properties are called instance-specific
attributes. For example, if you specify the Struct custom storage class, you
must specify the name of the C language structure that will store the data.
That name is an instance-specific attribute of the Struct CSC.

Instance-specific attributes are stored in the RTWInfo property
CustomAttributes. This property is initially defined as follows:

SimulinkCSC.AttribClass_Simulink_Default
1x1 struct array with no fields

When you specify a custom storage class, Simulink automatically populates
RTWInfo.CustomAttributes with the fields necessary to represent any
instance-specific attributes of that CSC. For example, if you set the MySig
CSC to Struct, as described in “Specifying a Custom Storage Class” on page
8-54, then enter:

MyObj.RTWInfo.CustomAttributes

MATLAB displays:

SimulinkCSC.AttribClass_Simulink_Struct
StructName: ''

To specify that StructName is MyStruct, enter:

MyObj.RTWInfo.CustomAttributes.StructName='MyStruct'

MATLAB displays:

SimulinkCSC.AttribClass_Simulink_Struct
StructName: 'MyStruct'

8-55

8 Creating and Using Custom Storage Classes

Simulink Package CSC Instance-Specific Properties

Class Name Instance-Specific Property Purpose

BitField CustomAttributes.StructName Name of the bitfield struct into
which the code generator packs the
object’s Boolean data.

ExportToFile CustomAttributes.HeaderFile Name of header (.h) file that
contains exported variable
declarations and export directives
for the object.

CustomAttributes.HeaderFile Name of header (.h) file to
#include in the generated code.
See “GetSet Custom Storage Class
for Data Store Memory” on page
8-66.

CustomAttributes.GetFunction String that specifies the name of a
function call to read data.

GetSet

CustomAttributes.SetFunction String that specifies the name of a
function call to write data.

ImportedDefine CustomAttributes.HeaderFile The header file that defines the
values of code variant preprocessor
conditionals. See “Generating Code
for Variant Systems” on page 4-2.

ImportFromFile CustomAttributes.HeaderFile Name of header (.h) file containing
global variable declarations the
code generator imports for the
object.

Struct CustomAttributes.StructName Name of the struct into which the
code generator packs the object’s
data.

8-56

Applying CSCs to Parameters and Signals

Assigning an Embedded Signal Object to an Output Port
If you are operating on an embedded signal object with the API, you must
copy the object to the port after providing or changing its RTWInfo properties.
For example, if MyObj is a signal object that you want to copy to the output
port, enter:

hps=get_param(gcb,'PortHandles')
hp=hps.Outport(1)
set_param(hp,'SignalObject','MyObj')

Subsequent changes to the source object in the base workspace have no effect
on the output port copy, and you can delete the source object if you have no
further use for it:

clear ('MyObj')

8-57

8 Creating and Using Custom Storage Classes

Generating Code with Custom Storage Classes

In this section...

“Code Generation Prerequisites” on page 8-58

“Code Generation Example” on page 8-58

Code Generation Prerequisites
Before you generate code for a model that uses custom storage classes, set
model options as follows:

• If your model assigns custom storage classes to any parameters,
select Configuration Parameters > Optimization > Signals and
Parameters > Inline parameters. Otherwise, the code generator ignores
CSC specifications for parameters. This requirement also applies to models
that assign built-in storage classes to parameters.

• Clear Configuration Parameters > Code Generation > Data
specification override > Ignore custom storage classes.

Otherwise, the code generator ignores all CSC specifications, and treats all
data objects as if their Storage class were Auto.

Code Generation Example
This section presents an example of code generation with CSCs, based on
this model:

8-58

Generating Code with Custom Storage Classes

The model contains three named signals: aa, bb, and cc. Using the predefined
Struct custom storage class, the example generates code that packs these
signals into a struct named mySignals. The struct declaration is then
exported to externally written code.

To specify the struct, you provide Simulink.Signal objects that specify the
Struct custom storage class, and associate the objects with the signals as
described in “Applying CSCs to Parameters and Signals” on page 8-37. All
three objects have the same properties. This figure shows the signal object
properties for aa:

The association between identically named model signals and signal objects
is formed as described in “Resolving Symbols”. In this example, the symbols
aa, bb, and cc resolve to the signal objects aa, bb, and cc, which have custom
storage class Struct. In the generated code, storage for the three signals will
be allocated within a struct named mySignals.

8-59

8 Creating and Using Custom Storage Classes

You can display the storage class of the signals in the block diagram by
selecting Port/Signal Display > Storage Class from the Simulink model
editor Format menu. The figure below shows the block diagram with signal
data types and signal storage classes displayed.

With the model configured as described in “Code Generation Prerequisites” on
page 8-58, and the signal objects defined and associated with the signals, you
can generate code that uses the custom storage classes to generate the desired
data structure for the signals. After code generation, the relevant definitions
and declarations are located in three files:

• model_types.h defines the following struct type for storage of the three
signals:

typedef struct MySignals_tag {
boolean_T cc;
uint8_T bb;
uint8_T aa;

} mySignals_type;

• model.c (or .cpp) defines the variable mySignals, as specified in the
object’s instance-specific StructName attribute. The variable is referenced
in the code generated for the Switch block:

/* Definition for Custom Storage Class: Struct */

mySignals_type mySignals = {
/* cc */

8-60

Generating Code with Custom Storage Classes

FALSE,
/* bb */
0,
/* aa */

0
};
...
/* Switch: '<Root>/Switch1' */

if(mySignals.cc) {
rtb_Switch1 = mySignals.aa;

} else {
rtb_Switch1 = mySignals.bb;

}

• model.h exports the mySignals Struct variable:

/* Declaration for Custom Storage Class: Struct */

extern mySignals_type mySignals;

Grouped Custom Storage Classes
A custom storage class that results in multiple data objects being referenced
with a single variable in the generated code, in the previous example, is called
a grouped custom storage class. In the Simulink package, Bitfield and
Struct (shown in the preceding example) are grouped CSCs. Data grouped by
a CSC is referred to as grouped data.

8-61

8 Creating and Using Custom Storage Classes

Defining Advanced Custom Storage Class Types

In this section...

“Introduction” on page 8-62

“Create Your Own Parameter and Signal Classes” on page 8-62

“Create a Custom Attributes Class for Your CSC (Optional)” on page 8-62

“Write TLC Code for Your CSC” on page 8-63

“Register Custom Storage Class Definitions” on page 8-63

Introduction
Certain data layouts, such as nested structures, cannot be generated using
the standard Unstructured and FlatStructure custom storage class types.
You can define an advanced custom storage class if you want to generate
other types of data. Creating advanced CSCs requires understanding TLC
programming and using a special advanced mode of the Custom Storage Class
Designer. This sections explain how to define advanced CSC types.

Create Your Own Parameter and Signal Classes
The first step is to use the Simulink Data Class Designer to create your
own package containing classes derived from Simulink.Parameter or
Simulink.Signal. This procedure is described in “Creating Packages that
Support CSC Definitions” on page 8-8.

Add your own object properties and class initialization if desired. For each
of your classes, select the Create your own custom storage classes for
this class option.

Create a Custom Attributes Class for Your CSC
(Optional)
If you have instance-specific properties that are relevant only to your
CSC, you should use the Simulink Data Class Designer to create a custom
attributes class for the package. A custom attributes class is a subclass of
Simulink.CustomStorageClassAttributes. The name, type, and default

8-62

Defining Advanced Custom Storage Class Types

value properties you set for the custom attributes class define the user view of
instance-specific properties.

For example, the ExportToFile custom storage class requires that you set the
RTWInfo.CustomAttributes.HeaderFile property to specify a .h file used for
exporting each piece of data. See “Simulink Package Custom Storage Classes”
on page 8-6 for further information on instance-specific properties.

Write TLC Code for Your CSC
The next step is to write TLC code that implements code generation for data
of your new custom storage class. A template TLC file is provided for this
purpose. To create your TLC code, follow these steps:

1 Create a tlc directory inside your package’s @directory (if it does not
already exist). The naming convention to follow is

@PackageName/tlc

2 Copy TEMPLATE_v1.tlc (or another CSC template) from
matlabroot/toolbox/rtw/targets/ecoder/csc_templates into your tlc
directory to use as a starting point for defining your custom storage class.

3 Write your TLC code, following the comments in the CSC template file.
Comments describe how to specify code generation for data of your custom
storage class (for example, how data structures are to be declared, defined,
and whether they are accessed by value or by reference).

Alternatively, you can copy a custom storage class TLC file from another
existing package as a starting point for defining your custom storage class.

Register Custom Storage Class Definitions
After you have created a package for your new custom storage class and
written its associated TLC code, you must register your class definitions with
the Custom Storage Class Designer, using its advanced mode.

The advanced mode supports selection of an additional storage class Type,
designated Other. The Other type is designed to support special CSC
types that cannot be accommodated by the standard Unstructured and

8-63

8 Creating and Using Custom Storage Classes

FlatStructure custom storage class types. The Other type cannot be
assigned to a CSC except when the Custom Storage Class Designer is in
advanced mode.

To register your class definitions:

1 Launch the Custom Storage Class Designer in advanced mode by typing
the following command at the MATLAB prompt:

cscdesigner -advanced

2 Select your package and create a new custom storage class.

3 Set the Type of the custom storage class to Other. Note that when you do
this, the Other Attributes pane is displayed. This pane is visible only for
CSCs whose Type is set to Other.

If you specify a customized package, additional options, as defined by the
package, also appear on the Other Attributes pane.

4 Set the properties shown on the Other Attributes pane. The properties
are:

• Is grouped: Select this option if you intend to combine multiple data
objects of this CSC into a single variable in the generated code. (for
example, a struct).

• TLC file name: Enter the name of the TLC file corresponding to this
custom storage class. The location of the file is assumed to be in the /tlc
subdirectory for the package, so you should not enter the path to the file.

• CSC attributes class name: (optional) If you created a custom
attributes class corresponding to this custom storage class, enter the full

8-64

Defining Advanced Custom Storage Class Types

name of the custom attributes class. (see “Create a Custom Attributes
Class for Your CSC (Optional)” on page 8-62).

5 Set the remaining properties on the General and Comments panes based
on the layout of the data that you wish to generate (as defined in your
TLC file).

8-65

8 Creating and Using Custom Storage Classes

GetSet Custom Storage Class for Data Store Memory

In this section...

“Overview” on page 8-66

“GetSet CSC Properties” on page 8-66

“Using the GetSet CSC” on page 8-67

“GetSet CSC Restrictions” on page 8-67

“GetSet Custom Storage Class Example” on page 8-68

Overview
GetSet is a built-in advanced custom storage class that generates specialized
function calls to read from (get) and write to (set) the memory associated with
a Data Store Memory block that is read and written many times in a single
model. See “Working with Data Stores” for information about data stores and
the Data Store Memory block, and for information about advanced CSCs.

The GetSet custom storage class is designed primarily for use with the state
of the Data Store Memory block. However, GetSet is capable of handling
signals other than data stores, and is supported for the outputs of most
built-in blocks provided by MathWorks. For more about the definition of the
GetSet storage class, look at its associated TLC code in the file:

matlabroot\toolbox\simulink\simulink\@Simulink\tlc\GetSet.tlc

GetSet CSC Properties
The next table summarizes the instance-specific properties of the GetSet
storage class:

8-66

GetSet Custom Storage Class for Data Store Memory

Property Description

GetFunction String that specifies the name of a function call to read
data.

SetFunction String that specifies the name of a function call to write
data.

HeaderFile
(optional)

String that specifies the name of a header (.h) file to
add as an #include in the generated code.

For example, if the GetFunction of signal X is specified as 'get_X' then the
generated code calls get_X() wherever the value of X is used. Similarly, if the
SetFunction of signal X is specified as 'set_X' then the generated code calls
set_X(value) wherever the value of X is assigned.

Using the GetSet CSC
The GetSet storage class cannot be represented by the standard
Unstructured or FlatStructure custom storage class types, so it is an
advanced CSC, as described in “Defining Advanced Custom Storage Class
Types” on page 8-62. To access the CSC definition for GetSet, you must
launch Custom Storage Class designer in advanced mode:

cscdesigner -advanced

If you omit the HeaderFile property for a GetSet data object, you must
specify a header file by an alternative means, such as the Header file
field of the Code Generation > Custom Code pane of the Configuration
Parameters dialog box. Otherwise, the generated code might not compile or
might function improperly.

For wide signals, an additional index argument is passed, so the calls to the
get and set functions are get_X(idx) and set_X(idx, value) respectively.

GetSet CSC Restrictions

• The GetSet supports only signals of noncomplex data types.

• Some built-in blocks do not directly support GetSet.

• User-written S-functions do not directly support GetSet.

8-67

8 Creating and Using Custom Storage Classes

To use GetSet with a nonsupporting built-in block or a user-written
S-function:

1 Insert a Signal Conversion block at the outport of the block or function.

2 Select the Signal Conversion Block’s Exclude this block from ’Block
reduction’ optimization property.

3 Assign the GetSet storage class to the output of the Signal Conversion
block.

GetSet Custom Storage Class Example
The model below contains a Data Store Memory block that resolves to the
Simulink signal object X:

The following specifications configure the signal object X to use the GetSet
custom storage class:

X = Simulink.Signal;
X.RTWInfo.StorageClass = 'Custom';
X.RTWInfo.CustomStorageClass = 'GetSet';
X.RTWInfo.CustomAttributes.GetFunction = 'get_X';
X.RTWInfo.CustomAttributes.SetFunction = 'set_X';
X.RTWInfo.CustomAttributes.HeaderFile = 'user_file.h';

The GetSet CSC appears as follows in the code generated for the model:

/* Includes for objects with custom storage classes. */
#include "user_file.h"

void getset_csc_step(void)

8-68

GetSet Custom Storage Class for Data Store Memory

{
/* local block i/o variables */
real_T rtb_DSRead_o;

/* DataStoreWrite: '<Root>/DSWrite' incorporates:
* Inport: '<Root>/In1'
*/

set_X(getset_csc_U.In1);

/* DataStoreRead: '<Root>/DSRead' */
rtb_DSRead_o = get_X();

/* Outport: '<Root>/Out1' */
getset_csc_Y.Out1 = rtb_DSRead_o;

}

Note that the code uses a local variable rtb_DSRead_o rather than multiple
calls to the get_X function. This technique increases code efficiency and
ensures that the value does not change within a simulation step.

8-69

8 Creating and Using Custom Storage Classes

Custom Storage Class Implementation
You can skip this section unless you want to ship custom storage class
definitions in an uneditable format, or you intend to bypass the Custom
Storage Class designer and work directly with files that contain custom
storage class definitions.

The file that defines a package’s custom storage classes is called a CSC
registration file. The file is always named csc_registration and resides in
the @package directory that defines the package. A CSC registration file can
be a P-file (csc_registration.p) or a MATLAB file (csc_registration.m).
A built-in package defines custom storage classes in both a P-file and a
functionally equivalent MATLAB file. A user-defined package initially defines
custom storage classes only in a MATLAB file.

P-files take precedence over MATLAB files, so when MATLAB looks for a
package’s CSC registration file and finds both a P-file and a MATLAB file,
MATLAB loads the P-file and ignores the MATLAB file. All capabilities
and tools, including the Custom Storage Class Designer, then use the CSC
definitions stored in the P-file. P-files cannot be edited, so all CSC Designer
editing capabilities are disabled for CSCs stored in a P-file. If no P-file exists,
MATLAB loads CSC definitions from the MATLAB file. MATLAB files are
editable, so all CSC Designer editing capabilities are enabled for CSCs stored
in a MATLAB file.

Because CSC definitions for a built-in package exist in both a P-file and a
MATLAB file, they are uneditable. You can make the definitions editable by
deleting the P-file, but MathWorks strongly discourages modifying built-in
CSC registration files or any other files under matlabroot. The preferred
technique is to create user-defined packages, data classes, and custom storage
classes, as described in “Subclassing Simulink Data Classes” and this chapter.

The CSC Designer saves CSC definitions for user-defined packages in a
MATLAB file, so the definitions are editable. You can make the definitions
uneditable by using the pcode function to create an equivalent P-file, which
will then shadow the MATLAB file. However, you should preserve the
MATLAB file if you may need to make further changes, because you cannot
modify CSC definitions that exist only in a P-file.

8-70

Custom Storage Class Implementation

You can also use tools or techniques other than the Custom Storage Class
Designer to create and edit MATLAB files that define CSCs. However,
MathWorks discourages this practice, which is vulnerable to syntax errors
and can give unexpected results. When MATLAB finds an older P-file that
shadows a newer MATLAB file, it displays a warning in the MATLAB
Command Window.

8-71

8 Creating and Using Custom Storage Classes

Custom Storage Class Limitations
• Data objects cannot have a CSC and a multi-word data type.

• The Fcn block does not support parameters with custom storage class in
code generation.

• For CSCs in models that use referenced models (see “Referencing a Model”):

- If data is assigned a grouped CSC, such as Struct or Bitfield, the
CSC’s Data scope property must be Imported and the data declaration
must be provided in a user-supplied header file. See “Grouped Custom
Storage Classes” on page 8-61 for more information about grouped CSCs.

- If data is assigned an ungrouped CSC, such as Const, and the data’s
Data scope property is Exported, its Header file property must be
unspecified. This results in the data being exported with the standard
header file, model.h. Note that for ungrouped data, the Data scope and
Header file properties are either specified by the selected CSC, or as
one of the data object’s instance-specific properties.

8-72

9

Memory Sections

• “Introduction to Memory Sections” on page 9-2

• “Requirements for Defining Memory Sections” on page 9-4

• “Defining Memory Sections” on page 9-7

• “Configuring Memory Sections” on page 9-11

• “Declaring Constant Data as Volatile” on page 9-12

• “Applying Memory Sections” on page 9-15

• “Examples of Generated Code with Memory Sections” on page 9-23

• “Model-Level Data Structures” on page 9-25

• “Memory Section Limitation” on page 9-28

9 Memory Sections

Introduction to Memory Sections

In this section...

“Overview” on page 9-2

“Memory Sections Demo” on page 9-2

“Additional Information” on page 9-2

Overview
The Embedded Coder software provides a memory section capability that
allows you to insert comments and pragmas and qualify constants as
volatile in generated code for

• Data in custom storage classes

• Model-level functions

• Model-level internal data

• Subsystem functions

• Subsystem internal data

Pragmas inserted into generated code can surround

• A contiguous block of function or data definitions

• Each function or data definition separately

When pragmas surround each function or data definition separately, the text
of each pragma can contain the name of the definition to which it applies.

Memory Sections Demo
To see a demo of memory sections, type rtwdemo_memsec in the MATLAB
Command Window.

Additional Information
See the following for additional information relating to memory sections:

9-2

Introduction to Memory Sections

• Simulink data types, packages, data classes, and data objects — “Working
with Data” in the Simulink documentation

• Simulink Coder data structures and storage classes — “Defining Data
Representation and Storage for Code Generation” in the Simulink Coder
documentation

• Chapter 8, “Creating and Using Custom Storage Classes”

• Fine-tuned optimization of generated code for functions or data —
Simulink Coder Target Language Compiler documentation

9-3

9 Memory Sections

Requirements for Defining Memory Sections
Before you can define memory sections, you must do the following:

1 Set the Simulink model’s code generation target to an embedded target
such as ert.tlc.

2 If you need to create packages, specify package properties, or create classes,
including custom storage classes, choose Tools > Data Class Designer
in the model window.

A notification box appears that states Please Wait ... Finding Packages.
After a brief pause, the Simulink Data Class Designer appears. The Data
Class Designer initially looks like this:

9-4

Requirements for Defining Memory Sections

Complete instructions for using the Data Class Designer appear in
“Subclassing Simulink Data Classes” in the Simulink documentation. See
also the instructions that appear when you click the Custom Storage
Classes tab.

3 If you need to specify custom storage class properties,

a Choose View > Model Explorer in the model window.

The Model Explorer appears.

b Choose Tools > Custom Storage Class Designer in the Model
Explorer window.

A notification box appears that states Please Wait ... Finding
Packages. After a brief pause, the notification box closes and the
Custom Storage Class Designer appears.

c Select the Custom Storage Class tab. The Custom Storage Class
pane initially looks like this:

9-5

9 Memory Sections

d Use the Custom Storage Class pane as needed to select a writable
package and specify custom storage class properties. Instructions for
using this pane appear in “Designing Custom Storage Classes and
Memory Sections” on page 8-12.

9-6

Defining Memory Sections

Defining Memory Sections

In this section...

“Editing Memory Section Properties” on page 9-7

“Specifying the Memory Section Name” on page 9-9

“Specifying a Qualifier for Custom Storage Class Data Definitions” on
page 9-9

“Specifying Comment and Pragma Text” on page 9-9

“Surrounding Individual Definitions with Pragmas” on page 9-9

“Including Identifier Names in Pragmas” on page 9-10

Editing Memory Section Properties
After you have satisfied the requirements in “Requirements for Defining
Memory Sections” on page 9-4, you can define memory sections and specify
their properties. To create new memory sections or specify memory section
properties,

1 Choose View > Model Explorer in the model window.

The Model Explorer appears.

2 Choose Tools > Custom Storage Class Designer in the Model Explorer
window.

A notification box appears that states Please Wait ... Finding Packages.
After a brief pause, the notification box closes and the Custom Storage
Class Designer appears.

3 Click theMemory Section tab of the Custom Storage Class Designer. The
Memory Section pane initially looks like this:

9-7

9 Memory Sections

4 If you intend to create or change memory section definitions, use the Select
package field to select a writable package.

The rest of this section assumes that you have selected a writable package,
and describes the use of the Memory section subpane on the lower left.
For descriptions of the other subpanes, instructions for validating memory
section definitions, and other information, see “Defining Memory Sections”
on page 9-7.

9-8

Defining Memory Sections

Specifying the Memory Section Name
To specify the name of a memory section, use the Name field. A memory
section name must be a legal MATLAB identifier.

Specifying a Qualifier for Custom Storage Class Data
Definitions
To specify a qualifier for custom storage class data definitions in a memory
section, enter the components of the qualifier below the Name field.

• To specify const, check Is const.

• To specify volatile, check Is volatile.

• To specify anything else (e.g., static), enter the text in the Qualifier field.

The qualifier will appear in generated code with its components in the same
left-to-right order in which their definitions appear in the dialog box. A
preview appears in the Pseudocode preview subpane on the lower right.

Note Specifying a qualifier affects only custom storage class data definitions.
The code generator omits the qualifier from any other category of definition.

Specifying Comment and Pragma Text
To specify a comment, prepragma, or postpragma for a memory section, enter
the text in the appropriate edit boxes on the left side of the Custom Storage
Class Designer. These boxes accept multiple lines separated by ordinary
Returns.

Surrounding Individual Definitions with Pragmas
If the Pragma surrounds field for a memory section specifies Each
variable, the code generator will surround each definition in a contiguous
block of definitions with the comment, prepragma, and postpragma defined
for the section. This behavior occurs with all categories of definitions.

If the Pragma surrounds field for a memory section specifies All
variables, the code generator will insert the comment and prepragma for the

9-9

9 Memory Sections

section before the first definition in a contiguous block of custom storage class
data definitions, and the postpragma after the last definition in the block.

Note Specifying All variables affects only custom storage class data
definitions. For any other category of definition, the code generator surrounds
each definition separately regardless of the value of Pragma surrounds.

Including Identifier Names in Pragmas
When pragmas surround each separate definition in a contiguous block, you
can include the string %<identifier> in a pragma. The string must appear
without surrounding quotes.

• When %<identifier> appears in a prepragma, the code generator will
substitute the identifier from the subsequent function or data definition.

• When %<identifier> appears in a postpragma, the code generator will
substitute the identifier from the previous function or data definition.

You can use %<identifier> with pragmas only when pragmas to surround
each variable. The Validate phase will report an error if you violate this rule.

Note Although %<identifier> looks like a TLC variable, it is not: it is just
a keyword that directs the code generator to substitute the applicable data
definition identifier when it outputs a pragma. TLC variables cannot appear
in pragma specifications in the Memory Section pane.

9-10

Configuring Memory Sections

Configuring Memory Sections
You configure memory sections by using the Code Generation > Memory
Sections pane of the Configuration Parameters dialog box.

To... Select...

Specify the package that contains memory
sections that you want to apply

The name of a package for Package. Click
Refresh package list to refresh the list of
available packages in your configuration.

Apply memory sections to initialize/start and
terminate functions

A value for Initialize/Terminate.

Apply memory sections to step, run-time
initialization, derivative, enable, and disable
functions

A value for Execution.

Apply memory sections to constant parameters,
constant, block I/O, or zero representation

A value for Constants.

Apply memory sections to root inputs or
outputs

A value for Inputs/Outputs.

Apply memory sections to block I/O, Dwork
vectors, run-time models, zero-crossings

A value for Internal data.

Apply memory sections to parameters A value for Parameters.

The interface checks whether the specified package is on the MATLAB path
and that the selected memory sections are in the package. The results of this
validation appear in the field Validation results.

9-11

9 Memory Sections

Declaring Constant Data as Volatile
In the C language, the value of data declared with the storage type qualifier,
volatile, can be read from memory when needed and written back to memory
when changed without compiler control or detection. Examples of use include
variables for initialization at system power-up or for system clock updates.

You can add the volatile qualifier to type definitions generated in code
for model constant block I/O, constant parameters, and ground data (zero
representation).

To add the volatile qualifier to type definitions, you must configure your
model as follows:

• Enable inline parameters

• Specify an ERT target

• Set the memory section for constant data to MemVolatile or
MemConstVolatile

If you choose to add the volatile qualifier to type definitions in your
generated code, note the following:

• If constant data that is qualified with volatile is passed by pointer, the
code generator casts away the volatility. This occurs because generated
functions assume that data values do not change during execution and,
therefore, pass their arguments as const * (not const volatile *).

• If a variable must be declared const and you specify MemVolatile, no
warning occurs and the code generator declares the variable with the
const and volatile qualifiers.

• If you set Constants to MemConst or MemConstVolatile, and a variable
cannot be declared as constant data, a TLC warning appears and the code
generator does not qualify the variable with const.

Consider the following simple lookup table model.

9-12

Declaring Constant Data as Volatile

1 On the Configuration Parameters dialog box, in the
Optimization > Signals and Parameters pane, select Inline
parameters.

2 In the Code Generation pane, set System target file to ert.tlc.

3 In the Code Generation > Memory Sections pane, set Package to
Simulink or mpt, and Constants to MemConstVolatile.

4 Open the Signal Properties dialog box for signal INPUT. On the Code
Generation tab, set the Package to Simulink or mpt and the Storage
class to ExportedGlobal for storing state in a global variable.

5 Generate code. You should see the volatile qualifier in the generated
files model_data.c and model.h.

model_data.c

/* Constant parameters (auto storage) */
/* ConstVolatile memory section */
const volatile ConstParam_simple_lookup simple_lookup_ConstP = {

/* Expression: [-5:5]
* Referenced by: '<Root>/Lookup Table'
*/

{ -5.0, -4.0, -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 },

/* Expression: tanh([-5:5])
* Referenced by: '<Root>/Lookup Table'
*/

{ -0.99990920426259511, -0.999329299739067,
-0.99505475368673046, -0.9640275800758169,
-0.76159415595576485, 0.0, 0.76159415595576485,
0.9640275800758169, 0.99505475368673046,
0.999329299739067, 0.99990920426259511 }

9-13

9 Memory Sections

};

model.h

/* Real-time Model Data Structure */
struct RT_MODEL_simple_lookup {

const char_T * volatile errorStatus;
};

/* Constant parameters (auto storage) */
extern const volatile ConstParam_simple_lookup simple_lookup_ConstP;

Also note in the model.c file that a typecast is inserted in the rt_Lookup
function call, removing the volatile qualifier.

/* Lookup: '<Root>/Lookup Table' incorporates:
* Inport: '<Root>/In1'
*/

OUTPUT = rt_Lookup(((const real_T*)
&simple_lookup_ConstP.LookupTable_XData[0]), 11, INPUT, ((
const real_T*) &simple_lookup_ConstP.LookupTable_YData[0]));

9-14

Applying Memory Sections

Applying Memory Sections

In this section...

“Assigning Memory Sections to Custom Storage Classes” on page 9-15

“Applying Memory Sections to Model-Level Functions and Internal Data”
on page 9-17

“Applying Memory Sections to Atomic Subsystems” on page 9-19

Assigning Memory Sections to Custom Storage
Classes
To assign a memory section to a custom storage class,

1 Choose View > Model Explorer in the model window.

The Model Explorer appears.

2 Choose Tools > Custom Storage Class Designer in the Model Explorer
window.

A notification box appears that states Please Wait ... Finding Packages.
After a brief pause, the notification box closes and the Custom Storage
Class Designer appears.

3 Select the Custom Storage Class tab. The Custom Storage Class pane
initially looks like this:

9-15

9 Memory Sections

4 Use the Select package field to select a writable package. The rest of this
section assumes that you have selected a writable package.

5 Select the desired custom storage class in the Custom storage class
definitions pane.

6 Select the desired memory section from theMemory section pull-down.

7 Click Apply to apply changes to the open copy of the model; Save to apply
changes and save them to disk; or OK to apply changes, save changes, and
close the Custom Storage Class Designer.

Generated code for all data definitions in the specified custom storage class
will be enclosed in the pragmas of the specified memory section. The pragmas
can surround contiguous blocks of definitions or each definition separately, as
described in “Surrounding Individual Definitions with Pragmas” on page 9-9.

9-16

Applying Memory Sections

For more information, see “Creating Packages that Support CSC Definitions”
on page 8-8.

Note The code generator does not generate a pragma around definitions or
declarations for data that has the following built-in storage classes:

• ExportedGlobal

• ImportedExtern

• ImportedExternPointer

The code generator treats data with these built-in storage classes like custom
storage classes with no memory section specified.

Applying Memory Sections to Model-Level Functions
and Internal Data
When using code generation software, you can apply memory sections to the
following categories of model-level functions:

Function Category Function Subcategory

Initialize/StartInitialize/Terminate functions

Terminate

Step functions

Run-time initialization

Derivative

Enable

Execution functions

Disable

When using code generation software, you can apply memory sections to the
following categories of internal data:

9-17

9 Memory Sections

Data Category Data Definition Data Purpose

model_cP Constant parameters

model_cB Constant block I/O

Constants

model_Z Zero representation

model_U Root inputsInput/Output

model_Y Root outputs

model_B Block I/O

model_D D-work vectors

model_M Run-time model

Internal data

model_Zero Zero-crossings

Parameters model_P Parameters

Memory section specifications for model-level functions and internal data
apply to the top level of the model and to all subsystems except atomic
subsystems that contain overriding memory section specifications, as
described in “Applying Memory Sections to Atomic Subsystems” on page 9-19.

To specify memory sections for model-level functions or internal data,

1 Open the Model Explorer and select Configuration (Active)
> Code Generation > General. (Alternatively, choose
Simulation > Configuration Parameters in the model window.)

2 Ensure that the System target file is an ERT target, such as ert.tlc .

9-18

Applying Memory Sections

3 Select the Memory Sections tab. The Memory Sections pane looks
like this:

4 Initially, the Package field specifies ---None--- and the pull-down lists
only built-in packages. If you have defined any packages of your own, click
Refresh package list. This action adds all user-defined packages on your
search path to the package list.

5 In the Package pull-down, select the package that contains the memory
sections that you want to apply.

6 In the pull-down for each category of internal data and model-level
function, specify the memory section (if any) that you want to apply to that
category. Accepting or specifying Default omits specifying any memory
section for that category.

7 Click Apply to save any changes to the package and memory section
selections.

Applying Memory Sections to Atomic Subsystems
For any atomic subsystem whose generated code format is Function or
Reusable Function, you can specify memory sections for functions and

9-19

9 Memory Sections

internal data that exist in that code format. Such specifications override any
model-level memory section specifications. Such overrides apply only to the
atomic subsystem itself, not to any subsystems within it. Subsystems of an
atomic subsystem inherit memory section specifications from the containing
model, not from the containing atomic subsystem.

To specify memory sections for an atomic subsystem,

1 Right-click the subsystem in the model window.

2 Choose Subsystem Parameters from the context menu. The Function
Block Parameters: Subsystem dialog box appears.

3 Ensure that Treat as atomic unit is checked. Otherwise, you cannot
specify memory sections for the subsystem.

For an atomic system, on the Code Generation tab, you can use the
Function packaging field to control the format of the generated code.

4 Ensure that Function packaging is Function or Reusable function.
Otherwise, you cannot specify memory sections for the subsystem.

5 If the code format is Function and you want separate data, check
Function with separate data.

The Code Generation tab now shows all applicable memory section
options. The available options depend on the values of Function
packaging and the Function with separate data check box. When the
former is Function and the latter is checked, the pane looks like this:

9-20

Applying Memory Sections

6 In the pull-down for each available definition category, specify the memory
section (if any) that you want to apply to that category.

• Selecting Inherit from model inherits the corresponding selection (if
any) from the model level (not any parent subsystem).

• Selecting Default specifies that the category has no associated memory
section, overriding any model-level specification for that category.

7 Click Apply to save changes, or OK to save changes and close the dialog
box.

9-21

9 Memory Sections

Caution If you use Build Subsystem to generate code for an atomic
subsystem that specifies memory sections, the code generator ignores the
subsystem-level specifications and uses the model-level specifications instead.
The generated code is the same as if the atomic subsystem specified Inherit
from model for every category of definition. For information about Build
Subsystem, see “Generating Code and Executables from Subsystems”.

It is not possible to specify the memory section for a subsystem in a library.
However, you can specify the memory section for the subsystem after you
have copied it into a Simulink model. This is because in the library it is
unknown what code generation target will be used. You can copy a library
block into many different models with different code generation targets and
different memory sections available.

9-22

Examples of Generated Code with Memory Sections

Examples of Generated Code with Memory Sections

Sample ERT-Based Model with Subsystem
The next figure shows an ERT-based Simulink model that defines one
subsystem, and the contents of that subsystem.

Assume that the subsystem is atomic. On the Code Generation tab, the
Function packaging parameter is Reusable function. Memory sections
have been created and assigned as shown in the next two tables, and all data
memory sections specify Pragma surrounds to be Each variable.

Model-Level Memory Section Assignments and Definitions

Section
Assignment

Section
Name

Field Name Field Value

Prepragma #pragma IO_beginInput/Output MemSect1

Postpragma #pragma IO-end

Prepragma #pragma InData-begin(%<identifier>)Internal data MemSect2

Postpragma #pragma InData-end

Prepragma #pragma Parameters-beginParameters MemSect3

Postpragma #pragma Parameters-end

9-23

9 Memory Sections

Model-Level Memory Section Assignments and Definitions (Continued)

Section
Assignment

Section
Name

Field Name Field Value

Prepragma #pragma InitTerminate-beginInitialize/
Terminate

MemSect4

Postpragma #pragma InitTerminate-end

Prepragma #pragma ExecFunc-begin(%<identifier>)Execution
functions

MemSect5

Postpragma #pragma ExecFunc-begin(%<identifier>)

Subsystem-Level Memory Section Assignments and Definitions

Section
Assignment

Section
Name

Field Name Field Value

Prepragma #pragma DATA_SEC(%<identifier>,
"FAST_RAM")

Execution
functions

MemSect6

Postpragma

Given the preceding specifications and definitions, the code generator would
create the following code, with minor variations depending on the current
version of the Target Language Compiler.

9-24

Model-Level Data Structures

Model-Level Data Structures
#pragma IO-begin
ExternalInputs_mySample mySample_U;
#pragma IO-end

#pragma IO-begin
ExternalOutputs_mySample mySample_Y;
#pragma IO-end

#pragma InData-begin(mySample_B)
BlockIO_mySample mySample_B;
#pragma InData-end

#pragma InData-begin(mySample_DWork)
D_Work_mySample mySample_DWork;
#pragma InData-end

#pragma InData-begin(mySample_M_)
RT_MODEL_mySample mySample_M_;
#pragma InData-end

#pragma InData-begin(mySample_M)
RT_MODEL_mySample *mySample_M = &mySample_M_;
#pragma InData-end

#pragma Parameters-begin
Parameters_mySample mySample_P = {

0.0 , {2.3}
};
#pragma Parameters-end

Model-Level Functions
#pragma ExecFunc-begin(mySample_step)
void mySample_step(void)
{

real_T rtb_UnitDelay;
rtb_UnitDelay = mySample_DWork.UnitDelay_DSTATE;
mySubsystem(rtb_UnitDelay, &mySample_B.mySubsystem;,

9-25

9 Memory Sections

(rtP_mySubsystem *) &mySample_P.mySubsystem);
mySample_Y.Out1_o = mySample_B.mySubsystem.Gain;
mySample_DWork.UnitDelay_DSTATE = mySample_U.In1;

}
#pragma ExecFunc-end(mySample_step)

#pragma InitTerminate-begin
void mySample_initialize(void)
{

rtmSetErrorStatus(mySample_M, (const char_T *)0);
{

((real_T*)&mySample_B.mySubsystem.Gain)[0] = 0.0;
}
mySample_DWork.UnitDelay_DSTATE = 0.0;
mySample_U.In1 = 0.0;
mySample_Y.Out1_o = 0.0;
mySample_DWork.UnitDelay_DSTATE = mySample_P.UnitDelay_X0;

}
#pragma InitTerminate-end

Subsystem Function
Because the subsystem specifies a memory section for execution functions
that overrides that of the parent model, subsystem code looks like this:

/* File: mySubsystem.c */

#pragma DATA_SEC(mySubsystem, FAST_RAM)
void mySubsystem(real_T rtu_In1,
rtB_mySubsystem *localB,
rtP_mySubsystem *localP)
{

localB->Gain = rtu_In1 * localP->Gain_Gain;
}

If the subsystem had not defined its own memory section for execution
functions, but inherited that of the parent model, the subsystem code would
have looked like this:

/* File: mySubsystem.c */

9-26

Model-Level Data Structures

#pragma ExecFunc-begin(mySubsystem)
void mySubsystem(real_T rtu_In1,
rtB_mySubsystem *localB,
rtP_mySubsystem *localP)
{

localB->Gain = rtu_In1 * localP->Gain_Gain;
}
#pragma ExecFunc-end(mySubsystem)

9-27

9 Memory Sections

Memory Section Limitation
Memory sections cannot be applied to shared utility functions, such as
lookup table functions, data type conversion functions, and fixed-point
functions. For information about shared utilities, see “Setting Up Runtime
Logging to MAT-Files”, “Supporting Shared Utility Folders in the Build
Process”, and “Supporting the Shared Utilities Folder” in the Simulink Coder
documentation.

9-28

10

Optimizing Buses for Code
Generation

• “Introduction” on page 10-2

• “Setting Bus Diagnostics” on page 10-3

• “Optimizing Virtual and Nonvirtual Buses” on page 10-4

• “Using Single-Rate and Multi-Rate Buses” on page 10-7

• “Setting Bus Signal Initial Values” on page 10-11

• “Buses and Atomic Subsystems” on page 10-16

10 Optimizing Buses for Code Generation

Introduction
When you use buses in a model for which you intend to generate code:

• Setting appropriate diagnostic configuration parameters can add to the
ease of development.

• The bus implementation techniques used can affect the speed, size, and
clarity of that code.

• Some bus implementation techniques that can be useful are not
immediately obvious.

This chapter contains guidelines that you can use to improve the results when
you work with buses. The guidelines describe techniques for:

• Simplifying the layout of the model

• Increasing the efficiency of generated code

• Defining data structures for function/subsystem interfaces

• Defining data structures that match existing data structures in external C
code

Some trade-offs inevitably exist among speed, size, and clarity. For example,
the code for nonvirtual buses is easier to read because the buses appear in
the code as structures, but the code for virtual buses is faster because virtual
buses do not require copying signal data. The applicability of some guidelines
can therefore depend on where you are in the application development process.

This chapter focuses on optimizations that are appropriate for final production
code. Before you read this chapter, be sure that you have read “Using
Composite Signals”. This chapter assumes that you understand all the
concepts and procedures described in that one, including the blocks used
for creating and manipulating buses.

10-2

Setting Bus Diagnostics

Setting Bus Diagnostics
Simulink provides diagnostics that you can use to optimize bus usage.
MathWorks recommends setting the following values on the Configuration
parameters > Diagnostics > Connectivity pane:

Bus signal treated as vector is enabled only when Mux blocks used to
create bus signals is set to error. SettingMux blocks used to create bus
signals to none disables both diagnostics. Temporarily disabling the two mux
and bus diagnostics allows you to debug other bus problems before addressing
mux and bus mixtures. You can then enable the last two diagnostics and use
them to eliminate any such mixtures. When you build existing models, the
diagnostic settings should be as shown at all times. See “Avoiding Mux/Bus
Mixtures” for more information.

10-3

10 Optimizing Buses for Code Generation

Optimizing Virtual and Nonvirtual Buses

In this section...

“Use Virtual Buses Wherever Possible” on page 10-4

“Avoid Nonlocal Nested Buses in Nonvirtual Buses” on page 10-5

Use Virtual Buses Wherever Possible
Virtual buses are graphical conveniences that do not affect generated code. As
a result, the code generation engine is able to fully optimize the signals in the
bus. You should therefore use virtual rather than nonvirtual buses wherever
possible. You can convert between virtual and nonvirtual buses as needed
using Signal Conversion blocks. In many cases, Simulink automatically
converts a virtual bus to a nonvirtual bus when required. For example, a
virtual bus input to a Model block becomes a nonvirtual bus with no need for
explicit conversion. See for more information.

When are Virtual and Nonvirtual Buses Required?
In some cases, Simulink requires the use of nonvirtual buses:

• For non-auto storage classes

• Inports and Outports of Model blocks

• To generate a specific structure from the bus

• Root level Inport or Outport blocks when the bus has mixed data types

In one case, Simulink requires the use of virtual buses:

• Only virtual buses can be used for bundling function call signals.

10-4

Optimizing Virtual and Nonvirtual Buses

Avoid Nonlocal Nested Buses in Nonvirtual Buses
Buses can contain subordinate buses. The storage class of any subordinate
bus should be auto, which results in a local signal. Setting a subordinate bus
to a non-auto storage class has two undesirable results:

• Allocation of redundant memory (memory for the subordinate bus object
and memory for the final bus object)

• Additional copy operations (first copying to the subordinate bus and then
copying from the subordinate bus to the final bus)

In the following example, the final bus is created from local scoped subordinate
elements. The resulting assignment operations are relatively efficient:

10-5

10 Optimizing Buses for Code Generation

By contrast in the next example the subordinate elements sub_bus_1 and
sub_bus_2 are global in scope. First the assignment to the subordinate bus
occurs (lines 54 – 59) then the copy of the subordinate bus to the main bus
(lines 60 – 61). In most cases, this is not an efficient implementation:

10-6

Using Single-Rate and Multi-Rate Buses

Using Single-Rate and Multi-Rate Buses

In this section...

“Introduction” on page 10-7

“Techniques for Combining Multiple Rates” on page 10-7

“Larger Buses and Multiple Rates” on page 10-9

“Specifying Sample Time Rates” on page 10-10

Introduction
Nonvirtual buses do not support multiple rates. Virtual buses support
multiple rates as long as the bus does not cross any root level inport or
outport. The best techniques for optimizing a bus that contains signals that
initially have different rates can depend on the type of the bus and the
number of signals.

Techniques for Combining Multiple Rates
The simplest bus contains only two signals. The next figure shows two
examples of two-element buses. The first example shows a virtual bus created
from two signals that have different rates. The second example shows a
nonvirtual bus created from the same two signals. The Sample Time Legend
shows the different signal rates:

10-7

10 Optimizing Buses for Code Generation

The signals with different rates in the first example can be combined into
a virtual bus, because virtual buses support multiple rates. However, a
multirate virtual bus cannot connect to a root-level output port. The bus
therefore passes through a Rate Transition block that converts it to a
single-rate bus, then connects to the Outport. This technique is preferable
only for virtual buses that contain no more than two signals. See “Larger
Buses and Multiple Rates” on page 10-9.

The signals with different rates in the second example cannot initially be
combined into a nonvirtual bus, because nonvirtual buses do not support
multiple rates. One of the signals therefore passes through a Rate Transition
block, which converts it to have the same rate as the other signal, then
connects to the Bus Creator block. The signals can then combine into a
single-rate nonvirtual bus, which can connect to the root-level outport without
further conversion.

10-8

Using Single-Rate and Multi-Rate Buses

Larger Buses and Multiple Rates
When you create a multirate virtual bus that contains more than two signals,
you can convert the bus to single-rate by applying a Rate Transition block
to the output of the Bus Creator block. However, MathWorks recommends
using a Rate Transition block on each input signal to give full control over the
output rate. As the next figure shows, when a single Rate Transition block is
used the block sets all of the signals to the fastest rate (D1):

Note that the preferred techniques for a virtual bus with more than two
signals, and the required technique for a nonvirtual bus with any number
of signals, are the same. Note also that, in the preceding figure, the blocks
that perform rate transition are not actual Rate Transition blocks, but other
blocks that can change the signal rate as part of some other operation. The
identity of the blocks that perform rate transition makes no difference. All
that matters is that the signal rates match when required.

10-9

10 Optimizing Buses for Code Generation

Specifying Sample Time Rates
The sample time for buses should be specified through the signals that
define the bus. If the sample times do not match, use Rate Transition (or
equivalent) blocks to create a uniform rate, as shown in the previous figures.
The signal rates should not be set by specifying Sample Time values in a
Bus Creator block’s bus object. Instead, set the sample time for each signal
before inputting it to the Bus Creator, and set each Sample Time in the
corresponding bus object to -1 (inherited), as shown in the next figure:

10-10

Setting Bus Signal Initial Values

Setting Bus Signal Initial Values

In this section...

“Introduction” on page 10-11

“Initializing Bus Signals in Simulink” on page 10-11

“Bus Initialization in Stateflow” on page 10-12

“Creating a Bus of Constants” on page 10-14

Introduction
Unlike scalar and vector signals, buses provide no direct way to initialize
signals. This section describes techniques for initializing bus signals using
Simulink, Stateflow, and MATLAB functions.

Initializing Bus Signals in Simulink
In Simulink, you can set initial values on a bus by using a set of conditionally
executed subsystems, such as Function-Call subsystems, and a Merge block,
as shown in this example:

Both subsystems (InitBus and StandardUpdate) create a bus signal of type
CounterBus. However, the assignment to the variable GlobalCounter is
controlled by the Merge block. See “Function-Call Subsystems” for more
information.

10-11

10 Optimizing Buses for Code Generation

This technique is limited because the StandardUpdate subsystem does not
use the initial values from the InitBus subsystem. If the calculations depend
on past information from the bus, consider using Stateflow or MATLAB
functions to initialize bus signals.

Bus Initialization in Stateflow
Stateflow and MATLAB functions allow for conditional execution internally.
In the following example, the init and update code are Functions in
the Stateflow diagram. This technique simplifies the presentation in the
generated code:

10-12

Setting Bus Signal Initial Values

In the generated code, you can see that the UpdateCnt function uses the past
value of GlobalCounter.cnt:

The previous example used Stateflow Graphical functions to initialize and
update the buses. Alternatively, you can use MATLAB functions or Simulink
subsystems embedded in a Stateflow diagram. The next figure illustrates
this technique:

The Simulink subsystems are the same as those used in the earlier
Simulink-only example.

10-13

10 Optimizing Buses for Code Generation

Creating a Bus of Constants
The code for specifying a bus of constant values will appear in either the
Init or the Step function of the model. The code location depends on the
configuration of the bus. In most cases the code appears in the Step function.
However if the following conditions hold the code will be placed in the Init
function:

• The bus is a virtual bus

• All signals have the same data type

• The signals in the bus are all constants

In the next figure, only the bus named Bus_2 meets all the requirements:

10-14

Setting Bus Signal Initial Values

The code for Bus_2 therefore appears in the Init function. The code for the
other buses appears in the Step function:

To avoid repeatedly updating a bus of constants, place the bus code into a
function-call subsystem, as described in “Initializing Bus Signals in Simulink”
on page 10-11. When you use this technique, make sure the function-call
subsystem is called at the start of execution. See “Function-Call Subsystems”
for more information.

10-15

10 Optimizing Buses for Code Generation

Buses and Atomic Subsystems

In this section...

“Extract Nonvirtual Bus Signals Inside of Atomic Subsystems” on page
10-16

“Virtual Bus Signals Crossing Atomic Boundaries” on page 10-17

“Atomic Subsystems and Buses of Constants” on page 10-19

Extract Nonvirtual Bus Signals Inside of Atomic
Subsystems
Selecting signals from a nonvirtual bus can result in unnecessary data copies
when those signals cross an atomic boundary. In the following example the
same code, a simple multiplication of two elements in a vector, is executed
three times:

10-16

Buses and Atomic Subsystems

In the second instance when the bus signals are selected outside of the atomic
subsystem an unnecessary copy of the bus data is created.

Although this example shows only signals with global scope, both global and
local signals show the same behavior: the selection of the signals outside of the
model results in an unnecessary copy, while the internal selection does not.

Virtual Bus Signals Crossing Atomic Boundaries
Virtual buses that cross atomic boundaries can result in the creation of
unnecessary data copies. The following example shows the data copy that
occurs when a virtual bus crosses an atomic boundary:

10-17

10 Optimizing Buses for Code Generation

Lines 25–26 show the signals being selected out of the bus before they are
used in the function on lines 19–20. By comparison the nonvirtual bus does
not require the use of temporary variables.

10-18

Buses and Atomic Subsystems

Atomic Subsystems and Buses of Constants
If the bus passed into an atomic subsystem consists exclusively of constants,
using a virtual bus is more efficient, because Simulink is able to inline the
constant values into the code:

10-19

10 Optimizing Buses for Code Generation

10-20

11

Renaming and Replacing
Data Types

• “Defining Application-Specific Data Types Based On Built-In Types” on
page 11-2

• “Code Generation with User-Defined Data Types” on page 11-4

11 Renaming and Replacing Data Types

Defining Application-Specific Data Types Based On Built-In
Types

You can replace built-in data type names with user-defined replacement data
type names in the generated code for a model.

To configure replacement data types,

1 For a referenced model, set the Simulation mode parameter for the
corresponding Model block to Normal, Software-in-the-loop (SIL), or
Processor-in-the-loop (PIL).

2 In the Configuration Parameters dialog box, click Code
Generation > Data Type Replacement > Replace data type names
in the generated code. A Data type names table appears. The table
lists each Simulink built-in data type name with its corresponding code
generation data type name.

11-2

Defining Application-Specific Data Types Based On Built-In Types

3 Fill in fields in the third column with your replacement data types. Each
replacement data type should be the name of a Simulink.AliasType object
that exists in the base workspace. Replacements may be specified or not for
each individual built-in type.

For each replacement data type you enter, the BaseType property of the
associated Simulink.AliasType object must be consistent with the built-in
data type it replaces.

• For double, single, int32, int16, int8, uint32, uint16, and uint8, the
replacement data type’s BaseType must match the built-in data type.

• For boolean, the replacement data type’s BaseType must be either an
8-bit integer or an integer of the size displayed for Number of bits:
int on the Hardware Implementation pane of the Configuration
Parameters dialog box.

• For int, uint, and char, the replacement data type’s size must match
the size displayed for Number of bits: int or Number of bits: char on
the Hardware Implementation pane of the Configuration Parameters
dialog box.

An error occurs if a replacement data type specification is inconsistent. For
more information, see “Replacing Built-In Data Type Names in Generated
Code” on page 12-52.

11-3

11 Renaming and Replacing Data Types

Code Generation with User-Defined Data Types

In this section...

“Overview” on page 11-4

“Specifying Type Definition Location for User-Defined Data Types” on page
11-5

“Using User-Defined Data Types for Code Generation” on page 11-6

Overview
The Embedded Coder software supports use of user-defined data type objects
in code generation. These include objects of the following classes:

• Simulink.AliasType

• Simulink.Bus

• Simulink.NumericType

• Simulink.StructType

For information on the properties and usage of these data object classes,
see Simulink.AliasType, Simulink.Bus, Simulink.NumericType, and
Simulink.StructType in the “Simulink Classes” section of the Simulink
Reference documentation. For general information on creating and using
data objects, see the “Working with Data Objects” section of the Simulink
documentation

In code generation, you can use user-defined data objects to

• Map your own data type definitions to Simulink built-in data types, and
specify that your data types are to be used in generated code.

• Optionally, generate #include directives specifying your own header files,
containing your data type definitions. This technique lets you use legacy
data types in generated code.

In general, code generated from user-defined data objects conforms to the
properties and attributes of the objects as defined for use in simulation.
When generating code from user-defined data objects, the name of the object

11-4

Code Generation with User-Defined Data Types

is the name of the data type that is used in the generated code. Exception:
for Simulink.NumericType objects whose IsAlias property is false, the
name of the functionally equivalent built-in or fixed-point Simulink data
type is used instead.

Note The names of data types defined using Simulink.AliasType objects
are preserved in the generated code only for installations with a Embedded
Coder license.

Specifying Type Definition Location for User-Defined
Data Types
When a model uses Simulink.DataType and Simulink.Bus objects,
corresponding typedefs are needed in code. Both Simulink.DataType and
Simulink.Bus objects have a HeaderFile property that controls the location
of the object’s typedef. Setting a HeaderFile is optional and affects code
generation only.

Omitting a HeaderFile Value
If the HeaderFile property for a Simulink.DataType or Simulink.Bus object
is left empty, a generated typedef for the object appears in the generated file
model_types.h.

Example. For a Simulink.NumericType object named myfloat with a
Category of double and no HeaderFile property specified, model_types.h in
the generated code contains:

typedef real_T myfloat;

Specifying a HeaderFile Value
If the HeaderFile property for a Simulink.DataType or Simulink.Bus object
is set to a string value,

• The string must be the name of a header file that contains a typedef for
the object.

11-5

11 Renaming and Replacing Data Types

• The generated file model_types.h contains a #include that gives the
header file name.

You can use this technique to include legacy or other externally created
typedefs in generated code. When the generated code compiles, the specified
header file must be accessible on the build process include path.

HeaderFile Property Syntax. The HeaderFile property should include the
desired preprocessor delimiter ("" or '<>'), as in the following examples.

This example:

myfloat.HeaderFile = '<legacy_types.h>'

generates the directive:

#include <legacy_types.h>

This example:

myfloat.HeaderFile = '"legacy_types.h>"'

generates the directive:

#include "legacy_types.h"

Using User-Defined Data Types for Code Generation
To specify and use user-defined data types for code generation:

1 Create a user-defined data object and configure its properties, as described
in the “Working with Data Objects” section of the Simulink documentation.

2 If you specified the HeaderFile property, copy the header file to the
appropriate directory.

3 Set the output data type of selected blocks in your model to the user-defined
data object. To do this, set the Data type parameter of the block to
Specify with dialog. Then, enter the object name in the Output data
type parameter.

4 The specified output data type propagates through the model and variables
of the user-defined type are declared as required in the generated code.

11-6

12

Managing Data Definitions
and Declarations With the
Data Dictionary

• “Overview of the Data Dictionary” on page 12-2

• “Creating Simulink and mpt Data Objects” on page 12-4

• “Creating a Data Dictionary for a Model” on page 12-19

• “Defining All Global Data Objects in a Separate File” on page 12-26

• “Defining a Specific Global Data Object in Its Own File” on page 12-28

• “Saving and Loading Data Objects” on page 12-29

• “Applying Naming Rules to Identifiers Globally” on page 12-30

• “Creating User Data Types” on page 12-38

• “Selecting User Data Types for Signals and Parameters” on page 12-43

• “Registering mpt User Object Types” on page 12-48

• “Replacing Built-In Data Type Names in Generated Code” on page 12-52

• “Customizing Data Object Wizard User Packages” on page 12-60

12 Managing Data Definitions and Declarations With the Data Dictionary

Overview of the Data Dictionary
A data dictionary contains all of the parameters and signals that the source
code uses, and a description of their properties. The data dictionary that is
created for Simulink and Stateflow models is called the code generation data
dictionary. (You can use the data dictionary for simulation. This does not
require that you have a Embedded Coder license.) The dictionary is the total
number of data objects that appear in the middle pane of the Model Explorer.
These data objects also appear in the MATLAB workspace. The procedure
described in this chapter allows you to create or edit the dictionary. The
procedure allows you to control property values for each data object. This, in
turn, determines how each parameter and signal is defined and declared
in the automatically generated code.

The values of data object properties can affect where the code generator places
a parameter or signal in the generated file. This is because some property
values are associated with different template symbols. The location of a
symbol in a template determines where the associated parameter or signal is
located in the generated file. For details about templates and symbols, see
“Configuring Templates for Customizing Code Organization and Format” on
page 17-23.

It is helpful to define terms you will see when managing the dictionary,
especially when you view them using the Model Explorer. The Simulink
software uses a hierarchy of terms that are drawn from object-oriented
programming. For details, see “Working with Data Objects” in the Simulink
documentation. The sketch below summarizes this hierarchy.

�������

�	�

 �	�

������������

�����������

���������������	����

� ����� ������ � �

�� �� ��

12-2

Overview of the Data Dictionary

Simulink or mpt is the package. Parameter and Signal are two classes in each
of these packages. Each class has a number of properties associated with it.
Sometimes properties are called attributes. Data objects (the parameters
and signals) are the instances of a package.class that make up the data
dictionary. All parameter data objects have a set of properties. All signal data
objects have a different set of properties than that for parameters. For each
data object, each property in the set has its own property value that must be
specified in the dictionary.

12-3

12 Managing Data Definitions and Declarations With the Data Dictionary

Creating Simulink and mpt Data Objects

In this section...

“Overview” on page 12-4

“Creating Simulink Data Objects with Data Object Wizard” on page 12-5

“Creating mpt Data Objects with Data Object Wizard” on page 12-11

“Comparing Simulink and mpt Data Objects” on page 12-12

“Creating Data Objects Based on an External Data Dictionary” on page
12-16

Overview
The Embedded Coder software provides the mpt (module packaging tool)
data object, which contains all the properties of Simulink data objects plus
properties that provide additional control over module packaging. For a
comparison of the properties of Simulink and mpt data objects, see “Comparing
Simulink and mpt Data Objects” on page 12-12.

There are different ways of creating Simulink and mpt data objects for a
data dictionary.

• One-by-one, either using the MATLAB command line or using the Model
Explorer Add menu and selecting Simulink Parameter, Simulink
Signal, MPT Parameter, or MPT Signal. For more information, see
“Working with Data Objects” in the Simulink documentation.

• All at once, invoking Data Object Wizard for an existing model. For more
information and examples, see “Data Object Wizard” in the Simulink
documentation and “Creating mpt Data Objects with Data Object Wizard”
on page 12-11.

• Creating data objects based on an external data dictionary. You can do this
manually item by item, or all at once automatically using a script. For
more information, see “Creating Data Objects Based on an External Data
Dictionary” on page 12-16.

The following sections illustrate how to create Simulink and mpt data objects
and compares their properties as data types.

12-4

Creating Simulink® and mpt Data Objects

Creating Simulink Data Objects with Data Object
Wizard
You can use Data Object Wizard to create data objects for your model (see
“Data Object Wizard” in the Simulink documentation).

Data Object Wizard is especially useful for creating multiple data objects for

• Existing models that do not currently use data objects.

• Existing models to which you have added signals or parameters and
therefore you need to create more data objects.

Creating Simulink Data Objects
This procedure creates Simulink data objects using Data Object Wizard.

1 Open the model whose data objects you want to be in the data
dictionary. For example, open rtwdemo_mpf.mdl (which is located in
toolbox/rtw/rtwdemos). This model appears as shown below.

12-5

12 Managing Data Definitions and Declarations With the Data Dictionary

2 Open Data Object Wizard by entering dataobjectwizard at the MATLAB
command line or by selecting Data Object Wizard from the Tools menu
of your model. The Data Object Wizard dialog box appears:

The Model name field displays the name of the model. You could specify
a different model by editing the field or by selecting the model using the
adjacent Browse button. When the Model name field is nonempty, the
Find button is enabled.

3 In the Find options pane, select the desired check boxes. For descriptions
of each check box, see “Data Object Wizard” in the Simulink documentation.
Be sure to check the Alias types option. This finds all user-registered
data types in the sl_customization.m file plus all data type replacements
specified for the model in the Data Type Replacement pane of the
Configuration Parameters dialog box. Data Object Wizard can create
Simulink.AliasType objects from these.

12-6

Creating Simulink® and mpt Data Objects

4 Click the Find button. After a moment, a list of all of the model’s potential
data objects appear that are not yet in the code generation data dictionary,
as shown below. This includes all of the model’s signals (root inputs, root
outputs, and block outputs), discrete states, data stores, and parameters,
depending on:

• The check boxes you selected in the previous step

• The constraint mentioned in the note above

Data Object Wizard finds only those signals, parameters, data stores, and
states whose storage class is set to Auto. The Wizard lists each data store
and discrete state that it finds as a signal class.

5 Click Check All to select all data objects. Notice in the Choose package
for selected data objects field that Simulink, the default, is selected.
So all of the data objects are associated with the Simulink package, as
shown below.

6 Click Create. The data objects are added to the MATLAB workspace, and
they disappear from Data Object Wizard.

12-7

12 Managing Data Definitions and Declarations With the Data Dictionary

7 Click Cancel. The Data Object Wizard dialog box disappears.

Now you can set property values for the data objects.

Setting Property Values for Simulink Data Objects
Most of the property values of data objects are supplied by defaults. A few
are from the model. Note that for Simulink data objects, the default storage
class is Auto.

1 Type daexplr on the MATLAB command line, and press Enter. The Model
Explorer appears.

2 In the Model Hierarchy (left) pane, select Base Workspace. All of the
Simulink data objects in the code generation data dictionary appear in the
Contents (middle) pane, as shown below.

If the objects that you see do not appear in the order shown, click the
Name column header in the middle pane to sort the objects in ascending
order by name.

12-8

Creating Simulink® and mpt Data Objects

3 To see the properties of a Simulink data object, select a data object in the
middle pane. The right pane displays the property names for that object.
These property names also appear as column headings in the middle pane.
Reshape the middle pane as needed to see all the headings. For example,
if you select signal data object A in the middle pane, the Model Explorer
looks like this:

12-9

12 Managing Data Definitions and Declarations With the Data Dictionary

4 You can change the values specified for the properties of the selected
object. For example, with A selected, change its StorageClass property
from Auto to Default (Custom), then click Apply. The property changes
as shown below:

You can use Control-Right-Click to select multiple objects in the center pane,
then edit any property value. The wizard applies the new value to all selected
objects. For descriptions of object properties and their values, see Parameter
and Signal Property Values on page 7-2.

Generating and Inspecting Code
All data objects for the model are in the code generation data dictionary. You
have specified property values for each data object’s properties as needed.
Now you generate and inspect the source code, to see if it needs correction or
modification. If it does, you can change property values and regenerate the
code until it is what you want.

1 In the Configuration Parameters dialog box, click Code Generation in
the left pane.

2 In the Report pane, select the Create code generation report check box.

12-10

Creating Simulink® and mpt Data Objects

Note When you select the Create code generation report check box,
the code generation software automatically selects two check boxes on the
pane: Launch report automatically and Code-to-model. For large
models, you may find that HTML report generation (step 4 below) takes
longer than you want. In this case, consider clearing the Code-to-model
check box (and the Model-to-code check box if selected). The report will
be generated faster.

3 In the Code Generation pane, select the Generate code only check box.
The Build button changes to Generate code.

Note The generate code process generates the .c/.cpp and .h files. The
build process adds compiling and linking to generate the executable. For
details on build, see “Understanding the Build Process” in the Simulink
Coder documentation.

4 Click the Generate code button. After a moment, the HTML code
generation report appears, listing the generated files on the left pane.

5 Select and review files in the HTML code generation report. See
“Generating an HTML Code Generation Report” on page 20-4 for more
information.

Creating mpt Data Objects with Data Object Wizard
Create mpt data objects using Data Object Wizard the same way you did
for Simulink data objects, as explained in “Creating Simulink Data Objects
with Data Object Wizard” on page 12-5, except select mpt as the package
instead of Simulink.

Set the property values for the mpt data objects the same way you set them for
Simulink data objects, as explained in “Setting Property Values for Simulink
Data Objects” on page 12-8, with the following exceptions:

• Accept the default custom storage class for mpt data objects,
Global(Custom)

12-11

12 Managing Data Definitions and Declarations With the Data Dictionary

• For data objects A and F1, type mydefinitionfile in the Definition file
field on the Model Explorer.

Then generate and inspect the code.

Note The Alias field is related to “Applying Naming Rules to Identifiers
Globally” on page 12-30.

Comparing Simulink and mpt Data Objects
The mpt data object contains all the properties of Simulink data objects
plus properties that provide additional control over module packaging. The
differences between Simulink and mpt data objects can be illustrated by
comparing

• “Signal and Parameter Properties” on page 12-13

• “Configuration Parameters” on page 12-14

• “Generated Code” on page 12-15

Key differences include the following:

• Different custom storage classes displayed in the Model Explorer for mpt
data objects provide more control over the appearance of the generated code.

• Additional custom attributes (owner, definition file, persistence level,
memory section) for mpt data objects provide more control over data
packaging in the generated code.

• On the Comments pane of the Configuration Parameters dialog box,
the Custom comments (MPT objects only) option allows you to add a
comment just above a signal or parameter’s identifier in the generated code.

• On the Data Placement pane of the Configuration Parameters dialog box,
in the Global data placement (MPT data objects only) subpane:

- The Module naming parameter allows you to name the module that
owns the model

- The Signal display level parameter allows you to specify whether or
not the code generator declares a signal data object as global data

12-12

Creating Simulink® and mpt Data Objects

- The Parameter tune level parameter allows you to specify whether
or not the code generator declares a parameter data object as tunable
global data

Signal and Parameter Properties
The properties that appear in Model Explorer when mpt is the package
include all the properties that appear when Simulink is the package plus
additional properties. Notice this by comparing the next two figures. (For
descriptions of all properties in Model Explorer, see Parameter and Signal
Property Values on page 7-2.)

12-13

12 Managing Data Definitions and Declarations With the Data Dictionary

Configuration Parameters
The following configuration parameters relate to module packaging features.
These parameters are available in the Configuration Parameters dialog box
and Model Explorer when the system target file selected for a Simulink model
is ert.tlc (or a system target file derived from an ert.tlc):

• Custom comments (MPT objects only) option on the Code
Generation > Comments pane

• In the Global data placement (MPT data objects only) subpane on the
Code Generation > Data Placement pane:

- Module naming parameter

- Signal display level parameter

- Parameter tune level parameter

12-14

Creating Simulink® and mpt Data Objects

Generated Code
In the example used in “Setting Property Values for Simulink Data Objects”
on page 12-8, you selected Default (Custom) in the Storage class field for
signal A and parameter F1. You selected the default Auto in the Storage
class field for the remaining data objects. But for the mpt data objects you
used the default Global (Custom) in the Storage class field for all data
objects. When you generated code, these selections resulted in the definitions
and declarations shown in the table below.

Simulink Data Object with
Auto Storage Class

Simulink Data Object with
Default (Custom) Storage
Class

mpt Data Object with
Global (Custom) Storage
Class and Definition File
Named mydefinitionfile

In rtwdemo_mpf.c:

/* For signal A */
ExternalInputs rtU;

/* For parameter F1 */
if(rtU.A * 2.0 > 10.0) {...

In rtwdemo_mpf.h:

/* For signal A */
typedef struct {

real_T A;
} ExternalInputs;

extern ExternalInputs rtU;

In global.c:

real_T A;
real_T F1 = 2.0;

In global.h:

extern real_T A;
extern real_T F1;

In mydefinitionfile.c:

real_T A;
real_T F1 = 2.0;

In global.h:

extern real_T A;
extern real_T F1;

The results shown in the second and third columns of the preceding table
require the following configuration parameter adjustments on the Code
Generation > Data Placement pane:

• Set Data definition to Data defined in single separate source
file.

• Set Data definition filename to global.c

12-15

12 Managing Data Definitions and Declarations With the Data Dictionary

• Set Data declaration to Data declared in single separate source
file.

• Set Data definition filename to global.h

See the left column of the table, which shows generated code for Simulink
signal and parameter data objects, whose Storage class field is Auto. The
input A is defined as part of the structure rtU as shown above. In the case
of the Simulink parameter data object F1, since the StorageClass was set
to auto, the code generator chose to include the literal value of F1 in the
generated code. F1 is a constant in the Stateflow diagram whose value is
initialized as 2.0:

if(rtU.A * 2.0 > 10.0) { ...

For more details, see “Introduction to Custom Storage Classes” on page 8-2
and “Summary of Signal Storage Class Options” in the Simulink Coder
documentation.

See the middle column of the table. The Simulink data objects whose Storage
class is not Auto are defined in a definition statement in the global source
file (global.c) and declared in a declaration statement in the global header
file (global.h).

In the right column, Simulink data objects whose Storage class is not Auto
are defined in mydefinitionfile, as you specified. The declarations for those
objects are in the global header file.

Creating Data Objects Based on an External Data
Dictionary
This procedure creates data objects based on an external data dictionary (such
as a Microsoft® Excel® file). You can do this manually (that is, one-by-one) or
automatically (all at once).

12-16

Creating Simulink® and mpt Data Objects

Manually Creating Objects to Represent External Data
You can create data objects (and their properties) one-by-one, based on an
external data dictionary, as follows:

1 Open the external file that contains the data (such as a spreadsheet or
database file).

2 Determine all of the data in this file that correspond to the parameters and
signals in the model. In the code generation data dictionary, parameters
in the external file belong to the Simulink parameter class and signals
belong to the Simulink signal class.

3 On the MATLAB command line, type daexplr and press Enter. The Model
Explorer appears.

4 On theModel Hierarchy (left) pane, expand Simulink Root, and select
Base Workspace.

5 On the Add menu, selectMPT Parameter or Simulink Parameter. The
default name Param appears in the Contents of (middle) pane.

6 Double-click Param and rename this data object as desired.

7 Repeat steps 5 and 6 for each additional data item in the external file that
belongs to the mpt.Parameter class or Simulink.Parameter class.

Now you will add data items in the external file that belong to the
mpt.Signal class or Simulink.Signal class.

8 On the Add menu, selectMPT Signal or Simulink Signal. The default
name Sig appears in the Contents of pane.

9 Double-click Sig and rename the data object as desired.

10 Repeat steps 8 and 9 for each additional data item in the external file that
belongs to the mpt.Signal class or Simulink.Signal class.

All external data items for the mpt.Parameter or Simulink.Parameter
class, and the mpt.Signal or Simulink.Signal class now appear in the
Contents of pane and in the MATLAB workspace. Therefore, they have
been created in the code generation data dictionary.

12-17

12 Managing Data Definitions and Declarations With the Data Dictionary

Note The property values for these data objects are supplied by default.

Automatically Creating Objects to Represent External Data
You can create data objects (and their properties) all at once, based on an
external data dictionary by creating and running a .m file. This file contains
the same MATLAB commands you could use for creating data objects
one-by-one on the command line, as explained in “Working with Data Objects”
in the Simulink documentation. But instead of using the command line, you
place the MATLAB commands in the .m file for all of the desired data in
the external file:

1 Create a new .m file.

2 Place information in the file that describes all of the data in the external file
that you want to be data objects. For example, the following information
creates two mpt data objects with the indicated properties. The first is for a
parameter and the second is for a signal:

% Parameters
mptParCon = mpt.Parameter;
mptParCon.RTWInfo.CustomStorageClass ='Const';
mptParCon.value = 3;
% Signals
mptSigGlb = mpt.Signal;
mptSigGlb.DataType = 'int8';

3 Run the .m file. The data objects appear in the MATLAB workspace.

Note If you want to import data from an external data dictionary, you can
write functions that read the information, convert these to data objects, and
load them into the MATLAB workspace. Among available MATLAB functions
that you can use for this process are xmlread, xmlwrite, xlsread, xlswrite,
csvread, csvwrite, dlmread, and dlmwrite.

12-18

Creating a Data Dictionary for a Model

Creating a Data Dictionary for a Model
In this procedure, you create a data dictionary for a model using Data
Object Wizard, inspect the data dictionary, and generate code. Definitions
for the data objects in the dictionary are generated into the model source
file (model.c).

Using Data Object Wizard

1 Open the demo model rtwdemo_mpf by clicking the link or by typing
rtwdemo_mpf in the MATLAB Command Window.

In this model,

• A, B, and C are input signals, and L and Final are output signals.

• Subsystem1 receives inputs A and E and contains constants G1 and G2.
Signal E is an output from Data Store Read1.

• Subsystem2 receives inputs C and D. Signal D is an output from Data
Store Read2. There is a constant in Subsystem2 named G3. Also, this
subsystem has a Unit Delay block whose state name is SS.

12-19

12 Managing Data Definitions and Declarations With the Data Dictionary

2 Double-click the Stateflow chart and notice it has constants F1, Gain1,
and Gain2, as shown below:

3 Change to a work folder that is not on an installation path and save the
model in that work folder. The code generation software does not allow you
to generate code from an installation folder.

4 Double-click the Invoke Data Object Wizard button on the model. Or,
type dataobjectwizard('rtwdemo_mpf') in the MATLAB Command
Window. Data Object Wizard opens and rtwdemo_mpf appears in the
Model name field, as shown below.

12-20

Creating a Data Dictionary for a Model

5 Click Find on Data Object Wizard. After a moment, the model’s parameters
and signals appear in Data Object Wizard. These "data objects" make up
the data dictionary.

6 Click Check All, to select all data objects for the data dictionary.

7 In the Choose package for selected objects field, select mpt. For an
explanation of “package,” see “Overview of the Data Dictionary” on page
12-2.

12-21

12 Managing Data Definitions and Declarations With the Data Dictionary

8 Click Apply Package. Data Object Wizard associates the selected data
objects with the mpt package, as shown below.

12-22

Creating a Data Dictionary for a Model

9 Click Create. Data Object Wizard creates a data dictionary, consisting of
data objects for the selected parameters and signals. Data Object Wizard
removes the objects from its object view. Also, the objects are added to the
MATLAB workspace, as shown below.

10 Close Data Object Wizard.

Inspect the Data Dictionary
You can verify that each data object you selected in Data Object Wizard is
in the data dictionary, using the Model Explorer:

1 If you have not already done so, complete the steps in “Using Data Object
Wizard” on page 12-19 .

2 Open the Model Explorer.

3 In the left pane, select Base Workspace. Notice that all data objects that
you placed in the data dictionary appear in the middle pane.

12-23

12 Managing Data Definitions and Declarations With the Data Dictionary

4 In the middle pane, select data objects one at a time, and notice their
property values in the right pane. The figure below shows this for signal A.
All of the data objects have default property values. Note that for an mpt
data object, the default in the Storage class field is Global (Custom). For
descriptions of the properties on the Model Explorer, see “Setting Property
Values for Simulink Data Objects” on page 12-8.

Generate and Inspect Code

1 If you have not already done so, complete the steps in “Using Data Object
Wizard” on page 12-19 and “Inspect the Data Dictionary” on page 12-23.

2 In the left pane of the Model Explorer, expand the rtwdemo_mpf node.

3 In the left pane, click Configuration (Active).

4 In the center pane, click Code Generation. The active configuration
parameters appear in the right pane.

5 In the Report tab, select Create code generation report

12-24

Creating a Data Dictionary for a Model

6 Select the General tab. Select Generate code only, and then click
Generate code. After a few moments, the names of the generated files are
listed on the Code Generation Report on the left pane.

7 Open and inspect the content of the model source file rtwdemo_mpf.c. The
following data objects in the data dictionary are initialized in this file.

real_T F1 = 2.0;
real_T G1 = 6.0;
real_T G2 = -2.6;
real_T G3 = 9.0;
real_T Gain1 = 5.0;
real_T Gain2 = -3.0;

12-25

12 Managing Data Definitions and Declarations With the Data Dictionary

Defining All Global Data Objects in a Separate File
The previous procedure placed all of the model’s data objects in the model
source file. Now you place all of the global data objects in a file separate
from the model source file:

1 Configure the model’s generated code to include all Simulink data
objects (signal and parameter) in a separate definition file. Set
Diagnostics > Data Validity > Signal resolution to Explicit and
implicit.

2 Specify that data be defined in a separate file. Set Code
Generation > Data Placement > Data definition to Data defined in
single separate source file. Accept the default for Data definition
filename, global.c

3 Specify that data be declared in a separate file. Set Data declaration
to Data declared in a single separate header file and accept the
default for Data declaration filename, global.h. Then, click Apply.

4 Click Generate code. Notice that the code generation report lists
global.c and global.h files.

5 Inspect the code generation report. Notice that

• The data objects formerly initialized in rtwdemo_mpf.c now are
initialized in global.c.

12-26

Defining All Global Data Objects in a Separate File

• The file rtwdemo_mpf.c includes rtwdemo_mpf.h.

• The file rtwdemo_mpf.h includes global.h.

12-27

12 Managing Data Definitions and Declarations With the Data Dictionary

Defining a Specific Global Data Object in Its Own File
The previous procedure placed all global data objects in a separate definition
file, in one operation. You named that file global.c. (You named the
corresponding declaration file global.h.) MPF allows you to override this
and place a specific data object in its own definition file. In the following
procedure, you move the Final signal to a file called finalsig.c, and keep all
the other data objects defined in global.c:

1 In the Model Explorer, display the base workspace and select the Final
signal object. The mpt.Signal properties appear in the right pane.

2 In the Code generation options section, type finalsig.h in the Header
file text box, type finalsig.c in the Definition file text box, and click
Apply.

3 On the Code Generation > General pane, click Generate code.
The code generation report still lists global.c and global.h, but adds
finalsig.c and finalsig.h.

4 Open all four files to inspect them. Notice that the Final signal is defined
in finalsig.c. All other data objects in the dictionary are defined in
global.c.

12-28

Saving and Loading Data Objects

Saving and Loading Data Objects
In a .mat file, you can save the set of data objects (and their properties) that
you have created and load this information for later use or exchange it with
another user. You can save some of the data objects in the workspace or all of
them. See Opening, Loading, Saving Files in the MATLAB documentation.

12-29

12 Managing Data Definitions and Declarations With the Data Dictionary

Applying Naming Rules to Identifiers Globally

In this section...

“Overview” on page 12-30

“Changing Names of Identifiers” on page 12-31

“Specifying Simulink Data Object Naming Rules” on page 12-34

“Defining Rules That Change All Signal Names” on page 12-35

“Defining Rules That Change All Parameter Names” on page 12-35

“Defining Rules That Change All #defines” on page 12-36

Note The capabilities described in this section apply both to Simulink and
mpt data objects.

Overview
Signal and parameter names appear on a Simulink model. The same names
appear as data objects on the Model Explorer. By default, these names are
replicated exactly in the generated code. For example, "Speed" on the model
(and workspace) appears as the identifier "Speed" in the code, by default. But
you can change how they appear in the code. For example, if desired, you can
change "Speed" to SPEED or speed. Or, you can choose to use a different name
altogether in the generated code, like MPH. The only restriction is that you
follow ANSI C2/C++ rules for naming identifiers.

There are two ways of changing how a signal name or parameter name is
represented in the generated code. You can do this globally, by following
the procedure in this section. This procedure makes selections on the
Configuration Parameters dialog box to change all of the names when code
generation occurs, according to the same rule. Or, you can change the names
individually by following the steps described in “Setting Property Values for
Simulink Data Objects” on page 12-8. The relevant field in that procedure is
Alias on the Model Explorer.

2. ANSI® is a registered trademark of the American National Standards Institute, Inc.

12-30

Applying Naming Rules to Identifiers Globally

If the Alias field is empty, the naming rule that you select on the
Configuration Parameters dialog box applies to all data objects. But if you
do specify a name in the Alias field, this overrides the naming rule for that
data object. The table below illustrates these cases. The table assumes that
you selected Force lower case as the naming rule. But with the information
provided, you can determine how any of the naming rules works for an mpt
data object or a Simulink data object (Force upper case, Force lower
case, or Custom M-function).

Naming Rules and Alias Override (Global Change of Force Lower Case Rule)

Name of Data
Object in Model

Name in Alias
Field Package Result in Generated Code

A Simulink or mpt a

A D Simulink or mpt D

Changing Names of Identifiers
This procedure changes the names of all signal identifiers, except one, so that
they are spelled with all lowercase letters. For example, A in the definition
statement located in global.c is changed to a. The one exception is the
Final signal in the finalsig.c file. You change this identifier name to
Final_Signal. The names of the rest of the identifiers in the generated files
remain the same:

1 Open the Code Generation > Symbols pane of the Configuration
Parameters dialog.

2 In the Simulink data object naming rules section, set Signal naming
to Force lower case, and click Apply.

12-31

12 Managing Data Definitions and Declarations With the Data Dictionary

3 Display the base workspace and select Final.

4 In the right pane, type Final_Signal in the Alias text box, then click
Apply.

12-32

Applying Naming Rules to Identifiers Globally

5 On the Code Generation > General pane, click Generate code . Now,
the signal identifiers in global.c and global.h appear with lowercase
letters.

real_T F1 = 0.0;
real_T G1 = 1.0;
real_T G2 = 1.0;
real_T G3 = 1.0;
real_T Gain1 = 0.0;
real_T Gain2 = 0.0;
real_T a;
real_T b;
real_T c;
real_T d;
real_T ds;
real_T e;
real_T l;
real_T ss;

The statement defining the Final signal in finalsig.c looks like this:

real T Final_Signal;

The statement declaring this identifier in finalsig.h looks like this:

12-33

12 Managing Data Definitions and Declarations With the Data Dictionary

extern real_T Final_Signal;

Specifying Simulink Data Object Naming Rules
You specify Simulink data object naming rules on the Code
Generation > Symbols pane of the Configuration Parameters dialog box.
To access that pane,

1 Open an ERT-based model.

2 Open the Configuration Parameters dialog box from the Simulation menu
or Model Explorer.

3 Open the Code Generation > Symbols pane. See the subpane Simulink
data object naming rules.

Notice the preconfigured settings on this pane. If all of these are acceptable
as is, proceed to “Creating User Data Types” on page 12-38. Otherwise, follow
the procedures below, as desired, to change signal names, parameter names,
or parameter names that you want to use in a #define preprocessor directive.

12-34

Applying Naming Rules to Identifiers Globally

“Code Generation Pane: Symbols” in the Simulink Coder documentation
describes all fields on this pane and their possible settings for these
procedures.

• “Defining Rules That Change All Signal Names” on page 12-35

• “Defining Rules That Change All Parameter Names” on page 12-35

• “Defining Rules That Change All #defines” on page 12-36

Defining Rules That Change All Signal Names
This procedure allows you to change all of the model’s signal names, using the
same rule. The new names will appear as identifiers in the generated code:

1 In the Signal naming menu, click the desired selection. (“Signal naming”
explains the possible selections.) The default is None. If you selected
Custom M-function, go to the next step. Otherwise, click Apply and then
generate and inspect code.

2 Write a MATLAB function that changes all occurrences of signal names
in the model to appear the way you want as identifiers in the generated
code. (An example is shown in “Defining Rules That Change All Parameter
Names” on page 12-35.)

3 Save the function as a .m file in any folder that is in the MATLAB path.

4 In the M-function field under Signal naming, type the name of the file
you saved in the previous step.

5 Click Apply and then generate and inspect code.

Defining Rules That Change All Parameter Names
This procedure allows you to change all of the model’s parameter names, using
the same rule. The new names will appear as identifiers in the generated code:

1 In the Parameter naming field, click the desired selection. (“Parameter
naming” explains the possible selections.) The default is None. If you
selected Custom M-function, go to the next step. Otherwise, click Apply,
and proceed to “Defining Rules That Change All Signal Names” on page
12-35.

12-35

12 Managing Data Definitions and Declarations With the Data Dictionary

2 Write a MATLAB function that changes all occurrences of parameter
names in the model to appear the way you want as identifiers in the
generated code. For example, the code below changes all parameter names
as necessary to make their first letter uppercase, and their remaining
letters lowercase.

function
revisedName = initial_caps_only(name, object)
% INITIAL_CAPS_ONLY: User-defined naming rule causing each
% identifier in the generated code to have initial cap(s).
%
% name: name as spelled in model.
% object: the object of name; includes name's properties.
%
% revisedName: manipulated name returned to MPT for the
code.
%
%
:
revisedName = [upper(name(1)),lower(name(2:end))];
:

3 Save the function as a .m file in any folder that is in the MATLAB path.

4 In theM-function field under Parameter naming, type the name of the
file you saved in the previous step.

5 Click Apply and then define rules that apply to all signal names.

Defining Rules That Change All #defines
This procedure allows you to change all of the model’s parameter names
whose storage class you selected as Define in “Creating mpt Data Objects
with Data Object Wizard” on page 12-11, using the same rule. The new names
will appear as identifiers in the generated code:

1 In #define naming, click the desired selection. (“#define naming”
explains the possible selections.) The default is None. If you select Custom
M-function, go to the next step. Otherwise, click Apply and proceed to
“Defining Rules That Change All Parameter Names” on page 12-35.

12-36

Applying Naming Rules to Identifiers Globally

2 Write a MATLAB function that changes all occurrences of the parameter
name whose storage class you specified as Define in “Creating mpt Data
Objects with Data Object Wizard” on page 12-11 so that it appears the way
you want as an identifier in the generated code. (An example is shown
below.)

3 Save the function as a .m file in any folder that is in the MATLAB path.

4 In the M-function field under #define naming, type the name of the
file you saved in the previous step.

5 Click Apply and then define rules that change all parameter names.

12-37

12 Managing Data Definitions and Declarations With the Data Dictionary

Creating User Data Types

In this section...

“Overview” on page 12-38

“Registering User Data Types Using sl_customization.m” on page 12-39

“Example User Data Type Customization Using sl_customization.m” on
page 12-41

Note The capabilities described in this section apply both to Simulink and
mpt data objects.

Overview
By default, MathWorks data types (such as real32_T and uint8_T) are used to
define data in the generated code. If you prefer using your company-standard
data types (such as DBL and U8), you can define user data types. To use
this feature, you must register and create your data types so that the code
generator can associate them with the corresponding MathWorks C/C++ data
types. Then, the code generator will use your user data types in the generated
code instead of the MathWorks C/C++ data types.

Code generation software automatically associates the MathWorks C/C++
data types with the equivalent ANSI3 C/C++ data types. If you want to use
only the default MathWorks C/C++ data types, you do not need to register
and create your own data types.

To register user data types, use the Simulink customization file
sl_customization.m. This file is a mechanism that allows you to use
MATLAB code to perform customizations of the standard Simulink user
interface. The Simulink software reads the sl_customization.m file, if
present on the MATLAB path, when it starts and the customizations specified
in the file are applied to the Simulink session. For more information on the
sl_customization.m customization file, see “Customizing the Simulink User
Interface” in the Simulink documentation.

3. ANSI® is a registered trademark of the American National Standards Institute, Inc.

12-38

Creating User Data Types

Once you have registered your user data types using sl_customization.m,
you must create the Simulink.AliasType objects corresponding to your
user data types. If your model references a user data type either directly
(for example, in the output data type of a block) or indirectly (for example,
a Simulink.Signal object data type is set to the user data type), you must
create the corresponding Simulink.AliasType object before updating
the model, running a simulation, or generating code. To create the
Simulink.AliasType objects, you can:

• Invoke the MATLAB function ec_create_type_obj to programmatically
create all the required Simulink.AliasType objects

• Create Simulink.AliasType objects one at a time by selecting
Add > Simulink.AliasType in the Model Explorer

• Create Simulink.AliasType objects one at a time by entering the MATLAB
command userdatatype = Simulink.AliasType, where userdatatype is
a user data type registered in sl_customization.m

Registering User Data Types Using sl_customization.m
To register user data type customizations, you create an instance of
sl_customization.m and include it on the MATLAB path of the Simulink
installation that you want to customize. The sl_customization function
accepts one argument: a handle to a customization manager object. For
example,

function sl_customization(cm)

As a starting point for your customizations, the sl_customization function
must first get the default (factory) customizations, using the following
assignment statement:

hObj = cm.slDataObjectCustomizer;

You then invoke methods to register your customizations. The customization
manager object includes the following methods for registering Simulink user
data type customizations:

• addUserDataType(hObj, userName, builtinName, userHeader)

addUserDataType(hObj, userName, builtinName)

12-39

12 Managing Data Definitions and Declarations With the Data Dictionary

addUserDataType(hObj, userName, aliasTypeObj)

addUserDataType(hObj, userName, numericTypeObj)

addUserDataType(hObj, userName, fixdtString)

Registers the specified user-defined data type and adds it to the top of the
data type list, as displayed in the Data type pull-down list in the Model
Explorer.

- userName — Name of the user data type

- builtinName — MathWorks C/C++ data type to which userName is
mapped

- userHeader— Name of the user header file that includes the definition
of the user data type

- aliasTypeObj, numericTypeObj, or fixdtString —
Simulink.AliasType, Simulink.NumericType, or fixdt to
which userName is mapped

Note If a Simulink.AliasType or Simulink.NumericType object of the
same name as your registered user data type is already defined in the base
workspace, the definitions of the existing object and the registered user
data type must be consistent or a consistency warning will be displayed.

• moveUserDataTypeToTop(hObj, userName)

Moves the specified user-defined data type to the top of the data type list,
as displayed in the Data type pull-down list in the Model Explorer.

• moveUserDataTypeToEnd(hObj, userName)

Moves the specified user-defined data type to the end of the data type list,
as displayed in the Data type pull-down list in the Model Explorer.

• removeUserDataType(hObj, userName)

Removes the specified user-defined data type from the data type list.

Your instance of the sl_customization function should use these methods to
register user data types for your Simulink installation.

12-40

Creating User Data Types

The Simulink software reads the sl_customization.m file when it starts. If
you subsequently change the file, you must restart your Simulink session or
enter the following command at the MATLAB command line to effect the
changes:

sl_refresh_customizations

Example User Data Type Customization Using
sl_customization.m
The sl_customization.m file shown in Example 1: sl_customization.m for
User Data Type Customizations on page 12-41 uses the following methods:

• addUserDataType to register the user-defined data types MyInt16,
MyInt32, MyBool, and fixdt(1,8)

• moveUserDataTypeToTop to move MyBool to the top of the data type list, as
displayed in the Data type pull-down list in the Model Explorer

• removeUserDataType to remove the built-in data types boolean and
double from the data type list

Example 1: sl_customization.m for User Data Type Customizations

function sl_customization(cm)
% Register user customizations

% Get default (factory) customizations
hObj = cm.slDataObjectCustomizer;

% Add custom types
hObj.addUserDataType('MyInt16', 'int16_T', '<mytypes.h>');
hObj.addUserDataType('MyInt32', 'int32_T', '<mytypes.h>');
hObj.addUserDataType('MyBool','boolean_T');
hObj.addUserDataType('fixdt(1,8)');

% Make MyBool first in the list
hObj.moveUserDataTypeToTop('MyBool');

% Remove built-in boolean and double from the list
hObj.removeUserDataType('boolean');
hObj.removeUserDataType('double');

12-41

12 Managing Data Definitions and Declarations With the Data Dictionary

end

If you include the above file on the MATLAB path of the Simulink installation
that you want to customize, the specified customizations will appear in Model
Explorer. For example, you could view the customizations as follows:

1 Start a MATLAB session.

2 Open Model Explorer, for example, by entering the MATLAB command
daexplr.

3 Select Base Workspace.

4 Add an mpt signal, for example, by selecting Add > MPT Signal.

5 In the right-hand pane display for the added mpt signal, examine the Data
type drop-down list, noting the impact of the changes specified in Example
1: sl_customization.m for User Data Type Customizations on page 12-41.

12-42

Selecting User Data Types for Signals and Parameters

Selecting User Data Types for Signals and Parameters

In this section...

“Preparing User Data Types” on page 12-43

“Selecting the User Data Types” on page 12-45

Preparing User Data Types
You can use user-defined data types for Simulink signals and parameters and
their corresponding identifiers in generated code. This is true whether or not
a signal or parameter has a Simulink data object associated with it.

Before you can select a user data type for a signal or parameter, you must:

1 Create a user data type (alias), as explained in the description of
Simulink.AliasType in the Simulink documentation. For the example in
“Selecting the User Data Types” on page 12-45 demonstrating how to select
user data types for signals and parameters, create the alias data type f32.

2 Register the user data type so that it is associated with the corresponding
MathWorks C/C++ data type, as explained in “Creating User Data Types”
on page 12-38. For the example, register the data type f32 so that it is
associated with type real32_T. The call to function addUserDataType in
the sl_customization.m file you use for the registration must specify:

• f32 as the user data type

• real32_T as the built-in data type

• <userdata_types.h> as the user header file that is to include the user
data type definition

For example,

function sl_customization(cm)

hObj = cm.slDataObjectCustomizer;

addUserDataType(hObj, 'f32', 'real32_T', '<userdata_types.h>');

12-43

12 Managing Data Definitions and Declarations With the Data Dictionary

end

3 If you have not already done so, add the directory containing the
sl_customization.m file that you created or modified in step 1 to the
MATLAB search path.

4 Open a model. The example uses the following model.

5 Create a data dictionary for the model, as explained in “Creating Simulink
and mpt Data Objects” on page 12-4, to associate signals and parameters
with data objects. For the example, the Model Explorer display must
appear as shown below. The three data objects that appear, sig1 , sig2,
and g, and the registered user data type, f32, appear in the middle pane.
The "T" indicates that f32 is an alias data type.

12-44

Selecting User Data Types for Signals and Parameters

For the selection procedure and to continue with the example, continue to
“Selecting the User Data Types” on page 12-45.

Selecting the User Data Types
After completing the preparation explained in “Preparing User Data Types”
on page 12-43, you can use the user-defined data types for Simulink signals
and parameters and for their corresponding identifiers in the generated code.
You can use user-defined data types with signals and parameters whether or
not they have Simulink objects associated with them.

1 For an mpt object that is associated with a signal or parameter in your
model, in the Data type field, select the user data type that you want.
For example, select f32, for sig1.

This selects f32 for the sig1 data object in the data dictionary, but does
not select f32 for the corresponding labeled signal in the model. Therefore,
the two may be in conflict. If you try to update the model, you could get
an error message.

To continue with the example, type f32 into the Data type field for sig1.

2 Select the model and double-click the signal or parameter source block.
(The source block of a model signal or parameter controls the signal’s or
parameter’s data type.) For example, in the example model the Sum block
is the source block for sig1. Double-click the Sum block.

The Function Block Parameters dialog box opens.

12-45

12 Managing Data Definitions and Declarations With the Data Dictionary

3 Select the Signal Attributes tab.

4 In the Output data type or Parameter data type field, type the name
of the user data type that you specified for the data object in step 1, and
click Apply. The user data type of the signal in the model and that of
the signal object are now the same.

12-46

Selecting User Data Types for Signals and Parameters

Alternatively, you can use dictionary-driven data typing. In the
Output data type field, specify object.DataType, where object is the
case-sensitive object name. For example, you can specify sig1.DataType
instead of f32.

The advantage of using the alternative is that subsequent user data type
changes for the object in the dictionary automatically change the user data
type of the corresponding model signal or parameter.

5 Repeat steps 1 through 4 for each remaining model signal and parameter
that has a corresponding signal object for which you selected a user data
type.

6 Save the model and save all of the data objects in the MATLAB base
workspace in a .mat file for reuse later. Generated code for sig1 in the
example model (with default MPF settings) would appear as follows:

In sampleUserDT.c f32 sig1;

In sampleUserDT_types.h #include <userdata_types.h>

12-47

12 Managing Data Definitions and Declarations With the Data Dictionary

Registering mpt User Object Types

In this section...

“Introduction” on page 12-48

“Registering mpt User Object Types Using sl_customization.m” on page
12-48

“Example mpt User Object Type Customization Using sl_customization.m”
on page 12-50

Introduction
Embedded Coder software allows you to create custom mpt object types
and specify properties and property values to be associated with them (see
“Creating mpt Data Objects with Data Object Wizard” on page 12-11). Once
created, a user object type can be applied to data objects displayed in Model
Explorer. When you apply a user object type to a data object, by selecting a
type name in the User object type pull-down list in Model Explorer, the data
object is automatically populated with the properties and property values that
you specified for the user object type.

To register mpt user object type customizations, use the Simulink
customization file sl_customization.m. This file is a mechanism that allows
you to use MATLAB code to perform customizations of the standard Simulink
user interface. The Simulink software reads the sl_customization.m file, if
present on the MATLAB path, when it starts and the customizations specified
in the file are applied to the Simulink session. For more information on the
sl_customization.m customization file, see “Customizing the Simulink User
Interface” in the Simulink documentation.

Registering mpt User Object Types Using
sl_customization.m
To register mpt user object type customizations, you create an instance of
sl_customization.m and include it on the MATLAB path of the Simulink
installation that you want to customize. The sl_customization function
accepts one argument: a handle to a customization manager object. For
example,

12-48

Registering mpt User Object Types

function sl_customization(cm)

As a starting point for your customizations, the sl_customization function
must first get the default (factory) customizations, using the following
assignment statement:

hObj = cm.slDataObjectCustomizer;

You then invoke methods to register your customizations. The customization
manager object includes the following methods for registering mpt user object
type customizations:

• addMPTObjectType(hObj, objectTypeName, classtype, propName1,
propValue1, propName2, propValue2, ...)

addMPTObjectType(hObj, objectTypeName, classtype, {propName1,
propName2, ...}, {propValue1, propValue2, ...})

Registers the specified user object type, along with specified values for
object properties, and adds the object type to the top of the user object
type list, as displayed in the User object type pull-down list in the Model
Explorer.

- objectTypeName — Name of the user object type

- classType — Class to which the user object type applies: 'Signal',
'Parameter', or 'Both'

- propName— Name of a property of an mpt or mpt-derived data object to
be populated with a corresponding propValue when the registered user
object type is selected

- propValue— Specifies the value for a corresponding propName

• moveMPTObjectTypeToTop(hObj, objectTypeName)

Moves the specified user object type to the top of the user object type list, as
displayed in the User object type pull-down list in the Model Explorer.

• moveMPTObjectTypeToEnd(hObj, objectTypeName)

Moves the specified user object type to the end of the user object type list,
as displayed in the User object type pull-down list in the Model Explorer.

• removeMPTObjectType(hObj, objectTypeName)

12-49

12 Managing Data Definitions and Declarations With the Data Dictionary

Removes the specified user object type from the user object type list.

Your instance of the sl_customization function should use these methods to
register mpt object type customizations for your Simulink installation.

The Simulink software reads the sl_customization.m file when it starts. If
you subsequently change the file, you must restart your MATLAB session
to effect the changes.

Example mpt User Object Type Customization Using
sl_customization.m
The sl_customization.m file shown in Example 2: sl_customization.m for
mpt Object Type Customizations on page 12-50 uses the addMPTObjectType
method to register the user signal types EngineType and FuelType for mpt
objects.

Example 2: sl_customization.m for mpt Object Type Customizations

function sl_customization(cm)
% Register user customizations

% Get default (factory) customizations
hObj = cm.slDataObjectCustomizer;

% Add commonly used signal types
hObj.addMPTObjectType(...

'EngineType','Signal',...
'DataType', 'uint8',...
'Min', 0,...
'Max', 255,...
'DocUnits','m/sec');

hObj.addMPTObjectType(...
'FuelType','Signal',...
'DataType', 'int16',...
'Min', -12,...
'Max', 3000,...
'DocUnits','mg/hr');

12-50

Registering mpt User Object Types

end

If you include the above file on the MATLAB path of the Simulink installation
that you want to customize, the specified customizations will appear in Model
Explorer. For example, you could view the customizations as follows:

1 Start a MATLAB session.

2 Open Model Explorer, for example, by entering the MATLAB command
daexplr.

3 Select Base Workspace.

4 Add an mpt signal, for example, by selecting Add > MPT Signal.

5 In the right-hand pane display for the added mpt signal, examine the User
object type drop-down list, noting the impact of the changes specified in
Example 2: sl_customization.m for mpt Object Type Customizations on
page 12-50.

6 From the User object type drop-down list, select one of the registered user
signal types, for example, FuelType, and verify that the displayed settings
are consistent with the arguments specified to the addMPTObjectType
method in sl_customization.m.

12-51

12 Managing Data Definitions and Declarations With the Data Dictionary

Replacing Built-In Data Type Names in Generated Code

In this section...

“Replacing Built-In Data Type Names” on page 12-52

“Replacing boolean with an Integer Data Type” on page 12-57

“Data Type Replacement Limitations” on page 12-59

Replacing Built-In Data Type Names
If your application requires you to replace built-in data type names with
user-defined replacement data type names in the generated code, you can
do so from the Code Generation > Data Type Replacement pane of the
Configuration Parameters dialog box, shown below in the Model Explorer
view.

This pane is available for ERT target based Simulink models. In addition
to providing a mechanism for mapping built-in data types to user-defined
replacement data types, this feature:

• Performs consistency checks to ensure that your specified data type
replacements are consistent with your model’s data types.

• Allows many-to-one data type replacement, the ability to map multiple
built-in data types to one replacement data type in generated code. For

12-52

Replacing Built-In Data Type Names in Generated Code

example, built-in data types uint8 and boolean could both be replaced in
your generated code by a data type U8 that you have previously defined.

Note For limitations that apply, see “Data Type Replacement Limitations”
on page 12-59.

If you select Replace data type names in the generated code, the Data
type names table is displayed:

The table Data type names lists each Simulink built-in data type name
along with its code generation data type name. Selectively fill in fields in the
third column with your replacement data types. Each replacement data type
should be the name of a Simulink.AliasType object that exists in the base
workspace. Replacements may be specified or not for each individual built-in
type. For each replacement data type entered, the BaseType property of the
associated Simulink.AliasType object must be consistent with the built-in
data type it replaces.

12-53

12 Managing Data Definitions and Declarations With the Data Dictionary

• For double, single, int32, int16, int8, uint32, uint16, uint8, the
replacement data type’s BaseType must match the built-in data type.

• For boolean, the replacement data type’s BaseType must be either an 8-bit
integer or an integer of the size displayed for Number of bits: int on
the Hardware Implementation pane of the Configuration Parameters
dialog box.

• For int, uint, and char, the replacement data type’s size must match
the size displayed for Number of bits: int or Number of bits: char on
the Hardware Implementation pane of the Configuration Parameters
dialog box.

An error occurs if a replacement data type specification is inconsistent.

For example, suppose that you have previously defined the following
replacement data types, which exist as Simulink.AliasType objects in the
base workspace:

User-Defined Name Description

FLOAT64 64-bit floating point

FLOAT32 32-bit floating point

S32 32-bit integer

S16 16-bit integer

S8 8-bit integer

U32 Unsigned 32-bit integer

U16 Unsigned 16-bit integer

U8 Unsigned 8-bit integer

CHAR Character data

You can fill in the Data Type Replacement pane with a one-to-one
replacement mapping, as follows:

12-54

Replacing Built-In Data Type Names in Generated Code

You can also apply a many-to-one data type replacement mapping. For
example, in the following display:

• int32 and int are replaced with user type S32

• uint32 and uint are replaced with user type U32

• uint8 and boolean are replaced with user type U8

Note Many-to-one data type replacement does not support the char (char_T)
built-in data type. Use char only in one-to-one data type replacements.

12-55

12 Managing Data Definitions and Declarations With the Data Dictionary

The user-defined replacement types you specify will appear in your model’s
generated code in place of the corresponding built-in data types. For example,
if you specify user-defined data type FLOAT64 to replace built-in data type
real_T (double), then the original generated code shown in Example 3:
Generated Code with real_T Built-In Data Type on page 12-57 will become
the modified generated code shown in Example 4: Generated Code with
FLOAT64 Replacement Data Type on page 12-57.

12-56

Replacing Built-In Data Type Names in Generated Code

Example 3: Generated Code with real_T Built-In Data Type

...
/* Model initialize function */
void sinwave_initialize(void)
{
...

{real_T *dwork_ptr = (real_T *) &sinwave_DWork.lastSin;
...
}
...

Example 4: Generated Code with FLOAT64 Replacement Data Type

...
/* Model initialize function */
void sinwave_initialize(void)
{
...

{FLOAT64 *dwork_ptr = (FLOAT64 *) &sinwave_DWork.lastSin;
...
}
...

Replacing boolean with an Integer Data Type
Using data type replacement, you can replace the boolean built-in data type
in generated code with any integer type, among the following, that might
improve the performance of generated code on your production hardware:

• int8

• uint8

• intn

• uintn

where n is 8, 16, or 32, matching the integer word size for the production
hardware (for example, int32 for 32-bit hardware).

For example, to map boolean to the int32 data type, perform the following
steps.

12-57

12 Managing Data Definitions and Declarations With the Data Dictionary

1 Define a Simulink.AliasType object with a base type of int32:

mybool = Simulink.AliasType;
mybool.BaseType = 'int32';

2 Open an ERT-based model. In the Data Type Replacement pane of the
Configuration Parameters dialog box, map boolean (boolean_T) to the
replacement data type mybool.

In the resulting generated code, boolean is replaced with mybool. For
example, rtwtypes.h contains:

/* Generic type definitions ... */

...

typedef int boolean_T;

...

/* Define RTW replacement data types. */

typedef boolean_T mybool; /* User defined replacement datatype for boolean_T */

Boolean data in the generated code is declared with mybool. For example,
given a model with a Boolean output Out1, an Out1 declaration such as

12-58

Replacing Built-In Data Type Names in Generated Code

boolean_T Out1; /* '<Root>/Out1' */

instead is generated in model.h as

mybool Out1; /* '<Root>/Out1' */

Data Type Replacement Limitations

• Data type replacement does not support multiple levels of mapping. Each
replacement data type name maps directly to one or more built-in data
types.

• Data type replacement is not supported for simulation target code
generation for referenced models.

• Data type replacement is not supported if the GRT compatible call
interface option is selected for your model.

• Data type replacement occurs during code generation for all .c, .cpp, and
.h files generated in build directories (including top and referenced model
build directories) and in the _sharedutils directory. Exceptions are as
follows:

rtwtypes.h
model_sf.c or .cpp (ERT S-function wrapper)
model_dt.h (C header file supporting external mode)
model_capi.c or .cpp
model_capi.h

• Data type replacement is not supported for complex data types.

• Many-to-one data type replacement is not supported for the char built-in
data type. Attempting to use char as part of a many-to-one mapping to a
user-defined data type introduces a violation of the MISRA C® specification.
Specifically, if char (char_T) and either int8 (int8_T) or uint8 (uint8_T)
are mapped to the same user replacement type, the result is a MISRA C
violation. Additionally, if you try to generate C++ code, invalid implicit
type casts are made and compile-time errors may result. Use char only in
one-to-one data type replacements.

12-59

12 Managing Data Definitions and Declarations With the Data Dictionary

Customizing Data Object Wizard User Packages

In this section...

“Introduction” on page 12-60

“Registering Data Object Wizard User Packages Using sl_customization.m”
on page 12-61

“Example Data Object Wizard User Package Customization Using
sl_customization.m” on page 12-62

Introduction
Data Object Wizard (DOW) can be run in connection with a Simulink model
to quickly determine which model data are not associated with data objects
and to create and associate data objects with the data. (For more information
about Data Object Wizard, see “Data Object Wizard” in the Simulink
documentation and “Creating Simulink Data Objects with Data Object
Wizard” on page 12-5.) If you want the wizard to use data object classes from
a package other than the standard Simulink class package to create the
data objects, you select the package from the wizard’s Choose package for
selected data objects list. You can customize the package list by adding and
removing packages and modifying the list order.

Note User-defined packages that you add to the list must contain a
Simulink.Signal subclass named Signal and a Simulink.Parameter
subclass named Parameter.

To register Data Object Wizard user package customizations, use the Simulink
customization file sl_customization.m. This file is a mechanism that allows
you to use MATLAB code to perform customizations of the standard Simulink
user interface. The Simulink software reads the sl_customization.m file, if
present on the MATLAB path, when it starts and the customizations specified
in the file are applied to the Simulink session. For more information on the
sl_customization.m customization file, see “Customizing the Simulink User
Interface” in the Simulink documentation.

12-60

Customizing Data Object Wizard User Packages

Registering Data Object Wizard User Packages Using
sl_customization.m
To register Data Object Wizard user package customizations, you create an
instance of sl_customization.m and include it on the MATLAB path of the
Simulink installation that you want to customize. The sl_customization
function accepts one argument: a handle to a customization manager object.
For example,

function sl_customization(cm)

As a starting point for your customizations, the sl_customization function
must first get the default (factory) customizations, using the following
assignment statement:

hObj = cm.slDataObjectCustomizer;

You then invoke methods to register your customizations. The customization
manager object includes the following methods for registering DOW user
package customizations:

• addUserPackage(hObj, packageName)

addUserPackage(hObj, cellArrayOfStrings)

Adds the specified user package(s) to the top of the package list, as
displayed in the Choose package for selected data objects pull-down
list in Data Object Wizard.

• moveUserPackageToTop(hObj, packageName)

Moves the specified user package to the top of the package list, as displayed
in the Choose package for selected data objects pull-down list in Data
Object Wizard.

• moveUserPackageToEnd(hObj, packageName)

Moves the specified user package to the end of the package list, as displayed
in the Choose package for selected data objects pull-down list in Data
Object Wizard.

• removeUserPackage(hObj, packageName)

Removes the specified user package from the package list.

• setUserPackages(hObj, cellArrayOfStrings)

12-61

12 Managing Data Definitions and Declarations With the Data Dictionary

Replaces the entire package list with a specified list of user packages.

Your instance of the sl_customization function should use these methods to
register DOW user package customizations for your Simulink installation.

The Simulink software reads the sl_customization.m file when it starts. If
you subsequently change the file, you must restart your Simulink session or
enter the following command at the MATLAB command line to effect the
changes:

sl_refresh_customizations

Example Data Object Wizard User Package
Customization Using sl_customization.m
The sl_customization.m file shown in Example 5: sl_customization.m for
DOW User Package Customizations on page 12-62 uses the following methods:

• addUserPackage to add the user packages ECoderDemos and
SimulinkDemos (present by default in the MATLAB path) to the top of the
package list, as displayed in the Choose package for selected data
objects pull-down list in Data Object Wizard

Note PackagesECoderDemos and SimulinkDemos must contain a
Simulink.Signal subclass named Signal and a Simulink.Parameter
subclass named Parameter.

• moveUserPackageToEnd to move SimulinkDemos to the end of the package
list

Example 5: sl_customization.m for DOW User Package
Customizations

function sl_customization(cm)
% Register user customizations

% Get default (factory) customizations
hObj = cm.slDataObjectCustomizer;

12-62

Customizing Data Object Wizard User Packages

% Add user packages
hObj.addUserPackage({'ECoderDemos', 'SimulinkDemos'});

% Move SimulinkDemos to end of list
hObj.moveUserPackageToEnd('SimulinkDemos');

end

12-63

12 Managing Data Definitions and Declarations With the Data Dictionary

If you include the above file on the MATLAB path of the Simulink installation
that you want to customize, the specified customizations will appear in Data
Object Wizard. For example, you could view the customizations as follows:

1 Start a MATLAB session.

2 Launch a model, such as rtwdemo_udt.

3 Open Data Object Wizard, for example, by selecting Tools > Data Object
Wizard in the Simulink window.

4 In the Data Object Wizard dialog box, click the Find button to generate
a list of one or more data objects.

5 Examine the Choose package for selected data objects drop-down list,
noting the impact of the changes specified in Example 5: sl_customization.m
for DOW User Package Customizations on page 12-62.

12-64

Customizing Data Object Wizard User Packages

To replace the entire Data Object Wizard package list with a specified list of
user packages, you can use a method invocation similar to the following:

hObj.setUserPackages({'myPackage1', 'ECoderDemos', 'mpt'});

12-65

12 Managing Data Definitions and Declarations With the Data Dictionary

12-66

13

Managing Placement of
Data Definitions and
Declarations

• “Overview of Data Placement” on page 13-2

• “Priority and Usage” on page 13-3

• “Ownership Settings” on page 13-10

• “Memory Section Settings” on page 13-11

• “Data Placement Rules” on page 13-12

• “Example Settings” on page 13-13

• “Data Placement Rules and Effects” on page 13-22

13 Managing Placement of Data Definitions and Declarations

Overview of Data Placement
This chapter focuses on module packaging features (MPF) settings that are
interdependent. Their combined values, along with Simulink partitioning,
determine the file placement of data definitions and declarations, or data
placement. This includes

• The number of files generated.

• Whether or not the generated files contain definitions for a model’s global
identifiers. And, if a definition exists, the settings determine the files in
which MPF places them.

• Where MPF places global data declarations (extern).

The following six MPF settings are distributed among the main procedures
and form an important interdependency:

• The Data definition field on the Code Placement pane of the
Configuration Parameters dialog box.

• The Data declaration field on the Code Placement pane of the
Configuration Parameters dialog box.

• The Owner field of the data object in the Model Explorer, and theModule
naming and Module name fields on the Code Placement pane of the
Configuration Parameters dialog box. The term "ownership settings" refers
to Owner, Module naming, and Module name together.

• The Definition file field of the data object on the Model Explorer.

• The Header file field of the data object on the Model Explorer.

• TheMemory section field of the data object on the Model Explorer.

13-2

Priority and Usage

Priority and Usage

In this section...

“Overview” on page 13-3

“Read-Write Priority” on page 13-4

“Global Priority” on page 13-7

“Definition File, Header File, and Ownership Priorities” on page 13-8

Overview
There is a priority order among interdependent MPF settings. From highest
to lowest, the priorities are

• Definition File priority

• Header File priority

• Ownership priority

• Read-Write priority or Global priority

Priority order varies inversely with frequency of use, as illustrated below. For
example, Definition File is highest priority but least used.

13-3

13 Managing Placement of Data Definitions and Declarations

����������	���	��������������
����
�	������������������

 ��!�
����������

"�#�
����������

"��
���
��

$�
���
��

%���&����&�'�	�

 ������'�	�

�#&��
!��

���������� �	���	

MPF Settings Priority and Usage

Unless they are overridden, the Read-Write and Global priorities place in the
generated files all of the model’s MPF-derived data objects that you selected
using Data Object Wizard. (See “Creating Simulink Data Objects with Data
Object Wizard” on page 12-5 for details.) Before generating the files, you can
use the higher priority Definition file, Header file, and Ownership, as desired,
to override Read-Write or Global priorities for single data objects. Most
users will employ Read-Write or Global, without an override. A few users,
however, will want to do an override for certain data objects. We expect that
those users whose applications include multiple modules will want to use
the Ownership priority.

The priorities are in effect only for those data objects that are derived from
Simulink.Signal and Simulink.Parameter, and whose custom storage
classes are specified using the Custom Storage Class Designer. (For details,
see “Designing Custom Storage Classes and Memory Sections” on page 8-12.)
Otherwise, the build process determines the data placement.

Read-Write Priority
This is the lowest priority. Consider that a model consists of one or more
Simulink blocks or Stateflow diagrams. There can be subsystems within

13-4

Priority and Usage

these. For the purpose of illustration, think of a model with one top-level block
called fuelsys. You double-clicked the block and now see three subsystems
labeled subsys1, subsys2 and subsys3, as shown in the next figure. Signals
a and b are outputs from the top-level block (fuelsys). Signal a is an input
to subsys1 and b is input to subsys2. Signal c is an output from subsys1.
Notice the other inputs and outputs (d and e). Signals a through e have
corresponding data objects and are part of the code generation data dictionary.

As explained in Chapter 12, “Managing Data Definitions and Declarations
With the Data Dictionary”, MPF provides you with the means of selecting
a data object that you want defined as an identifier in the generated code.
MPF also allows you to specify property values for each data object. For this
illustration, we choose to include all of the data objects to be in the dictionary.

$���	

��
�
(

��
�
)

��
�
*

���	
�

�

�

�

�

�

� �

The Generated Files
We generate code for this model. As shown in the figure below, this results
in a .c source file corresponding to each of the subsystems. (In actual
applications, there could be more than one .c source file for a subsystem.

13-5

13 Managing Placement of Data Definitions and Declarations

This is based on the file partitioning previously selected for the model. But for
our illustration, we only need to show one for each subsystem.) Data objects a
through e have corresponding identifiers in the generated files.

A .c source file has one or more functions in it, depending on the internal
operations (functions) of its corresponding subsystem. An identifier in a
generated .c file has local scope when it is used only in one function of that
.c file. An identifier has file scope when more than one function in the same
.c file uses it. An identifier has global scope when more than one of the
generated files uses it.

A subsystem’s source file always contains the definitions for all of that
subsystem’s data objects that have local scope or file scope. (These definitions
are not shown in the figure.) But where are the definitions and declarations
for data objects of global scope? These are shown in the next figure.

$���	

��
�
(

��
�
)

��
�
*

���	
�

�

�

�

�

�

� �

��&�������'�	�

��
�	�
�����������������������

��������� ������	��

������
�� ��������

������

�������������

������

�������������

�������������

������

�������������

������

������

When the Read-Write priority is in effect, this source file contains the
definitions for the subsystem’s global data objects, if this is the file that first
writes to the data object’s address. Other files that read (use) that data object

13-6

Priority and Usage

only include a reference to it. This is why this priority is called Read-Write.
Since a read and a write of a file are analogous to input and output of a model’s
block, respectively, there is another way of saying this. The definitions of a
block’s global data objects are located in the corresponding generated file, if
that data object is an output from that block. The declarations (extern) of a
block’s global data objects are located in the corresponding generated file, if
that data object is an input to that block.

Settings for Read-Write Priority
The generated files and what they include, as just described, occur when the
Read-Write priority is in effect. For this to be the case, the other priorities
are turned off. That is,

• The Data definition field on the Code Placement pane is set to Data
defined in source file.

• The Data declaration field on the Code Placement pane is set to Data
declared in source file.

• The Owner field on the Model Explorer is blank, and theModule naming
field on the Code Placement pane is set to Not specified. (When Not
specified is selected, the Module name field does not appear.)

• Definition file and Header file on the Model Explorer are blank.

Global Priority
This has the same priority as Read-Write (the lowest) priority. The settings
for this are the same as for Read-Write Priority, except

• The Data definition field on the Code Placement pane is set to Data
defined in single separate source file.

• The Data declaration field on the Code Placement pane is set to Data
declared in single separate header file.

The generated files that result are shown in the next figure. A subsystem’s
data objects of local or file scope are defined in the .c source file where the
subsystem’s functions are located (not shown). The data objects of global
scope are defined in another .c file (called global.c in the figure). The
declarations for the subsystem’s data objects of global scope are placed in a .h
file (called global.h).

13-7

13 Managing Placement of Data Definitions and Declarations

For example, all data objects of local and file scope for subsys1 are defined
in subsys1.c. Signal c in the model is an output of subsys1 and an input
to subsys2. So c is used by more than one subsystem and thus is a global
data object. Since global priority is in effect, the definition for c (int c;) is
in global.c. The declaration for c (extern int c;) is in global.h. Since
subsys2 uses (reads) c, #include "global.h" is in subsys2.c.

$���	

��
�
(

��
�
)

��
�
*

���	
�

�

�

�

�

�

� �

��&�������'�	�

��
�	�
�����	���	���������

��������� ������	��

������
�� ��������

����������������

������

������

�������

������

������

������ ������

�������������

�������������

�������������

�������������

�������������

����������������

���������������� ����������������

Definition File, Header File, and Ownership Priorities
While the Read-Write and Global priorities operate on all MPF-derived data
objects that you want defined in the generated code, the remaining priorities
allow you to override the Read-Write or Global priorities for one or more
particular data objects. There is a high-to-low priority among these remaining

13-8

Priority and Usage

priorities — Definition File, Header File, and Ownership — for a particular
data object, as shown in MPF Settings Priority and Usage on page 13-4

13-9

13 Managing Placement of Data Definitions and Declarations

Ownership Settings
Ownership settings refers to the values specified for theModule naming and
Module names fields on the Code Placement pane of the Configuration
Parameters dialog box, and the Owner field of a data object in the Model
Explorer. These settings have no effect on what files are generated. Their
effects only have to do with definitions and extern statements. There are
five possible configurations, as shown in “Effects of Ownership Settings” on
page 13-22.

13-10

Memory Section Settings

Memory Section Settings
Memory sections allow you to specify storage directives for a data object. As
shown in Parameter and Signal Property Values on page 7-2, the possible
values for the Memory section property of a parameter or signal object are
Default, MemConst, MemVolatile or MemConstVolatile.

If you specify a filename for Definition file, and select Default, MemConst,
MemVolatile or MemConstVolatile for the Memory section property, the
code generation software generates a .c file and an .h file. The .c file
contains the definition for the data object with the pragma statement or
qualifier associated with theMemory section selection. The .h file contains
the declaration for the data object. The .h file can be included, using the
preprocessor directive #include, in any file that needs to reference the data
object.

You can add more memory sections. For more information, see “Designing
Custom Storage Classes and Memory Sections” on page 8-12 and Chapter
9, “Memory Sections”.

13-11

13 Managing Placement of Data Definitions and Declarations

Data Placement Rules
For a complete set of data placement rules in convenient tabular form, based
on the priorities discussed in this chapter, see “Data Placement Rules and
Effects” on page 13-22.

13-12

Example Settings

Example Settings

In this section...

“Introduction” on page 13-13

“Read-Write Example” on page 13-15

“Ownership Example” on page 13-17

“Header File Example” on page 13-18

“Definition File Example” on page 13-20

Introduction
“Example Settings and Resulting Generated Files” on page 13-23 provides
example settings for one data object of a model. Eight examples are listed so
that you can see the generated files that result from a wide variety of settings.
Four examples from this table are discussed below in more detail. These
discussions provide adequate information for understanding the effects of
any settings you might choose. For illustration purposes, the four examples
assume that we are dealing with an overall system that controls engine idle
speed.

The next figure shows that the software component of this example system
consists of two modules, IAC (Idle Air Control), and IO (Input-Output).

13-13

13 Managing Placement of Data Definitions and Declarations

+&��&��,�	��-�������&���	�-�
��.

��������	��
���������������	 ��������	

����	�����������
�		���	���
�	������������������

�	�	����������	��
��

�	�	����������	��
��

�		���	���
�	������������������

� �!���������� �
����"�#��������$�%�%�
����"������#��$�%�%�

� �&�������!��� �
�����������"�#��������
�����������"������#��

'(��

'(��

The code in the IO module controls the system’s IO hardware. Code is
generated only for the IAC module. (Some other means produced the code for
the IO module, such as hand-coding.) So the code in IO is external to MPF,
and can illustrate legacy code. To simplify matters, the IO code contains one
source file, called IO.c, and one header file, called IO.h.

The IAC module consists of two Stateflow charts, spd_filt and iac_ctrl.
The spd_filt chart has two signals (meas_spd) and filt_spd), and one
parameter (a). The iac_ctrl chart also has two signals (filt_spd and
iac_cmd) and a parameter (ref_spd). (The parameters are not visible in the
top-level charts.) One file for each chart is generated. This example system
allows us to illustrate referencing from file to file within the MPF module,
and model to external module. It also illustrates the case where there is no
such referencing.

13-14

Example Settings

Proceed to the discussion of the desired example settings:

• “Read-Write Example” on page 13-15

• “Ownership Example” on page 13-17

• “Header File Example” on page 13-18

• “Definition File Example” on page 13-20

Read-Write Example
These settings and the generated files that result are shown as Example
Settings 1 in “Example Settings and Resulting Generated Files” on page
13-23. As you can see from the table, this example illustrates the case in
which only one .c source file (for each chart) is generated.

So, for the IAC model, select the following settings. Accept the Data defined
in source file in the Data definition field and the Data declared in
source file in the Data declaration field on the Code Placement pane of
the Configuration Parameters dialog box. Accept the default Not specified
selection in the Module naming field. Accept the default blank settings for
the Owner, Definition file and Header file fields on the Model Explorer.
For Memory section, accept Default. Now the Read-Write priority is in

13-15

13 Managing Placement of Data Definitions and Declarations

effect. Generate code. The next figure shows the results in terms of definition
and declaration statements.

+&��&��,�	��-�������&���	�-�
��.�/�����������+0�.�	�1

��������	��
���������������	 ��������	

����	�����������
�		���	���
�	������������������

�		���	���
�	������������������

� �!���������� �

����"�#��������$�%�%�

����"������#��$�%�%�

� �&�������!��� �

�����������"�#��������

�����������"������#��

'(��

'(��

���������

���������

� �!���������� �

����������"���$�%�)�

����"���������$�%�%�

����"�#��������$�%�%�

� �!���������� �

����������"���������$�%�%�

����"������#��$�%�%�

� !���������� �

�����������"���������

The code generator generated a spd_filt.c for the spd_filt chart and
iac_ctrl.c for the iac_ctrl chart. As you can see, MPF placed all definitions
of data objects for the spd_filt chart in spd_filt.c. It placed all definitions
of data objects for the iac_ctrl chart in iac_ctrl.c.

However, notice real_T filt_spd. This data object is defined in spd_filt.c
and declared in iac_ctrl.c. That is, since the Read-Write priority is in
effect, filt_spd is defined in the file that first writes to its address. And, it is
declared in the file that reads (uses) it. Further, real_T meas_spd is defined
in both spd_filt.c and the external IO.c. And, real_T iac_cmd is defined
in both iac_ctrl.c and IO.c.

13-16

Example Settings

Ownership Example
See tables “Effects of Ownership Settings” on page 13-22 and “Example
Settings and Resulting Generated Files” on page 13-23. In the “Read-Write
Example” on page 13-15, there are several instances where the same data
object is defined in more than one .c source file, and there is no declaration
(extern) statement. This would result in compiler errors during link time.
But in this example, we configure MPF Ownership rules so that adequate
linking can take place. Notice the Example Settings 2 row in “Example
Settings and Resulting Generated Files” on page 13-23. Except for the
ownership settings, assume these are the settings you made for the model in
the IAC module. Since this example has no Definition file or Header file
specified, now Ownership takes priority. (If there were a Definition file or
Header file specified, MPF would ignore the ownership settings.)

On the Code Placement pane of the Configuration Parameters dialog box,
select User specified in theModule naming field, and specify IAC in the
Module name field (case sensitive). Open the Model Explorer (by issuing
the MATLAB command daexplr) and, for all data objects except meas_spd
and iac_cmd, type IAC in the Owner field (case sensitive). Then, only for the
meas_spd and iac_cmd data objects, type IO as their Owner (case sensitive).
Generate code.

13-17

13 Managing Placement of Data Definitions and Declarations

The results are shown in the next figure. Notice the extern real_T meas_spd
statement in spd_filt.c, and extern real_T iac_cmd in iac_ctrl.c.
MPF placed these declaration statements in the correct files where these data
objects are used. This allows the generated source files (spd_filt.c and
iac_ctrl.c) to be compiled and linked with IO.c without errors.

+&��&��,�	��-�������&���	�-�
��.�/�#&��
!���+0�.�	�1

��������	��
���������������	 ��������	

����	�����������
�		���	���
�	������������������

�		���	���
�	������������������

� �!���������� �

����"�#��������$�%�%�

����"������#��$�%�%�

� �&�������!��� �

�����������"�#��������

�����������"������#��

'(��

'(��

���������

���������

� �!���������� �

����������"���$�%�)�

����"���������$�%�%�

� !���������� �

�����������"�#��������

� �!���������� �

����������"���������$�%�%�

� !���������� �

�����������"���������

�����������"������#��

Header File Example
These settings and the generated files that result are shown as Example
Settings 3 in “Example Settings and Resulting Generated Files” on page
13-23. Since this example has no Definition file specified, it allows us to
describe the effects of the Header file setting. (If there were a Definition
file, MPF would ignore the Header file setting.) The focus of this example is
to show how the Header file settings result in the linking of the two chart
source files to the external IO files, shown in the next figure. (Also, ownership
settings will be used to link the two chart files with each other.)

13-18

Example Settings

As you can see in the figure, the meas_spd and iac_cmd identifiers are defined
in IO.c and declared in IO.h. Both of these identifiers are external to the
generated .c files. You open the Model Explorer and select both the meas_spd
and iac_cmd data objects. For each of these data objects, in the Header file
field, specify IO.h, since this is where these two objects are declared. This
setting ensures that the spd_filt.c source file will compile and link with
the external IO.c file without errors.

Now we configure the ownership settings. In the Model Explorer, select the
filt_spd data object and set its Owner field to IAC. Then, on the Code
Placement pane of the Configuration Parameters dialog box, select User
specified in the Module naming field, and specify IAC in the Module
Name field. This ensures that the spd_filt source file will link to the
iac_ctrl source file. Generate code. See the figure below.

+&��&��,�	��-�������&���	�-�
��.�/ ������'�	��+0�.�	�1

��������	��
���������������	 ��������	

����	������������		���	���
�	������������������

�		���	���
�	������������������

� �!���������� �

����"�#��������$�%�%�

����"������#��$�%�%�

� �&�������!��� �

�����������"�#��������

�����������"������#��

'(��

'(��

���������

���������

� �'������ �

��������*'(��+

� �!���������� �

����������"���$�%�)�

����"���������$�%�%�

� �'������ �

��������*'(��+

� �!���������� �

����������"���������$�%�%�

� �!���������� �

�����������"���������

13-19

13 Managing Placement of Data Definitions and Declarations

Since you specified the IO.h filename for the Header file field for the
meas_spd and iac_ctrl objects, the code generator assumed correctly that
their declarations are in IO.h. So the code generator placed #include IO.h in
each source file: spd_filt.c and iac_ctrl.c. So these two files will link with
the external IO files. Also, due to the ownership settings that were specified,
the code generator places the real_T filt_spd = 0.0; definition in
spd_filt.c and declares the filt_spd identifier in iac_ctrl.c with extern
real_T iac_cmd;. Consequently, the two source files will link together.

Definition File Example
These settings and the generated files that result are shown as Example
Settings 4 in “Example Settings and Resulting Generated Files” on page
13-23. Notice that a definition filename is specified. The settings in the table
only apply to the data object called a. You have decided that you do not want
this object defined in spd_filt.c, the generated source file for the spd_filt
chart. (There are many possible organizational reasons one might want an
object declared in another file. It is not important for this example to specify
the reason.)

For this example, assume the settings for all data objects are the same as those
indicated in “Header File Example” on page 13-18, except for the data object
a. The description below identifies only the differences that result from this.

Open the Model Explorer, and select data object a. In the Definition file field
you specify any desired filename. Choose filter_constants.c. Generate
code. The results are shown in the next figure.

13-20

Example Settings

+&��&��,�	��-�������&���	�-�
��.�/%���&����&�'�	��+0�.�	�1

��������	��
���������������	 ��������	

����	������������		���	���
�	������������������

�		���	���
�	������������������

� �!���������� �

����"�#��������$�%�%�

����"������#��$�%�%�

� �&�������!��� �

�����������"�#��������

�����������"������#��

'(��

'(��

���������

���������

� �'������ �

��������,'(��,

��������,�����������������,

� �!���������� �

����"���������$�%�%�

� �'������ �

��������*'(��+

� �!���������� �

�����������"���������$�%�%�

� �!���������� �

�����������"���������

�����������"������#��

�����������������

������

� �!����������� �

����������"���$�%�)�

� �!����������� �

�����������"���

The code generator generates the same files as in the “Header File Example”
on page 13-18, and adds a new file, filter_constants.c. Data object a now
is defined in filter_constants.c, rather than in the source file spd_filt.c,
as it is in the example. This data object is declared with an extern statement
in global.h

13-21

13 Managing Placement of Data Definitions and Declarations

Data Placement Rules and Effects

In this section...

“Effects of Ownership Settings” on page 13-22

“Example Settings and Resulting Generated Files” on page 13-23

“Data Placement Rules” on page 13-25

Effects of Ownership Settings

Row
Number

Module Naming
Setting Owner Setting Effect*

1 Not specified** Blank** There is a definition for the selected
data object. The code generator
places this definition in the .c/.cpp
source file that uses it. There is also
an extern declaration for this data
object. The code generator places
this extern declaration in one or
more .h header files, as needed.

2 Not specified** A name is specified. Same effect as stated above.

3 Either Same as model
or User specified is
selected.

Blank** Same as Row 1.

4 Either Same as model
or User specified is
selected, and this name
is the same as that
specified as the Owner
property.

A name is specified
and it is the same
as that specified
in the Module
naming > Module
name field.

Same as Row 1.

5 Either Same as model
or User specified is
selected, and this name
is different than that
specified as the Owner
property.

A name is specified
but it is different
from that specified
in the Module
naming > Module
name field.

There is no definition for the
selected data object. However,
there is an extern declaration for
the object. The extern declaration
is placed in one or more header
files, as needed.

13-22

Data Placement Rules and Effects

* See also “Ownership Settings” on page 13-10.
** Default.

Example Settings and Resulting Generated Files

Data
Defined
In...

Data
Declared
In...

Owner-
ship*

Defined
File**

Header
File Generated Files

Example
Settings 1
(Rd-Write
Example)

Source file Source file Blank Blank Blank .c/.cpp source file

Example
Settings 2
(Owner- ship
Example)

Source file Source file Name of
module
specified

Blank Blank .c/.cpp source file

Example
Settings 3
(Header File
Example)

Source file Source file Blank Blank Desired
include
filename
specified.

.c/.cpp source file

.h definition file

Example
Settings 4
(Def. File
Example)

Source file Source file Blank Desired
definition
filename
specified.

Desired
include
filename
specified.

.c/.cpp source file

.c/.cpp definition
file*
.h definition file*

Example
Settings 5

Single
separate
source file

Source file Blank Blank Blank .c/.cpp source file
global .c/.cpp

Example
Settings 6

Single
separate
source file

Single
separate
header file

Blank Blank Blank .c/.cpp source file
global .c/.cpp
global.h

13-23

13 Managing Placement of Data Definitions and Declarations

Data
Defined
In...

Data
Declared
In...

Owner-
ship*

Defined
File**

Header
File Generated Files

Example
Settings 7

Single
separate
source file

Single
separate
header file

Name of
module
specified

Blank Blank .c/.cpp source file
global.c/.cpp
global.h

Example
Settings 8

Single
separate
source file

Single
separate
header file

Blank Blank Desired
include
filename
specified.

.c/.cpp source file
global.c/.cpp
global.h
.h definition file

* "Blank" in ownership setting means Not specified is selected in the
Module naming field on the Code Placement pane, and the Owner field
on the Model Explorer is blank. "Name of module specified" can be a variety
of ownership settings as defined in “Effects of Ownership Settings” on page
13-22.

** The code generator generates a definition .c/.cpp file for every data object
for which you specified a definition filename (unless you selected #DEFINE for
the Memory section field). For example, if you specify the same definition
filename for all data objects, only one definition .c/.cpp file is generated.
The code generator places declarations in model.h by default, unless you
specify Data declared in single separate header file for the Data
declaration option on the Code Generation > Code Placement pane of
the Configuration Parameter dialog box. If you select that data placement
option, the code generator places declarations in global.h. If you specify a
definition filename for each data object, the code generator generates one
definition .c/.cpp file for each data object and places declarations in model.h
by default, unless you specify Data declared in single separate header
file for Data declaration. If you select that data placement option, the code
generator places declarations in global.h.

13-24

Data Placement Rules and Effects

Note If you generate C++ rather than C code, the .c files listed in the
following table will be .cpp files.

Data Placement Rules

Global
Settings:

Override Settings for
Specific Data Object: Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File Owner

Header
File

Where
Data
Def. Is

Where
Data
Dec. Is

Dec.
Inclusion

mpt or Simulink Noncustom Storage Classes:
auto N/A N/A N/A N/A N/A Note 12 model.h Note 1
Exported-Global N/A N/A N/A N/A N/A model.c model.h Note 1
Imported--
Extern,
Imported--
Extern-Pointer

N/A N/A N/A N/A N/A None.
External

model_-
private.h

Note 2

Simulink-Global N/A N/A N/A N/A N/A Note 13 model.h Note 1

mpt or Simulink Custom Storage Class: Imported Data:
Imported--
FromFile

D/C D/C D/C N/A null None model_-
private.h

Note 3

Imported--
FromFile

D/C D/C D/C N/A hdr.h None model_-
private.h

Note 4

Simulink Custom Storage Class: #define Data:
Define D/C D/C N/A N/A N/A N/A #define,

model.h
Note 5

mpt Custom Storage Class: #define Data:
Define D/C D/C N/A N/A null N/A #define,

model.h
Note 5

Define D/C D/C N/A N/A hdr.h N/A #define,
model.h

Note 6

mpt or Simulink Custom Storage Class: GetSet:
GetSet D/C D/C N/A N/A hdr.h N/A External

hdr.h
Note 4

13-25

13 Managing Placement of Data Definitions and Declarations

Global
Settings:

Override Settings for
Specific Data Object: Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File Owner

Header
File

Where
Data
Def. Is

Where
Data
Dec. Is

Dec.
Inclusion

mpt or Simulink Custom Storage Class: Bitfield, Struct:
Bitfield, Struct D/C D/C N/A N/A N/A model.c model.h Note 7

mpt Custom Storage Class: Global, Const, ConstVolatile, Volatile:
Global, Const,
Const-Volatile,
Volatile

auto auto null null or
locally
owned

null model.c model.h Note 1

Global, Const,
Const-Volatile,
Volatile

src auto null null or
locally
owned

null src.c model.h Note 1

Global, Const,
Const-Volatile,
Volatile

sep auto null null or
locally
owned

null gbl.c model.h Note 1

Global, Const,
Const-Volatile,
Volatile

auto src null null or
locally
owned

null model.c src.c Note 8

Global, Const,
Const-Volatile,
Volatile

src src null null or
locally
owned

null src.c src.c Note 8

Global, Const,
Const-Volatile,
Volatile

sep src null null or
locally
owned

null gbl.c src.c Note 8

Global, Const,
Const-Volatile,
Volatile

auto sep null null or
locally
owned

null model.c gbl.h Note 9

Global, Const,
Const-Volatile,
Volatile

src sep null null or
locally
owned

null src.c gbl.h Note 9

Global, Const,
Const-Volatile,
Volatile

sep sep null null or
locally
owned

null gbl.c gbl.h Note 9

Global, Const,
Const-Volatile,
Volatile

D/C D/C data.c D/C null data.c See Note
10.

Note 10

13-26

Data Placement Rules and Effects

Global
Settings:

Override Settings for
Specific Data Object: Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File Owner

Header
File

Where
Data
Def. Is

Where
Data
Dec. Is

Dec.
Inclusion

Global, Const,
Const-Volatile,
Volatile

D/C D/C data.c D/C hdr.h data.c hdr.h Note 11

Global, Const,
Const-Volatile,
Volatile

auto D/C null null hdr.h model.c hdr.h Note 11

Global, Const,
Const-Volatile,
Volatile

src D/C null null hdr.h src.c hdr.h Note 11

Global, Const,
Const-Volatile,
Volatile

sep D/C null null hdr.h gbl.c hdr.h Note 11

Global, Const,
Const-Volatile,
Volatile

D/C auto null External
owner

null External
user--
supplied
file

model.h Note 1

Global, Const,
Const-Volatile,
Volatile

D/C src null External
owner

null External
user--
supplied
file

src.c Note 8

Global, Const,
Const-Volatile,
Volatile

D/C sep null External
owner

null External
user--
supplied
file

gbl.h Note 9

Global, Const,
Const-Volatile,
Volatile

D/C D/C null External
owner

header.h External
user--
supplied
file

hdr.h Note 11

Global, Const,
Const-Volatile,
Volatile

D/C D/C null External
owner

header.h External
user--
supplied
file

hdr.h Note 11

mpt Custom Storage Class: Exported Data:

13-27

13 Managing Placement of Data Definitions and Declarations

Global
Settings:

Override Settings for
Specific Data Object: Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File Owner

Header
File

Where
Data
Def. Is

Where
Data
Dec. Is

Dec.
Inclusion

ExportTo-File auto auto null null null model.c model.h Note 1
ExportTo-File src auto null null null src.c model.h Note 1
ExportTo-File sep auto null null null gbl.c model.h Note 1
ExportTo-File auto src null null null model.c src.c Note 8
ExportTo-File src src null null null src.c src.c Note 8
ExportTo-File sep src null null null gbl.c src.c Note 8
ExportTo-File auto sep null null null model.c gbl.h Note 9
ExportTo-File src sep null null null src.c gbl.h Note 9
ExportTo-File sep sep null null null gbl.c gbl.h Note 9
ExportTo-File D/C D/C data.c null null data.c See Note

10.
Note 10

ExportTo-File D/C D/C data.c null hdr.h model.c hdr.h Note 11
ExportTo-File auto D/C null null hdr.h src.c hdr.h Note 11
ExportTo-File sep D/C null null hdr.h gbl.c hdr.h Note 11

Simulink Custom Storage Class: Default, Const, ConstVolatile, Volatile:
Default, Const,
Const-Volatile,
Volatile

auto auto N/A N/A N/A model.c model.h Note 1

Default, Const,
Const-Volatile,
Volatile

src auto N/A N/A N/A src.c model.h Note 1

Default, Const,
Const-Volatile,
Volatile

sep auto N/A N/A N/A gbl.c model.h Note 1

Default, Const,
Const-Volatile,
Volatile

auto src N/A N/A N/A model.c src.c Note 8

Default, Const,
Const-Volatile,
Volatile

src src N/A N/A N/A src.c src.c Note 8

13-28

Data Placement Rules and Effects

Global
Settings:

Override Settings for
Specific Data Object: Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File Owner

Header
File

Where
Data
Def. Is

Where
Data
Dec. Is

Dec.
Inclusion

Default, Const,
Const-Volatile,
Volatile

sep src N/A N/A N/A gbl.c src.c Note 8

Default, Const,
Const-Volatile,
Volatile

auto sep N/A N/A N/A model.c gbl.h Note 9

Default, Const,
Const-Volatile,
Volatile

src sep N/A N/A N/A src.c gbl.h Note 9

Default, Const,
Const-Volatile,
Volatile

sep sep N/A N/A N/A gbl.c gbl.h Note 9

Simulink Custom Storage Class: Exported Data:
ExportTo-File auto auto N/A N/A null model.c model.h Note 1
ExportTo-File src auto N/A N/A null src.c model.h Note 1
ExportTo-File sep auto N/A N/A null gbl.c model.h Note 1
ExportTo-File auto src N/A N/A null model.c src.c Note 8
ExportTo-File src src N/A N/A null src.c src.c Note 8
ExportTo-File sep src N/A N/A null gbl.c src.c Note 8
ExportTo-File auto sep N/A N/A null model.c gbl.h Note 9
ExportTo-File src sep N/A N/A null src.c gbl.h Note 9
ExportTo-File sep sep N/A N/A null gbl.c gbl.h Note 9
ExportTo-File auto D/C N/A N/A hdr.h model.c hdr.h Note 11
ExportTo-File src D/C N/A N/A hdr.h src.c hdr.h Note 11
ExportTo-File sep D/C N/A N/A hdr.h gbl.c hdr.h Note 11

Notes
In the previous table:

13-29

13 Managing Placement of Data Definitions and Declarations

• A Declaration Inclusion Approach is a file in which the header file that
contains the data declarations is included.

• D/C stands for don’t care.

• Dec stands for declaration.

• Def stands for definition.

• gbl stands for global.

• hdr stands for header.

• N/A stands for not applicable.

• null stands for field is blank.

• sep stands for separate.

Note 1: model.h is included directly in all source files.

Note 2: model_private.h is included directly in all source files.

Note 3: extern is included in model_private.h, which is in source.c.

Note 4: header.h is included in model_private.h, which is in source.c.

Note 5: model.h is included directly in all source files that use #define.

Note 6: header.h is included in model.h, which is in source files that use
#define.

Note 7: model.h is included in all source.c files.

Note 8: extern is inlined in source files where data is used.

Note 9: global.h is included in model.h, which is in all source files.

Note 10: When you specify a definition filename for a data object, no header
file is generated for that data object. The code generator declares the data
object according to the data placement priorities.

Note 11: header.h is included in model.h, which is in all source files.

13-30

Data Placement Rules and Effects

Note 12: Signal: Either not defined because it is expression folded, or local
data, or defined in a structure in model.c, all depending on model’s code
generation settings. Parameter: Either inlined in the code, or defined in
model_data.c.

Note 13: Signal: In a structure that is defined in model.c. Parameter: In a
structure that is defined in model_data.c.

13-31

13 Managing Placement of Data Definitions and Declarations

13-32

14

Specifying the Persistence
Level for Signals and
Parameters

With this procedure, you can control the persistence level of signal and
parameter objects associated with a model. Persistence level allows you to
make intermediate variables or parameters global during initial development.
At the later stages of development, you can use this procedure to remove these
signals and parameters for efficiency. Notice the Persistence Level field on
the Model Explorer, as illustrated in the figure below. For descriptions of the
properties on the Model Explorer, see Parameter and Signal Property Values
on page 7-2.

14 Specifying the Persistence Level for Signals and Parameters

Notice also the Signal display level and Parameter tune level fields on
the Code Placement pane of the Configuration Parameters dialog box, as
illustrated in the next figure.

The Signal display level field allows you to specify whether or not the code
generator defines a signal data object as global data in the generated code.
The number you specify in this field is relative to the number you specify in

14-2

the Persistence level field. The Signal display level number is for all mpt
(module packaging tool) signal data objects in the model. The Persistence
level number is for a particular mpt signal data object. If the data object’s
Persistence level is equal to or less than the Signal display level, the
signal appears in the generated code as global data with all of the properties
(custom attributes) specified in “Creating mpt Data Objects with Data Object
Wizard” on page 12-11. For example, this would occur if Persistence level
is 2 and Signal display level is 5.

Otherwise, the code generator automatically determines how the particular
signal data object appears in the generated code. Depending on the settings
on the Optimization pane of the Configuration Parameters dialog box,
the signal data object could appear in the code as local data and thus have
none of the custom attributes you specified for that data object. Or, based
on expression folding, the code generator could remove the data object so
that it does not appear in the code. (See “Tips for Optimizing the Generated
Code” on page 21-19 and “Optimizing Generated Code” in the Simulink Coder
documentation.)

The Parameter tune level field allows you to specify whether or not the
code generator declares a parameter data object as tunable global data in the
generated code.

The number you specify in this field is relative to the number you specify in
the Persistence level field. The Parameter tune level number is for all
mpt parameter data objects in the model. The Persistence level number is
for a particular mpt parameter data object. If the data object’s Persistence
level is equal to or less than the Parameter tune level, the parameter
appears in the generated code with all of the properties (custom attributes)
specified in “Creating mpt Data Objects with Data Object Wizard” on page
12-11, and thus is tunable. For example, this would occur if Persistence
level is 2 and Parameter tune level is 5.

Otherwise, the parameter is inlined in the generated code, and the code
generation settings determine its exact form.

Note that, in the initial stages of development, you may be more concerned
about debugging than code size. Or, you may want to ensure that one or
more particular data objects appear in the code so that you can analyze
intermediate calculations of an equation. In this case, you may want to

14-3

14 Specifying the Persistence Level for Signals and Parameters

specify the Parameter tune level (Signal display level for signals) to be
higher than Persistence level for some or all mpt parameter (or signal) data
objects. This results in larger code size, because the code generator defines
the parameter (or signal) data objects as global data, which have all the
custom properties you specified. As you approach production code generation,
however, you may have more concern about reducing the size of the code
and less need for debugging or intermediate analyses. In this stage of the
tradeoff, you could make the Parameter tune level (Signal display level
for signals) greater than Persistence level for one or more data objects,
generate code and observe the results. Repeat until satisfied.

1 With the model open, in the Configuration Parameters dialog box, click
Code Generation > Code Placement.

2 Type the desired number in the Signal display level or Parameter tune
level field, and click Apply.

3 In the Model Explorer, type the desired number in the Persistence field
for the selected signal or parameter, and click Apply.

4 Save the model and generate code.

14-4

Preparing Models for Code
Generation

• Chapter 15, “Mapping Application Objectives to Model Configuration
Parameters”

• Chapter 16, “Selecting and Configuring an Embedded Real-Time
Target”

• Chapter 17, “Specifying Code Appearance and Documentation”

• Chapter 18, “Defining Model Configuration Variations”

15

Mapping Application
Objectives to Model
Configuration Parameters

• “Considerations When Mapping Application Objectives” on page 15-2

• “Defining High-Level Code Generation Objectives” on page 15-3

• “Determining Whether the Model is Configured for Specified Objectives”
on page 15-4

• “Creating Custom Objectives” on page 15-11

15 Mapping Application Objectives to Model Configuration Parameters

Considerations When Mapping Application Objectives
The first step in applying Embedded Coder configuration options to the
application development process is to consider how your application objectives,
particularly with respect to efficiency, traceability, and safety, map to code
generation options in a model configuration set.

Parameters that you set in the Solver, Data Import/Export, Diagnostics,
and Code Generation panes of the Configuration Parameters dialog box
affect the behavior of a model in simulation and the code generated for the
model.

Consider questions such as the following:

• What settings might help you debug your application?

• What is the highest objective for your application — efficiency, traceability,
extra safety precaution, debugging, or some other criteria?

• What is the second highest objective?

• Can the objective at the start of the project differ from the objective
required for the end result? What tradeoffs can you make?

After you answer these questions:

1 Define your objectives in the configuration set. For more information, see
“Defining High-Level Code Generation Objectives” on page 15-3.

2 Use the Code Generation Advisor to identify parameter values that are not
configured for the objectives that you selected. For more information, see
“Determining Whether the Model is Configured for Specified Objectives”
on page 15-4.

15-2

Defining High-Level Code Generation Objectives

Defining High-Level Code Generation Objectives
When you are considering the objectives for your application, there are many
different criteria. The code generation software identifies six high-level
objectives that you might consider for your application:

• Execution efficiency — Configure code generation settings to achieve fast
execution time.

• ROM efficiency — Configure code generation settings to reduce ROM usage.

• RAM efficiency — Configure code generation settings to reduce RAM usage.

• Traceability — Configure code generation settings to provide mapping
between model elements and code.

• Safety precaution — Configure code generation settings to increase clarity,
determinism, robustness, and verifiability of the code.

• Debugging — Configure code generation settings to debug the code
generation build process.

• MISRA-C:2004 guidelines — Configure code generation settings to increase
compliance with MISRA-C:2004 guidelines.

Once you have identified which of these four objectives are important for
your application, you can use the Code Generation Advisor to identify the
parameters that are not configured for the objectives that you selected.
Review “Recommended Settings Summary” to see the settings the Code
Generation Advisor recommends.

You can specify and prioritize any combination of the available objectives
for the Code Generation Advisor to take into consideration. For more
information, see “Determining Whether the Model is Configured for Specified
Objectives” on page 15-4.

15-3

15 Mapping Application Objectives to Model Configuration Parameters

Determining Whether the Model is Configured for
Specified Objectives

In this section...

“Specifying Code Generation Objectives Using the GUI” on page 15-4

“Specifying Code Generation Objectives at the Command Line” on page 15-6

“Reviewing Objectives in Referenced Models” on page 15-7

“Reviewing the Model Without Generating Code” on page 15-7

“Reviewing the Model During Code Generation” on page 15-9

You can use the Code Generation Advisor to review your model and identify
the parameters that are not configured for your objective. The Code
Generation Advisor reviews a subset of model configuration parameters and
displays the results in the Check model configuration settings against
code generation objectives check.

The Code Generation Advisor uses the information presented in “Mapping
of Application Requirements to the Optimization Pane : General tab” to
determine the recommended values. When there is a conflict due to multiple
objectives, the higher-priority objective takes precedence.

Tip You can use the Code Generation Advisor to review a model before
generating code, or as part of the code generation process. When you choose to
review a model before generating code, you specify which model, subsystem,
or referenced model the Code Generation Advisor reviews (see “Reviewing
the Model Without Generating Code” on page 15-7). When you choose to
review a model as part of the code generation process, the Code Generation
Advisor reviews the entire system (see “Reviewing the Model During Code
Generation” on page 15-9).

Specifying Code Generation Objectives Using the GUI
To specify code generation objectives in the Configuration Parameters dialog
box:

15-4

Determining Whether the Model is Configured for Specified Objectives

1 Open the Configuration Parameters dialog box and select the Code
Generation > General pane.

2 Specify a system target file. If you specify an ERT-based target, more
objectives are available. For the purposes of this example, choose an
ERT-based target such as ert.tlc.

3 Click Set objectives. The Set Objectives - Code Generation Advisor dialog
box opens.

4 In the Set Objectives - Code Generation Advisor dialog box, specify your
objectives. For example, if your objectives are execution efficiency and
traceability, in that priority, do the following:

a In Available objectives, double-click Execution efficiency.
Execution efficiency is added to Selected objectives - prioritized.

b In Available objectives, double-click Traceability. Traceability
is added to Selected objectives - prioritized below Execution
efficiency.

15-5

15 Mapping Application Objectives to Model Configuration Parameters

c Click OK to accept the objectives. In the Configuration Parameters
dialog box, Code Generation > General > Prioritized objectives
is updated.

Specifying Code Generation Objectives at the
Command Line
To specify code generation objectives by writing a MATLAB script or entering
commands at the command line:

1 Specify a system target file. If you specify an ERT-based target, more
objectives are available. For the purposes of this example, specify ert.tlc,
where model_name is the name or handle to the model.

set_param(model_name, 'SystemTargetFile', 'ert.tlc');

2 Specify your objectives. For example, if your objectives are execution
efficiency and traceability, in that priority, enter:

set_param(model_name, 'ObjectivePriorities',...
{'Execution efficiency', 'Traceability'});

15-6

Determining Whether the Model is Configured for Specified Objectives

Caution When you specify a GRT-based system target file, you can specify
any objective at the command line. If you specify Execution efficiency,
ROM efficiency, RAM efficiency, Traceability, or Safety precaution,
the build process changes the objective to Unspecified because you have
specified a value that is invalid when using a GRT-based target.

Reviewing Objectives in Referenced Models
When you review a model during the code generation process, you must
specify the same objectives in the top model and referenced models. If you
specify different objectives for the top model and referenced model, the build
process generates an error.

To specify different objectives for the top model and each referenced model,
review the models separately without generating code.

Reviewing the Model Without Generating Code
To review a model without generating code using the Code Generation
Advisor:

1 Specify your code generation objectives.

2 In the Configuration Parameters > Code Generation > General pane,
click Check model. The System Selector window opens.

3 Select the model or subsystem that you want to review and click OK. The
Code Generation Advisor opens and reviews the model or subsystem that
you specified.

15-7

15 Mapping Application Objectives to Model Configuration Parameters

4 In the Code Generation Advisor window, review the results by selecting
a check from the left pane. The right pane populates the results for that
check.

• After reviewing the check results, you can choose to fix warnings and
failures, as described in “Fixing a Warning or Failure” in the Simulink
User’s Guide.

15-8

Determining Whether the Model is Configured for Specified Objectives

Caution When you specify an efficiency or safety precaution objective,
the Code Generation Advisor includes additional checks.

When you make changes to one check, the other check results are no longer
valid and you must run the checks again for accurate results.

Reviewing the Model During Code Generation
To review a model as part of the code generation process using the Code
Generation Advisor:

1 Specify your code generation objectives.

2 In the Configuration Parameters > Code Generation > General pane,
select one of the following from Check model before generating code:

• On (proceed with warnings)

• On (stop for warnings)

3 Select Generate code only if you only want to generate code; otherwise
clear the check box to build an executable.

4 Apply your changes and then click Generate code/Build. The Code
Generation Advisor starts and reviews the top model and subsystems.

If there are no failures or warnings in the Code Generation Advisor, the
build process proceeds. If there are failures or warnings and you specified:

• On (proceed with warnings)— The Code Generation Advisor window
opens while the build process proceeds. You can review the results after
the build process is complete.

• On (stop for warnings) — The build process halts and displays
the diagnostics viewer. To continue, you must review and resolve the
Code Generation Advisor results or change the Check model before
generating code selection.

5 In the Code Generation Advisor window, review the results by selecting
a check from the left pane. The right pane populates the results for that
check.

15-9

15 Mapping Application Objectives to Model Configuration Parameters

6 After reviewing the check results, you can choose to fix warnings and
failures as described in “Fixing a Warning or Failure” in the Simulink
User’s Guide.

Caution When you specify an efficiency or safety precaution objective,
the Code Generation Advisor includes additional checks. When you make
changes to one of these checks, the other check results are no longer valid
and you must run the check again for accurate results.

15-10

Creating Custom Objectives

Creating Custom Objectives

In this section...

“Specifying Parameters in Custom Objectives” on page 15-11

“Specifying Checks in Custom Objectives” on page 15-12

“Determining Checks and Parameters in Existing Objectives” on page 15-12

“How to Create Custom Objectives” on page 15-14

The Code Generation Advisor reviews your model based on objectives that
you specify. If the predefined efficiency, traceability, safety precaution, and
debugging objectives do not meet your requirements, you can create custom
objectives.

You can create custom objectives by:

• Creating a new objective and adding parameters and checks to a new
objective.

• Creating a new objective based on an existing objective, then adding,
modifying and removing the parameters and checks within the new
objective.

Specifying Parameters in Custom Objectives
When you create a custom objective, you specify the values of configuration
parameters that the Code Generation Advisor reviews using the following
methods:

• addParam — Add parameters and specify the values that the Code
Generation Advisor reviews in Check model configuration settings
against code generation objectives. When you add parameters that
have dependencies, the software includes the dependencies in the list of
parameter values that the Code Generation Advisor reviews.

• modifyInheritedParam — Modify inherited parameter values that the
Code Generation Advisor reviews in Check model configuration
settings against code generation objectives.

15-11

15 Mapping Application Objectives to Model Configuration Parameters

• removeInheritedParam — Remove inherited parameters from a new
objective that is based on an existing objective. When a user selects
multiple objectives, if another selected objective includes this parameter,
the Code Generation Advisor reviews the parameter value in Check model
configuration settings against code generation objectives.

Specifying Checks in Custom Objectives
All objectives include the Check model configuration settings against
code generation objectives check by default. When you create a custom
objective, you specify the list of additional checks that are associated with the
custom objective using the following methods:

• addCheck — Add checks to the Code Generation Advisor. When a user
selects the custom objective, the Code Generation Advisor displays the
check, unless the user specifies an additional objective with a higher
priority that excludes the check.

For example, you might add a check to the Code Generation Advisor to
include a custom check in the automatic model checking process.

• excludeCheck — Exclude checks from the Code Generation Advisor.
When a user selects multiple objectives, if the user specifies an additional
objective that includes this check as a higher priority objective, the Code
Generation Advisor displays this check.

For example, you might exclude a check from the Code Generation Advisor
when a check takes a long time to process.

• removeInheritedCheck— Remove inherited checks from a new objective
that is based on an existing objective. When a user selects multiple
objectives, if another selected objective includes this check, the Code
Generation Advisor displays the check.

For example, you might remove an inherited check, rather than exclude
the check, when the check takes a long time to process, but the check is
important for another objective.

Determining Checks and Parameters in Existing
Objectives
When you base a new objective on an existing objective, you can determine
what checks and parameters the existing objective contains. Select the

15-12

Creating Custom Objectives

existing objective and check the model. The Code Generation Advisor lists the
checks and parameters associated with the existing objective.

The Code Generation Advisor contains the list of checks in each objective. For
example, the Efficiency objective includes ten checks, which you can see in
the Code Generation Advisor if you:

1 Open the rtwdemo_rtwecintro model.

2 Specify an ERT-based target.

3 Specify the Execution efficiency objective.

4 Check the model.

The Code Generation Advisor displays in the right pane the list of checks in
the Execution efficiency objective.

Caution The following objectives exclude the listed checks. For more
information about excluding checks, see excludeCheck.

Objective Excluded Checks

Traceability • Identify questionable software environment
specifications

• Identify questionable code instrumentation (data I/O)

Debugging Identify questionable code instrumentation (data I/O)

15-13

15 Mapping Application Objectives to Model Configuration Parameters

The first check, Check model configuration settings against code
generation objectives, lists all parameters and values specified by the
objective. For example, the Code Generation Advisor displays the list of
parameters and the recommended values in the Execution efficiency
objective, if you:

1 Run Check model configuration settings against code generation
objectives.

2 Click Modify Parameters.

3 Rerun the check.

The Code Generation Advisor displays in the check results the list of
parameters and recommended values in the Execution efficiency objective.

How to Create Custom Objectives
To create a custom objective:

1 Create an sl_customization.m file.

15-14

Creating Custom Objectives

Note

• Specify all custom objectives in a single sl_customization.m file only,
or the software generates an error. This holds true even if you have more
than one sl_customization.m file on your MATLAB path.

• Except for the matlabroot/work folder, do not place an
sl_customization.m file in your root MATLAB folder, or any of its
subfolders. Otherwise, the software ignores the customizations that
the file specifies.

2 Create an sl_customization function that takes a single argument.
When the software invokes the function, the value of this argument is the
Simulink customization manager. In the function:

a Create a handle to the code generation objective, using the
ObjectiveCustomizer constructor.

b Register a callback function for the custom objectives, using the
ObjectiveCustomizer.addCallbackObjFcn method.

c Add a call to execute the callback function, using the
ObjectiveCustomizer.callbackFcn method.

For example

function sl_customization(cm)

%SL_CUSTOMIZATION objective customization callback

objCustomizer = cm.ObjectiveCustomizer;

index = objCustomizer.addCallbackObjFcn(@addObjectives);

objCustomizer.callbackFcn{index}();

end

3 Create a MATLAB callback function that:

• Creates code generation objective objects using the
rtw.codegenObjectives.Objective constructor.

15-15

15 Mapping Application Objectives to Model Configuration Parameters

• Adds, modifies, and removes configuration parameters for each
objective using the addParam, modifyInheritedParam, and
removeInheritedParam methods.

• Includes and excludes checks for each objective using the addCheck,
excludeCheck, and removeInheritedCheck methods.

• Registers objectives using the register method.

The following example shows you how to create an objective, Reduce RAM
Example. Reduce RAM Example includes five parameters and three checks
that the Code Generation Advisor reviews:

function addObjectives

% Create the custom objective

obj = rtw.codegenObjectives.Objective('ex_ram_1');

setObjectiveName(obj, 'Reduce RAM Example');

% Add parameters to the objective

addParam(obj, 'InlineParams', 'on');

addParam(obj, 'BooleanDataType', 'on');

addParam(obj, 'OptimizeBlockIOStorage', 'on');

addParam(obj, 'EnhancedBackFolding', 'on');

addParam(obj, 'BooleansAsBitfields', 'on');

% Add additional checks to the objective

% The Code Generation Advisor automatically includes 'Check model

% configuration settings against code generation objectives' in every

% objective.

addCheck(obj, 'Identify unconnected lines, input ports, and output ports');

addCheck(obj, 'Check model and local libraries for updates');

%Register the objective

register(obj);

end

The following example shows you how to create an objective, My
Traceability Example, based on the existing Traceability objective. The
custom objective modifies, removes, and adds parameters that the Code

15-16

Creating Custom Objectives

Generation Advisor reviews. It also adds and removes checks from the
Code Generation Advisor:

function addObjectives

% Create the custom objective from an existing objective

obj = rtw.codegenObjectives.Objective('ex_my_trace_1', 'Traceability');

setObjectiveName(obj, 'My Traceability Example');

% Modify parameters in the objective

modifyInheritedParam(obj, 'GenerateTraceReportSf', 'Off');

removeInheritedParam(obj, 'ConditionallyExecuteInputs');

addParam(obj, 'MatFileLogging', 'On');

% Modify checks in the objective

addCheck(obj, 'Identify questionable software environment specifications');

removeInheritedCheck(obj, 'Identify questionable code instrumentation (data I/O)');

%Register the objective

register(obj);

end

4 If you previously opened the Code Generation Advisor, close the model from
which you opened the Code Generation Advisor.

5 Refresh the customization manager. At the MATLAB command line, enter
the sl_refresh_customizations command.

6 Open your model and review the new objectives.

15-17

15 Mapping Application Objectives to Model Configuration Parameters

15-18

16

Selecting and Configuring
an Embedded Real-Time
Target

• “Introduction” on page 16-2

• “Selecting an ERT Target” on page 16-4

• “Customizing an ERT Target” on page 16-6

16 Selecting and Configuring an Embedded Real-Time Target

Introduction
The first step to configuring a model for code generation is to choose and
configure a code generation target. When you select a target, other model
configuration parameters change automatically to best serve requirements
of the target. For example:

• Code interface parameters

• Build process parameters, such as the template make file

• Target hardware parameters, such as word size and byte ordering

Use the Browse button on the Code Generation pane to open the System
Target File Browser (see “Selecting a Target” in the Simulink Coder
documentation). The browser lets you select a preset target configuration
consisting of a system target file, template makefile, and make command.

If you select a target configuration by using the System Target File Browser,
your selection appears in the System target file field (target.tlc).

If you are using a target configuration that does not appear in the System
Target File Browser, enter the name of your system target file in the System
target file field. Click Apply or OK to configure for that target.

“Selecting and Configuring a Target” in the Simulink Coder documentation
describes the use of the browser and includes a complete list of available
target configurations.

You also can select a system target file programmatically from MATLAB
code, as described in “Selecting a System Target File Programmatically” in
the Simulink Coder documentation.

After selecting a system target, you can modify model configuration parameter
settings, if necessary.

If you want to switch between different targets in a single workflow for
different code generation purposes (for example, rapid prototyping versus
product code deployment), set up different configuration sets for the same
model and switch the active configuration set for the current operation.
For more information on how to set up configuration sets and change the

16-2

Introduction

active configuration set, see “Setting Up Configuration Sets” in the Simulink
documentation.

16-3

16 Selecting and Configuring an Embedded Real-Time Target

Selecting an ERT Target
The Browse button in the Target Selection subpane of the Code
Generation > General pane lets you select an ERT target with the System
Target File Browser. See “Selecting and Configuring a Target” in the
Simulink Coder documentation for a general discussion of target selection.

The code generator provides variants of the ERT target including the
following:

• Default ERT target

• ERT target for generating and building a Visual C++ Solution (.sln) file
for the Visual C++ IDE

• ERT target for generating a Windows or UNIX host-based shared library

These targets are based on a common system target file, ert.tlc. They are
displayed in the System Target File Browser as shown in the figure below.

You can use the ert_shrlib.tlc target to generate a host-based shared
library from your Simulink model. Selecting this target allows you to generate
a shared library version of your model code that is appropriate for your host
platform, either a Windows dynamic link library (.dll) file or a UNIX shared
object (.so) file. This feature can be used to package your source code securely

16-4

Selecting an ERT Target

for easy distribution and shared use. For more information, see “Creating and
Using Host-Based Shared Libraries” on page 4-17.

16-5

16 Selecting and Configuring an Embedded Real-Time Target

Customizing an ERT Target
For information on customizing ERT targets, see “Customizing Targets” in
the Simulink Coder documentation.

16-6

17

Specifying Code Appearance
and Documentation

• “Customizing Comments in Generated Code” on page 17-2

• “Configuring the Appearance of Generated Identifiers” on page 17-12

• “Controlling Code Style” on page 17-22

• “Configuring Templates for Customizing Code Organization and Format”
on page 17-23

• “Configuring the Placement of Data in Generated Code” on page 17-68

• “Ensuring Delimiter Is Specified for All #Includes” on page 17-69

17 Specifying Code Appearance and Documentation

Customizing Comments in Generated Code

In this section...

“Adding Custom Comments to Generated Code” on page 17-2

“Adding Global Comments” on page 17-5

Adding Custom Comments to Generated Code
You can customize the comments in the generated code for ERT targets by
setting or clearing several parameters on theCode Generation > Comments
pane. These options let you enable or suppress generation of descriptive
information in comments for blocks and other objects in the model.

To... Select...

Include the text specified in the Description
field of a block’s Block Properties dialog box as
comments in the code generated for each block

Simulink block descriptions.

Add a comment that includes the block name
at the start of the code for each block

Simulink block descriptions

Include the text specified in the Description
field of a Simulink data object (such as a
signal, parameter, data type, or bus) in the
Simulink Model Explorer as comments in the
code generated for each object

Simulink data object descriptions.

Include comments just above signals and
parameter identifiers in the generated code as
specified in the MATLAB or TLC function.

Custom comments (MPT objects only).

17-2

Customizing Comments in Generated Code

To... Select...

Include the text specified in the Description
field of the Properties dialog box for a Stateflow
object as comments just above the code
generated for each object

Stateflow object descriptions .

Include requirements assigned to Simulink
blocks in the generated code comments (for
more information, see “Including Requirements
Information with Generated Code” in
the Simulink Verification and Validation
documentation)

Requirements in block comments.

When you select Simulink block descriptions,

• The description text for blocks and Stateflow objects and block names
generated as comments can include international (non-US-ASCII)
characters. (For details on international character support, see “Support
for International (Non-US-ASCII) Characters” in the Simulink Coder
documentation.)

• The code generation software automatically inserts comments into the
generated code for custom blocks. Therefore, it is not necessary to include
block comments in the associated TLC file for a custom block.

Note If you have existing TLC files with manually inserted comments
for block descriptions, the code generation process emits these comments
instead of the automatically generated comments. Consider removing
existing block comments from your TLC files. Manually inserted comments
might be poorly formatted in the generated code and code-to-model
traceability might not work.

• For virtual blocks or blocks that have been removed due to block reduction,
no comments are generated.

For more information, see “Code Generation Pane: Comments” in the
Simulink Coder documentation.

17-3

17 Specifying Code Appearance and Documentation

Adding Custom Comments
This procedure allows you to add a comment just above a signal or parameter’s
identifier in the generated code. This is accomplished using

• A MATLAB or TLC function that you write and save in a .m or .tlc file

• The Custom comments (MPT objects only) check box on the Comments
pane of the Configuration Parameters dialog box

• Selecting the .m or .tlc file in the Custom comments function field on
the Comments pane of the Configuration Parameters dialog box.

You may include at least some or all of the property values for the data object.
Each Simulink data object (signal or parameter) has properties, as described
in Parameter and Signal Property Values on page 7-2. This example comment
contains some of the property values for the data object MAP as specified on
the Model Explorer:

/* DocUnits: PSI */
/* Owner: */
/* DefinitionFile: specialDef */
real_T MAP = 0.0;

You can type text in the Description field on the Model Explorer for a signal
or parameter data object. If you do, and if you select the Simulink data
object descriptions check box on the Comments pane of the Configuration
Parameters dialog box, this text will appear beside the signal’s or parameter’s
identifier in the generated code as a comment. This is true whether or not you
select the Custom comments (MPT objects only) check box discussed in
this procedure. For example, typing Manifold Absolute Pressure in the
Description field for the data object MAP always will result in the following
in the generated code:

real_T MAP = 0.0; /* Manifold Absolute Pressure */

1 Write a MATLAB or TLC function that places comments in the generated
files as desired. An example .m file named rtwdemo_comments_mptfun.m
is provided in the matlab/toolbox/rtw/rtwdemos directory. This file
contains instructions.

The MATLAB function must have three arguments that correspond to
objectName, modelName, and request, respectively. The TLC function

17-4

Customizing Comments in Generated Code

must have three arguments that correspond to objectRecord, modelName,
and request, respectively. Note also, in the case of the TLC file, you can
use the library function LibGetSLDataObjectInfo to get every property
value of the data object.

2 Save the function as a .m file or a .tlc file with the desired filename and
place it in any folder in the MATLAB path.

3 Open the model and the Configuration Parameters dialog box.

4 Click Comments under Code Generation on the left pane. The
Comments pane appears on the right.

5 Select the Custom comments (MPT objects only) check box.

6 In the Custom comments function field, either type the filename of the
.m file or .tlc file you created, or select this filename using the Browse
button.

7 Click the Apply button.

8 Click Generate Code.

9 Open the generated files and inspect their content to ensure the comments
are what you want.

Adding Global Comments

• “Introduction” on page 17-5

• “Using a Simulink DocBlock to Add a Comment” on page 17-6

• “Using a Simulink Annotation to Add a Comment” on page 17-9

• “Using a Stateflow Note to Add a Comment” on page 17-9

• “Using Sorted Notes to Add Comments” on page 17-10

Introduction
The procedures in this section explain how to add a global comment to a
Simulink model so that the comment text appears in the generated file or files
where desired. This is accomplished by specifying a template symbol name

17-5

17 Specifying Code Appearance and Documentation

with a Simulink DocBlock, a Simulink annotation, or a Stateflow note, or
by using a sorted-notes capability that works with Simulink annotations or
Stateflow notes (but not DocBlocks). For more information about template
symbols, see “Template Symbols and Rules” on page 17-59.

Note Template symbol names Description and ModifiedHistory,
referenced below, also are fields in the Model Properties dialog box. If you use
one of these symbol names for global comment text, and its Model Properties
field has text in it too, both will appear in the generated files.

Using a Simulink DocBlock to Add a Comment

1 With the model open, select Library Browser from the View menu.

2 Drag the DocBlock from Model-Wide Utilities in the Simulink library
onto the model.

3 After double-clicking the DocBlock and typing the desired comment in
the editor, save and close the editor. See DocBlock in the Simulink
documentation for details.

4 Right-click the DocBlock and select Mask Parameters. The Block
Parameters dialog box appears.

5 Type one of the following into the Code generation template symbol
field, illustrated below, and then click OK: Abstract, Description,
History, ModifiedHistory, or Notes. Template symbol names are case
sensitive.

17-6

Customizing Comments in Generated Code

Note If you are using a DocBlock to add comments to your code during
code generation, ensure that you set the Document Type as Text. If you
set the Document Type as RTF or HTML, your comments will not appear
in the code.

6 In the Block Properties dialog box, Block Annotation tab, select
%<ECoderFlag> as shown in the figure below, and then click OK. The
symbol name typed in the previous step now appears under the DocBlock
on the model.

17-7

17 Specifying Code Appearance and Documentation

7 Save the model. After you generate code, the code generator places the
comment in each generated file whose template has the symbol name you
typed. The code generator places the comment in the generated file at
the location that corresponds to where the symbol name is located in the
template file.

17-8

Customizing Comments in Generated Code

8 To add one or more other comments to the generated files, repeat steps 1
through 7 as desired.

Using a Simulink Annotation to Add a Comment

1 Double-click the unoccupied area on the model where you want to place the
comment. See “Annotating Diagrams” in the Simulink documentation for
details.

Note If you want the code generator to sort multiple comments for the
Notes symbol name, replace the next step with “Using Sorted Notes to Add
Comments” on page 17-10.

2 Type <S:Symbol_name> followed by the comment, where Symbol_name is one
of the following Documentation child : Abstract, Description, History,
ModifiedHistory, or Notes. For example, type <S:Description>This is
the description I want. Template symbol names are case sensitive.
(The "S" before the colon indicates "symbol.")

3 Click outside the rectangle and save the model. After you generate code,
the code generator places the comment in each generated file whose
template has the symbol name you typed. The code generator places the
comment in the generated file at the location that corresponds to where the
symbol name is located in the template file.

4 To add one or more other comments to the generated files, repeat steps 1
through 3 as desired.

Using a Stateflow Note to Add a Comment

1 Right-click the desired unoccupied area on the Stateflow chart where you
want to place the comment. See “Using Notes to Extend Charts” in the
Stateflow documentation for details.

2 Select Add Note from the drop down menu.

17-9

17 Specifying Code Appearance and Documentation

Note If you want the code generator to sort multiple comments for the
Notes symbol name, replace the next step with “Using Sorted Notes to Add
Comments” on page 17-10.

3 Type <S:Symbol_name> followed by the comment, where Symbol_name is one
of the following Documentation child : Abstract, Description, History,
ModifiedHistory, or Notes. For example, type <S:Description>This is
the description I want. Template symbol names are case sensitive.

4 Click outside the note and save the model. After you generate code, the
code generator places the comment in each generated file whose template
has the symbol name you typed. The code generator places the comment
in the generated file at the location that corresponds to where the symbol
name is located in the template file.

5 To add one or more other comments to the generated files, repeat steps 1
through 4 as desired.

Using Sorted Notes to Add Comments
The sorted-notes capability allows you to add automatically sorted comments
to the generated files. The code generator places these comments in each
generated file at the location that corresponds to where the Notes symbol is
located in the template file.

The sorting order the code generator uses is

• Numbers before letters

• Among numbers, 0 is first

• Among letters, uppercase are before lowercase.

You can use sorted notes with a Simulink annotation or a Stateflow note, but
not with a DocBlock:

• In the Simulink annotation or the Stateflow note, type <S:NoteY> followed
by the first comment, where Y is a number or letter.

17-10

Customizing Comments in Generated Code

• Repeat for as many additional comments you want, except replace Y with a
subsequent number or letter.

The figure below illustrates sorted notes on a model, and where the code
generator places each in a generated file.

Here is the relevant fragment from the generated file for the above model:

** NOTES

** Note1: This is the first comment I want
associated with the Notes symbol.
Note2: This is the second comment I want under Notes.
Noteb: This is the third comment.

**

17-11

17 Specifying Code Appearance and Documentation

Configuring the Appearance of Generated Identifiers

In this section...

“Customizing Generated Identifiers” on page 17-12

“Configuring Symbols” on page 17-13

Customizing Generated Identifiers
Several parameters are available for customizing generated symbols.

To... Specify...

Define a macro string that specifies whether,
and in what order, certain substrings are
included within generated identifiers for global
variables, global types, field names of global
types, subsystem methods, subsystem method
arguments, local temporary variables, local
block output variables, and constant macros

The macro string with the Identifier format
control parameter (for details on how to
specify formats, see “Specifying Identifier
Formats” on page 17-13 and for limitations,
see “Identifier Format Control Parameters
Limitations” on page 17-19).

Specify the minimum number of characters the
code generator uses for mangled symbols

Specify an integer value for the Minimum
mangle length (for details, see “Name
Mangling” on page 17-16).

Specify the maximum number of characters the
code generator can use for function, typedef,
and variable names (default 31)

Specify an integer value for the Maximum
identifier length. If you expect your model
to generate lengthy identifiers (due to use of
long signal or parameter names, for example),
or you find that identifiers are being mangled
more than expected, you should increase the
value of this parameter.

Control whether scalar inlined parameter
values are expressed in generated code as
literal values or macros

The value Literals or Macros for the
Generate scalar inlined parameters as
parameter
.

• Literals: Parameters are expressed as
numeric constants and takes effect if Inline
parameters is selected.

17-12

Configuring the Appearance of Generated Identifiers

To... Specify...

• Macros: Parameters are expressed as
variables (with #define macros). This
setting makes code more readable.

For more information, see “Code Generation Pane: Symbols” in the Simulink
Coder documentation.

Configuring Symbols

Specifying Simulink Data Object Naming Rules

To Define Rules that Change the
Names of a Model’s...

Specify a Naming Rule with the
...

Signals Signal naming parameter

Parameters Parameter naming parameter

Parameters that have a storage class
of Define

#define naming parameter

For more information on these parameters, see “Specifying Simulink Data
Object Naming Rules” on page 12-34.

Specifying Identifier Formats
The Identifier format control parameters let you customize generated
identifiers by entering a macro string that specifies whether, and in what
order, certain substrings are included within generated identifiers. For
example, you can specify that the root model name be inserted into each
identifier.

The macro string can include

• Tokens of the form $X, where X is a single character. Valid tokens are listed
in Identifier Format Tokens on page 17-14. You can use or omit tokens as
you want, with the exception of the $M token, which is required (see “Name

17-13

17 Specifying Code Appearance and Documentation

Mangling” on page 17-16) and subject to the use and ordering restrictions
noted in Identifier Format Control Parameter Values on page 17-15.

• Any valid C or C++ language identifier characters (a-z, A-Z, _ , 0-9).

The build process generates each identifier by expanding tokens (in the
order listed in Identifier Format Tokens on page 17-14) and inserting the
resultant strings into the identifier. Character strings between tokens are
simply inserted directly into the identifier. Contiguous token expansions are
separated by the underscore (_) character.

Identifier Format Tokens

Token Description

$M Insert name mangling string if required to avoid naming
collisions (see “Name Mangling” on page 17-16). Note: This
token is required.

$F Insert method name (for example, _Update for update method).
This token is available only for subsystem methods.

$N Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is being
generated.

$R Insert root model name into identifier, replacing any
unsupported characters with the underscore (_) character. Note
that when using model referencing, this token is required in
addition to $M (see “Model Referencing Considerations” on page
17-18).

Note: This token replaces the Prefix model name to global
identifiers option used in previous releases.

$H Insert tag indicating system hierarchy level. For root-level
blocks, the tag is the string root_. For blocks at the subsystem
level, the tag is of the form sN_, where N is a unique system
number assigned by the Simulink software. This token is
available only for subsystem methods and field names of global
types.

Note: This token replaces the Include System Hierarchy
Number in Identifiers option used in previous releases.

17-14

Configuring the Appearance of Generated Identifiers

Identifier Format Tokens (Continued)

Token Description

$A Insert data type acronym (for example, i32 for long integers) to
signal and work vector identifiers. This token is available only
for local block output variables and field names of global types.

Note: This token replaces the Include data type acronym in
identifier option used in previous releases.

$I Insert u if the argument is an input or y if the argument is an
output, (for example, rtu_ for an input argument and rty_ for
an output argument). This token is available only for subsystem
method arguments.

Identifier Format Control Parameter Values on page 17-15 lists the default
macro string, the supported tokens, and the applicable restrictions for each
Identifier format control parameter.

Identifier Format Control Parameter Values

Parameter
Default
Value

Supported
Tokens Restrictions

Global
variables

RN$M $R, $N, $M $F, $H, $A, and $I are
disallowed.

Global types NR$M $N, $R, $M $F, $H, $A, and $I are
disallowed.

Field name of
global types

NM $N, $M, $H,
$A

$R, $F, and $I are disallowed.

Subsystem
methods

RNMF $R, $N, $M,
$F, $H

$F and $H are empty for
Stateflow functions; $A and $I
are disallowed.

Subsystem
method
arguments

rtu_NM
or
rty_NM

$N, $M, $I $R, $F, $H, and $A are
disallowed.

17-15

17 Specifying Code Appearance and Documentation

Identifier Format Control Parameter Values (Continued)

Parameter
Default
Value

Supported
Tokens Restrictions

Local
temporary
variables

NM $N, $M, $R $F, $H, $A, and $I are
disallowed.

Local block
output
variables

rtb_NM $N, $M, $A $R, $F, $H, and $I are
disallowed.

Constant
macros

RN$M $R, $N, $M $F, $H, $A, and $I are
disallowed.

Non-ERT based targets (such as the GRT target) implicitly use a default
RN$M specification. This specifies identifiers consisting of the root model
name, followed by the name of the generating object (signal, parameter,
state, and so on), followed by a name mangling string (see “Name Mangling”
on page 17-16).

For limitations that apply to Identifier format control parameters, see
“Identifier Format Control Parameters Limitations” on page 17-19.

Name Mangling
In identifier generation, a circumstance that would cause generation of two or
more identical identifiers is called a name collision. Name collisions are never
permissible. When a potential name collision exists, unique name mangling
strings are generated and inserted into each of the potentially conflicting
identifiers. Each name mangling string is guaranteed to be unique for each
generated identifier.

The position of the $M token in the Identifier format control parameter
specification determines the position of the name mangling string in the
generated identifiers. For example, if the specification RN$M is used, the
name mangling string is appended (if required) to the end of the identifier.

The Minimum mangle length parameter specifies the minimum number
of characters used when a name mangling string is generated. The default

17-16

Configuring the Appearance of Generated Identifiers

is 1 character. As described below, the actual length of the generated string
may be longer than this minimum.

Traceability
An important aspect of model based design is the ability to generate identifiers
that can easily be traced back to the corresponding entities within the model.
To ensure traceability, it is important to make sure that incremental revisions
to a model have minimal impact on the identifier names that appear in
generated code. There are two ways of achieving this:

1 Choose unique names for Simulink objects (blocks, signals, states, and
so on) as much as possible.

2 Make use of name mangling when conflicts cannot be avoided.

When conflicts cannot be avoided (as may be the case in models that use
libraries or model reference), name mangling ensures traceability. The
position of the name mangling string is specified by the placement of the $M
token in the Identifier format control parameter specification. Mangle
characters consist of lower case characters (a-z) and numerics (0-9), which
are chosen with a checksum that is unique to each object. How Name
Mangling Strings Are Computed on page 17-17 describes how this checksum
is computed for different types of objects.

How Name Mangling Strings Are Computed

Object Type Source of Mangling String

Block diagram Name of block diagram

Simulink block Full path name of block

Simulink
parameter

Full name of parameter owner (that is, model or block)
and parameter name

Simulink signal Signal name, full name of source block, and port
number

Stateflow objects Complete path to Stateflow block and Stateflow
computed name (unique within chart)

17-17

17 Specifying Code Appearance and Documentation

The length of the name mangling string is specified by theMinimum mangle
length parameter. The default value is 1, but this automatically increases
during code generation as a function of the number of collisions.

To minimize disturbance to the generated code during development, specify
a larger Minimum mangle length. A Minimum mangle length of 4 is a
conservative and safe value. A value of 4 allows for over 1.5 million collisions
for a particular identifier before the mangle length is increased.

Minimizing Name Mangling
Note that the length of generated identifiers is limited by the Maximum
identifier length parameter. When a name collision exists, the $M token is
always expanded to the minimum number of characters required to avoid the
collision. Other tokens and character strings are expanded in the order listed
in Identifier Format Tokens on page 17-14. If the Maximum identifier
length is not large enough to accommodate full expansions of the other
tokens, partial expansions are used. To avoid this outcome, it is good practice
to

• Avoid name collisions in general. One way to do this is to avoid using
default block names (for example, Gain1, Gain2...) when there are many
blocks of the same type in the model.

• Where possible, increase theMaximum identifier length to accommodate
the length of the identifiers you expect to generate.

Set the Minimum mangle length parameter to reserve at least three
characters for the name mangling string. The length of the name mangling
string increases as the number of name collisions increases.

Note that an existing name mangling string increases (or decreases) in
length if changes to model create more (or fewer) collisions. If the length of
the name mangling string increases, additional characters are appended to
the existing string. For example, 'xyz' might change to 'xyzQ'. In the
inverse case (fewer collisions) 'xyz' would change to 'xy'.

Model Referencing Considerations
Within a model that uses model referencing, there can be no collisions
between the names of the constituent models. When generating code from a
model that uses model referencing:

17-18

Configuring the Appearance of Generated Identifiers

• The $R token must be included in the Identifier format control
parameter specifications (in addition to the $M token).

• The Maximum identifier length must be large enough to accommodate
full expansions of the $R and $M tokens. A code generation error occurs if
Maximum identifier length is not large enough.

When a name conflict occurs between an identifier within the scope of a
higher-level model and an identifier within the scope of a referenced model,
the identifier from the referenced model is preserved. Name mangling is
performed on the identifier from the higher-level model.

Exceptions to Identifier Formatting Conventions
There are some exceptions to the identifier formatting conventions described
above:

• Type name generation: The above name mangling conventions do not
apply to type names (that is, typedef statements) generated for global
data types. If the $R token is included in the Identifier format control
parameter specification, the model name is included in the typedef. The
Maximum identifier length parameter is not respected when generating
type definitions.

• Non-Auto storage classes: The Identifier format control parameter
specification does not affect objects (such as signals and parameters)
that have a storage class other than Auto (such as ImportedExtern or
ExportedGlobal).

Identifier Format Control Parameters Limitations
The following limitations apply to the Identifier format control parameters:

• The following autogenerated identifiers currently do not fully comply with
the setting of the Maximum identifier length parameter on the Code
Generation > Symbols pane of the Configuration Parameters dialog box.

- Model methods

• The applicable format string is RF, and the longest $F is
_derivatives, which is 12 characters long. The model name can

17-19

17 Specifying Code Appearance and Documentation

be up to 19 characters without exceeding the default Maximum
identifier length of 31.

- Local functions generated by S-functions or by add-on products such as
DSP System Toolbox™ that rely on S-functions

- Local variables generated by S-functions or by add-on products such as
DSP System Toolbox that rely on S-functions

- DWork identifiers generated by S-functions in referenced models

- Fixed-point shared utility macros or shared utility functions

- Simulink rtm macros

• Most are within the default Maximum identifier
length of 31, but some exceed the limit. Examples
are RTMSpecAccsGetStopRequestedValStoredAsPtr,
RTMSpecAccsGetErrorStatusPointer, and
RTMSpecAccsGetErrorStatusPointerPointer.

- Define protection guard macros

• Header file guards, such as _RTW_HEADER_$(filename)_h_, which
can exceed the default Maximum identifier length of 31 given a
filename such as $R_private.h.

• Include file guards, such as _$R_COMMON_INCLUDES_.

• typedef guards, such as _CSCI_$R_CHARTSTRUCT_.

• In some situations, the following identifiers potentially can conflict with
others.

- Model methods

- Reentrant model function arguments

- Local functions generated by S-functions or by add-on products such as
DSP System Toolbox that rely on S-functions

- Local variables generated by S-functions or by add-on products such as
DSP System Toolbox that rely on S-functions

- Fixed-point shared utility macros or shared utility functions

- Include header guard macros

17-20

Configuring the Appearance of Generated Identifiers

• The following external identifiers that are unknown to the Simulink
software might conflict with autogenerated identifiers.

- Identifiers defined in custom code

- Identifiers defined in custom header files

- Identifiers introduced through a non-ANSI C standard library

- Identifiers defined by custom TLC code

• Identifiers generated for simulation targets may exceed the Maximum
identifier length. Simulation targets include the model reference
simulation target, the accelerated simulation target, the RSim target, and
the S-function target.

17-21

17 Specifying Code Appearance and Documentation

Controlling Code Style
You can control the following style aspects in generated code:

• Level of parenthesization

• Whether to preserve order of operands in expressions

• Whether to preserve empty primary condition expressions in if statements

• Whether to generate code for if-elseif-else decision logic as
switch-case statements

• Whether to include the extern keyword in function declarations

• Whether to always generate default cases for switch-case statements in
the code for Stateflow charts

For example, C code contains some syntactically required parentheses, and
can contain additional parentheses that change semantics by overriding
default operator precedence. C code can also contain optional parentheses
that have no functional significance, but serve only to increase the readability
of the code. Optional C parentheses vary between two stylistic extremes:

• Include the minimum parentheses required by C syntax and any
precedence overrides, so that C precedence rules specify all semantics
unless overridden by parentheses.

• Include the maximum parentheses that can exist without duplication, so
that C precedence rules become irrelevant: parentheses alone completely
specify all semantics.

Understanding code with minimum parentheses can require correctly
applying nonobvious precedence rules, but maximum parentheses can
hinder code reading by belaboring obvious precedence rules. Various
parenthesization standards exist that specify one or the other extreme, or
define an intermediate style that can be useful to human code readers.

You control the code style options by setting parameters on the Code
Generation > Code Style pane. For details on the parameters, see “Code
Generation Pane: Code Style”.

17-22

Configuring Templates for Customizing Code Organization and Format

Configuring Templates for Customizing Code Organization
and Format

In this section...

“Overview” on page 17-24

“Custom File Processing Components” on page 17-25

“Custom File Processing User Interface Options” on page 17-25

“Code Generation Template (CGT) Files” on page 17-27

“Using Custom File Processing (CFP) Templates” on page 17-31

“Custom File Processing (CFP) Template Structure” on page 17-31

“Changing the Organization of a Generated File” on page 17-33

“Generating Source and Header Files with a Custom File Processing (CFP)
Template” on page 17-35

“Comparison of a Template and Its Generated File” on page 17-44

“Code Template API Summary” on page 17-47

“Generating Custom File and Function Banners” on page 17-50

“Template Symbols and Rules” on page 17-59

Customize generated code using code and data templates

To... Enter or Select...

Specify a template that defines
the top-level organization and
formatting of generated source
code (.c or .cpp) files

Enter a code generation template (CGT) file for the Source
file (*.c) template parameter.

Specify a template that defines
the top-level organization and
formatting of generated header
(.h) files

Enter a CGT file for the Header file (*.h) template
parameter. This template file can be the same template
file that you specify for Source file (.c) template. If you
use the same template file, source and header files contain
identical banners. The default template is matlabroot
/toolbox/rtw/targets/ecoder/ert_code_template.cgt.

17-23

17 Specifying Code Appearance and Documentation

To... Enter or Select...

Specify a template that organizes
generated code into sections (such
as includes, typedefs, functions,
and more)

Enter a custom file processing (CFP) template file for the
“File customization template” parameter. A CFP template
can emit code, directives, or comments into each section. For
more information, see “Using Custom File Processing (CFP)
Templates” on page 17-31.

Generate a model-specific
example main program module

Select Generate an example main program. For more
information, see “Generating a Standalone Program” on
page 34-3.

Note Place the template files that you specify on the MATLAB path.

Overview
This section describes Embedded Coder custom file processing (CFP) features.
Custom file processing simplifies generation of custom source code. You can:

• Generate any type of source (.c or .cpp) or header (.h) file. Using a custom
file processing template (CFP template), you can control how code emits to
the standard generated model files (for example, model.c or .cpp, model.h)
or generate files that are independent of model code.

• Organize generated code into sections (such as includes, typedefs,
functions, and more). Your CFP template can emit code (for example,
functions), directives (such as #define or #include statements), or
comments into each section.

• Generate custom file banners (comment sections) at the start and end of
generated code files and custom function banners that precede functions in
the generated code.

• Generate code to call model functions, such as model_initialize,
model_step, and so on.

• Generate code to read and write model inputs and outputs.

• Generate a main program module.

• Obtain information about the model and the generated files from the model.

17-24

Configuring Templates for Customizing Code Organization and Format

Custom File Processing Components
The custom file processing features are based on the following interrelated
components:

• Code generation template (CGT) files: a CGT file defines the top-level
organization and formatting of generated code. See “Code Generation
Template (CGT) Files” on page 17-27.

• The code template API: a high-level Target Language Compiler (TLC)
API that provides functions with which you can organize code into
named sections and subsections of generated source and header files.
The code template API also provides utilities that return information
about generated files, generate standard model calls, and perform other
functions. See “Code Template API Summary” on page 17-47.

• Custom file processing (CFP) templates: a CFP template is a TLC file that
manages the process of custom code generation. A CFP template assembles
code to be generated into buffers. A CFP template also calls the code
template API to emit the buffered code into specified sections of generated
source and header files. A CFP template interacts with a CGT file, which
defines the ordering of major sections of the generated code. See “Using
Custom File Processing (CFP) Templates” on page 17-31.

To use CFP templates, you must understand TLC programming. See the
Target Language Compiler document.

Custom File Processing User Interface Options
To use custom file processing features, create CGT files and CFP templates.
These files are based on default templates provided by the code generation
software. Once you have created your templates, you must integrate them
into the code generation process.

Select and edit CGT files and CFP templates, and specify their use in the code
generation process in the Code Generation > Templates pane of a model
configuration set. The following figure shows all options configured for their
defaults.

17-25

17 Specifying Code Appearance and Documentation

Code Generation: Templates Pane

The options related to custom file processing are:

• The Source file (.c) template field in the Code templates and Data
templates sections. This field specifies the name of a CGT file to use
when generating source (.c or .cpp) files. You must place this file on the
MATLAB path.

• The Header file (.h) template field in the Code templates and Data
templates sections. This field specifies the name of a CGT file to use when
generating header (.h) files. You must place this file on the MATLAB path.

By default, the template for both source and header files is
matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt.

• The File customization template edit field in the Custom
templates section. This field specifies the name of a CFP
template file to use when generating code files. You must place
this file on the MATLAB path. The default CFP template is
matlabroot/toolbox/rtw/targets/ecoder/example_file_process.tlc.

In each of these fields, click Browse to navigate to and select an existing CFP
template or CGT file. Click Edit to open the specified file into the MATLAB
editor where you can customize it. You must place this file on the

17-26

Configuring Templates for Customizing Code Organization and Format

Code Generation Template (CGT) Files
CGT files have the following applications:

• Generation of custom banners (comments sections) in code files. See
“Generating Custom File and Function Banners” on page 17-50.

• Advanced features, as described in Defining Data Representation and
Storage for Code Generation on page 1 that use CGT files.

• Generation of custom code using a CFP template requires a CGT file. To
correctly use CFP templates, you must understand the CGT file structure.
In many cases, however, you can use the default CGT file without
modifying it.

Default CGT file
The code generation software provides a default CGT file,
matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt. Base
your custom CGT files on the default file.

CGT File Structure
A CGT file consists of one required section and four optional sections:

Code Insertion Section. (Required) This section contains tokens that define
an ordered partitioning of the generated code into a number of sections (such
as Includes and Defines sections). Tokens have the form of:

%<SectionName>

For example,

%<Includes>

The code generation software defines a minimal set of required tokens. These
tokens generate C or C++ source or header code. They are built-in tokens (see
“Built-In Tokens and Sections” on page 17-28). You can also define custom
tokens and add them to the code insertion section (see “Generating a Custom
Section” on page 17-42).

Each token functions as a placeholder for a corresponding section of generated
code. The ordering of the tokens defines the order in which the corresponding

17-27

17 Specifying Code Appearance and Documentation

sections appear in the generated code. A token in the CGT file does not
guarantee that the corresponding section is generated. To generate code into
a given section, explicitly call the code template API from a CFP template, as
described in “Using Custom File Processing (CFP) Templates” on page 17-31.

The CGT tokens define the high-level organization of generated code. Using
the code template API, you can partition each code section into named
subsections, as described in “Subsections” on page 17-30.

In the code insertion section, you can also insert C or C++ comments between
tokens. Such comments emit directly into the generated code.

File Banner Section. (Optional) This section contains comments and tokens
you use in generating a custom file banner. See “Generating Custom File
and Function Banners” on page 17-50.

Function Banner Section. (Optional) This section contains comments and
tokens for use in generating a custom function banner. See“Generating
Custom File and Function Banners” on page 17-50.

Shared Utility Function Banner Section. (Optional) This section contains
comments and tokens for use in generating a custom shared utility function
banner. See “Generating Custom File and Function Banners” on page 17-50.

File Trailer Section. (Optional) This section contains comments for use
in generating a custom trailer banner. See “Generating Custom File and
Function Banners” on page 17-50.

Built-In Tokens and Sections
The following code extract shows the required code insertion section of the
default CGT file with the required built-in tokens.

%%%

%% Code insertion section (required)

%% These are required tokens. You can insert comments and other tokens in

%% between them, but do not change their order or remove them.

%%

%<Includes>

%<Defines>

17-28

Configuring Templates for Customizing Code Organization and Format

%<Types>

%<Enums>

%<Definitions>

%<Declarations>

%<Functions>

Note the following requirements for customizing a CGT file:

• Do not remove required built-in tokens.

• Built-in tokens must appear in the order shown because each successive
section has dependencies on previous sections.

• Only one token per line.

• Do not repeat tokens.

• You can add custom tokens and comments to the code insertion section as
long as you do not violate the previous requirements.

The following table summarizes the built-in tokens and corresponding section
names, and describes the code sections.

Built-In CGT Tokens and Corresponding Code Sections

Token and
Section Name Description

Includes #include directives section

Defines #define directives section

Types typedef section. Typedefs can depend on any
previously defined type

Enums Enumerated types section

Definitions Data definitions (for example, double x = 3.0;)

Declarations Data declarations (for example, extern double x;)

Functions C or C++ functions

17-29

17 Specifying Code Appearance and Documentation

Subsections
You can define one or more named subsections for any section. Some of the
built-in sections have predefined subsections summarized in Subsections
Defined for Built-In Sections on page 17-30.

Note Sections and subsections emit to the source or header file in the order
listed in the CGT file.

Using the custom section feature, you can define additional sections. See
“Generating a Custom Section” on page 17-42.

Subsections Defined for Built-In Sections

Section Subsections Subsection Description

Includes N/A

Defines N/A

Types IntrinsicTypes Intrinsic typedef section. Intrinsic types
depend only on intrinsic C or C++ types.

Types PrimitiveTypedefs Primitive typedef section. Primitive typedefs
depend only on intrinsic C or C++ types and
on any typedefs previously defined in the
IntrinsicTypes section.

Types UserTop You can place any type of code in this section,
including code that has dependencies on the
previous sections.

Types Typedefs typedef section. Typedefs can depend on any
previously defined type

Enums N/A

Definitions N/A

Declarations N/A

Functions C or C++ functions

Functions CompilerErrors #warning directives

17-30

Configuring Templates for Customizing Code Organization and Format

Subsections Defined for Built-In Sections (Continued)

Section Subsections Subsection Description

Functions CompilerWarnings #error directives

Functions Documentation Documentation (comment) section

Functions UserBottom You can place any code in this section.

Using Custom File Processing (CFP) Templates
The files provided to support custom file processing are

• matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc: A TLC function
library that implements the code template API. codetemplatelib.tlc also
provides the comprehensive documentation of the API in the comments
headers preceding each function.

• matlabroot/toolbox/rtw/targets/ecoder/example_file_process.tlc:
An example custom file processing (CFP) template, which you should use
as the starting point for creating your own CFP templates. Guidelines
and examples for creating a CFP template are provided in “Generating
Source and Header Files with a Custom File Processing (CFP) Template”
on page 17-35.

• TLC files supporting generation of single-rate and multirate main program
modules (see “Customizing Main Program Module Generation” on page
17-40).

Once you have created a CFP template, you must integrate it into the code
generation process, using the File customization template edit field (see
“Custom File Processing User Interface Options” on page 17-25).

Custom File Processing (CFP) Template Structure
A custom file processing (CFP) template imposes a simple structure on the
code generation process. The template, a code generation template (CGT)
file, partitions the code generated for each file into a number of sections.
These sections are summarized in Built-In CGT Tokens and Corresponding
Code Sections on page 17-29 and Subsections Defined for Built-In Sections on
page 17-30.

17-31

17 Specifying Code Appearance and Documentation

Code for each section is assembled in buffers and then emitted, in the order
listed, to the file being generated.

To generate a file section, your CFP template must first assemble the code
to be generated into a buffer. Then, to emit the section, your template calls
the TLC function

LibSetSourceFileSection(fileH, section, tmpBuf)

where

• fileH is a file reference to a file being generated.

• section is the code section or subsection to which code is to be emitted.
section must be one of the section or subsection names listed in Subsections
Defined for Built-In Sections on page 17-30.

Determine the section argument as follows:

- If Subsections Defined for Built-In Sections on page 17-30 defines no
subsections for a given section, use the section name as the section
argument.

- If Subsections Defined for Built-In Sections on page 17-30 defines one or
more subsections for a given section, you can use either the section name
or a subsection name as the section argument.

- If you have defined a custom token denoting a custom section, do not call
LibSetSourceFileSection. Special API calls are provided for custom
sections (see “Generating a Custom Section” on page 17-42).

• tmpBuf is the buffer containing the code to be emitted.

There is no requirement to generate all of the available sections. Your
template need only generate the sections you require in a particular file.

Note that no legality or syntax checking is performed on the custom code
within each section.

The next section, “Generating Source and Header Files with a Custom File
Processing (CFP) Template” on page 17-35, provides typical usage examples.

17-32

Configuring Templates for Customizing Code Organization and Format

Changing the Organization of a Generated File
The files you generated in the previous procedures are organized according
to the general code generation template. This template has the filename
ert_code_template.cgt, and is specified by default in Templates pane of
the Configuration Parameters dialog box.

17-33

17 Specifying Code Appearance and Documentation

The following fragment shows the rtwdemo_mpf.c file header that is
generated using this default template:

/*

* File: rtwdemo_mpf.c

*

* Code generated for Simulink model 'rtwdemo_mpf'.

*

* Model version : 1.88

* Simulink Coder version : 8.0 (R2011a) 26-Aug-2010

* TLC version : 7.6 (Sep 3 2010)

* C/C++ source code generated on : Thu Sep 09 10:10:14 2010

*

* Target selection: ert.tlc

* Embedded hardware selection: Generic->32-bit Embedded Processor

* Code generation objectives: Unspecified

* Validation result: Not run

*/

You can change the organization of generated files using code templates and
data templates. Code templates organize the files that contain functions,
primarily. Data templates organize the files that contain identifiers. In this
procedure, you organize the generated files, using the supplied MPF code
and data templates:

1 Display the active Templates configuration parameters.

2 In the Code templates section of the Templates pane, type
code_c_template.cgt into the Source file (*.c) templates text box.

3 Type code_h_template.cgt into theHeader file (*.h) templates text box.

4 In the Data templates section, type data_c_template.cgt into the
Source file (*.c) templates text box.

5 Type data_h_template.cgt into the Header file (*.h) templates text
box, and click Apply.

17-34

Configuring Templates for Customizing Code Organization and Format

6 Click Generate code. Now the files are organized using the templates you
specified. For example, the rtwdemo_mpf.c file header now is organized
like this:

/**

** FILE INFORMATION:

** Filename: rtwdemo_mpf.c

** File Creation Date: 09-Sep-2010

**

** ABSTRACT:

**

**

** NOTES:

**

**

** MODEL INFORMATION:

** Model Name: rtwdemo_mpf

** Model Description: Data packaging examples

** Model Version: 1.89

** Model Author: The MathWorks Inc. - Mon Mar 01 11:23:00 2004

**

** MODIFICATION HISTORY:

** Model at Code Generation: ssulliva - Thu Sep 09 10:19:35 2010

**

** Last Saved Modification: ssulliva - Thu Sep 09 10:19:13 2010

**

**

**/

Generating Source and Header Files with a Custom
File Processing (CFP) Template
This section walks you through the process of generating a simple source
(.c or .cpp) and header (.h) file using the example CFP template. Then, it
examines the template and the code generated by the template.

17-35

17 Specifying Code Appearance and Documentation

The example CFP template,
matlabroot/toolbox/rtw/targets/ecoder/example_file_process.tlc,
demonstrates some of the capabilities of the code template API, including

• Generation of simple source (.c or .cpp) and header (.h) files

• Use of buffers to generate file sections for includes, functions, and so on

• Generation of includes, defines, into the standard generated files (for
example, model.h)

• Generation of a main program module

Generating Code with a CFP Template
This section sets up a CFP template and configures a model to use the
template in code generation. The template generates (in addition to the
standard model files) a source file (timestwo.c or .cpp) and a header file
(timestwo.h).

Follow the steps below to become acquainted with the use of CFP templates:

1 Copy the example CFP template,
matlabroot/toolbox/rtw/targets/ecoder/example_file_process.tlc,
to a directory outside the MATLAB directory structure (that is, not under
matlabroot). If the directory is not on the MATLAB path or the TLC
path, then add it to the MATLAB path. It is good practice to locate the
CFP template in the same directory as your system target file, which is
guaranteed to be on the TLC path.

2 Rename the copied example_file_process.tlc to
test_example_file_process.tlc.

3 Open test_example_file_process.tlc into the MATLAB editor.

4 Uncomment the following line:

%% %assign ERTCustomFileTest = TLC_TRUE

It now reads:

%assign ERTCustomFileTest = TLC_TRUE

17-36

Configuring Templates for Customizing Code Organization and Format

If ERTCustomFileTest is not assigned as shown, the CFP template is
ignored in code generation.

5 Save your changes to the file. Keep test_example_file_process.tlc
open, so you can refer to it later.

6 Open the rtwdemo_udt model.

7 Open the Simulink Model Explorer. Select the active configuration set of
the model, and open the Code Generation pane of the active configuration
set.

8 Click the Templates tab.

9 Configure the File customization template field as shown below. The
test_example_file_process.tlc file, which you previously edited, is now
the specified CFP template for your model.

10 Select the Generate code only option.

11 Click Apply.

12 Click Generate code. During code generation, notice the following
message on the MATLAB command window:

Warning: Overriding example ert_main.c!

17-37

17 Specifying Code Appearance and Documentation

This message is displayed because test_example_file_process.tlc
generates the main program module, overriding the default action of the
ERT target. This is explained in greater detail below.

13 The rtwdemo_udt model is configured to generate an HTML code
generation report. After code generation completes, view the report. Notice
that the Generated Files list contains the files timestwo.c, timestwo.h,
and ert_main.c. These files were generated by the CFP template. The
next section examines the template to learn how this was done.

14 Keep the model, the code generation report, and the
test_example_file_process.tlc file open so you can refer to
them in the next section.

Analysis of the Example CFP Template and Generated Code
This section examines excerpts from test_example_file_process.tlc
and some of the code it generates. Refer to the comments in
matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc while reading the
following discussion.

Generating Code Files. Source (.c or .cpp) and header (.h) files are created
by calling LibCreateSourceFile, as in the following excerpts:

%assign cFile = LibCreateSourceFile("Source", "Custom", "timestwo")

...

%assign hFile = LibCreateSourceFile("Header", "Custom", "timestwo")

Subsequent code refers to the files by the file reference returned from
LibCreateSourceFile.

File Sections and Buffers. The code template API lets you partition the
code generated to each file into sections, tagged as Definitions, Includes,
Functions, Banner, and so on. You can append code to each section as many
times as required. This technique gives you a great deal of flexibility in the
formatting of your custom code files.

Subsections Defined for Built-In Sections on page 17-30 describes the
available file sections and their order in the generated file.

17-38

Configuring Templates for Customizing Code Organization and Format

For each section of a generated file, use %openfile and %closefile to store
the text for that section in temporary buffers. Then, to write (append) the
buffer contents to a file section, call LibSetSourceFileSection, passing
in the desired section tag and file reference. For example, the following
code uses two buffers (tmwtypesBuf and tmpBuf) to generate two sections
(tagged "Includes" and "Functions") of the source file timestwo.c or .cpp
(referenced as cFile):

%openfile tmwtypesBuf

#include "tmwtypes.h"

%closefile tmwtypesBuf

%<LibSetSourceFileSection(cFile,"Includes",tmwtypesBuf)>

%openfile tmpBuf

/* Times two function */
real_T timestwofcn(real_T input) {

return (input * 2.0);
}

%closefile tmpBuf

%<LibSetSourceFileSection(cFile,"Functions",tmpBuf)>

These two sections generate the entire timestwo.c or .cpp file:

#include "tmwtypes.h"

/* Times two function */
FLOAT64 timestwofcn(FLOAT64 input)
{

return (input * 2.0);
}

17-39

17 Specifying Code Appearance and Documentation

Adding Code to Standard Generated Files. The timestwo.c or .cpp file
generated in the previous example was independent of the standard code
files generated from a model (for example, model.c or .cpp, model.h, and
so on). You can use similar techniques to generate custom code within the
model files. The code template API includes functions to obtain the names of
the standard models files and other model-related information. The following
excerpt calls LibGetMdlPubHdrBaseName to obtain the correct name for the
model.h file. It then obtains a file reference and generates a definition in the
Defines section of model.h:

%% Add a #define to the model's public header file model.h

%assign pubName = LibGetMdlPubHdrBaseName()

%assign modelH = LibCreateSourceFile("Header", "Simulink", pubName)

%openfile tmpBuf

#define ACCELERATION 9.81

%closefile tmpBuf

%<LibSetSourceFileSection(modelH,"Defines",tmpBuf)>

Examine the generated rtwdemo_udt.h file to see the generated #define
directive.

Customizing Main Program Module Generation. Normally, the ERT
target determines whether and how to generate an ert_main.c or .cpp
module based on the settings of the Generate an example main program
and Target operating system options on the Templates pane of the
Configuration Parameters dialog box. You can use a CFP template to override
the normal behavior and generate a main program module customized for
your target environment.

To support generation of main program modules, two TLC files are provided:

• bareboard_srmain.tlc: TLC code to generate an example single-rate main
program module for a bareboard target environment. Code is generated by
a single TLC function, FcnSingleTaskingMain.

17-40

Configuring Templates for Customizing Code Organization and Format

• bareboard_mrmain.tlc: TLC code to generate a multirate main program
module for a bareboard target environment. Code is generated by a single
TLC function, FcnMultiTaskingMain.

In the example CFP template file
matlabroot/toolbox/rtw/targets/ecoder/example_file_process.tlc,
the following code generates either a single- or multitasking ert_main.c or
.cpp module. The logic depends on information obtained from the code
template API calls LibIsSingleRateModel and LibIsSingleTasking:

%% Create a simple main. Files are located in MATLAB/rtw/c/tlc/mw.

%if LibIsSingleRateModel() || LibIsSingleTasking()

%include "bareboard_srmain.tlc"

%<FcnSingleTaskingMain()>

%else

%include "bareboard_mrmain.tlc"

%<FcnMultiTaskingMain()>

%endif

Note that bareboard_srmain.tlc and bareboard_mrmain.tlc use the code
template API to generate ert_main.c or .cpp.

When generating your own main program module, you disable the default
generation of ert_main.c or .cpp. The TLC variable GenerateSampleERTMain
controls generation of ert_main.c or .cpp. You can directly force
this variable to TLC_FALSE. The examples bareboard_mrmain.tlc and
bareboard_srmain.tlc use this technique, as shown in the following excerpt
from bareboard_srmain.tlc.

%if GenerateSampleERTMain
%assign CompiledModel.GenerateSampleERTMain = TLC_FALSE
%warning Overriding example ert_main.c!

%endif

Alternatively, you can implement a SelectCallback function for your target.
A SelectCallback function is a MATLAB function that is triggered during
model loading, and also when the user selects a target with the System Target
File browser. Your SelectCallback function should deselect and disable
the Generate an example main program option. This prevents the TLC
variable GenerateSampleERTMain from being set to TLC_TRUE.

17-41

17 Specifying Code Appearance and Documentation

See the “rtwgensettings Structure” section in the Simulink Coder
documentation for information on creating a SelectCallback function.

The following code illustrates how to deselect and disable the Generate an
example main program option in the context of a SelectCallback function.

slConfigUISetVal(hDlg, hSrc, 'GenerateSampleERTMain', 'off');
slConfigUISetEnabled(hDlg, hSrc, 'GenerateSampleERTMain',0);

Note Creation of a main program for your target environment requires some
customization; for example, in a bareboard environment you need to attach
rt_OneStep to a timer interrupt. It is expected that you will customize either
the generated code, the generating TLC code, or both. See “Guidelines for
Modifying the Main Program” on page 34-5 and “Guidelines for Modifying
rt_OneStep” on page 34-12 for further information.

Generating a Custom Section
You can define custom tokens in a CGT file and direct generated code into
an associated built-in section. This feature gives you additional control
over the formatting of code within each built-in section. For example, you
could add subsections to built-in sections that do not already define any
subsections. All custom sections must be associated with one of the built-in
sections: Includes, Defines, Types, Enums, Definitions, Declarations, or
Functions. To create custom sections, you must

• Add a custom token to the code insertion section of your CGT file.

• In your CFP file:

- Assemble code to be generated to the custom section into a buffer.

- Declare an association between the custom section and a built-in section,
with the code template API function LibAddSourceFileCustomSection.

- Emit code to the custom section with the code template API function
LibSetSourceFileCustomSection.

The following code examples illustrate the addition of a custom token,
Myincludes, to a CGT file, and the subsequent association of the custom
section Myincludes with the built-in section Includes in a CFP file.

17-42

Configuring Templates for Customizing Code Organization and Format

Note If you have not already created custom CGT and
CFP files for your model, copy the default template files
matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt and
matlabroot/toolbox/rtw/targets/ecoder/example_file_process.tlc to
a work directory that is outside the MATLAB directory structure but on the
MATLAB or TLC path, rename them (for example, add the prefix test_ to
each file), and update the Templates pane of the Configuration Parameters
dialog box to correctly reference them.

First, add the token Myincludes to the code insertion section of your CGT
file. For example:

%<Includes>
%<Myincludes>
%<Defines>
%<Types>
%<Enums>
%<Definitions>
%<Declarations>
%<Functions>

Next, in the CFP file, add code to generate include directives into a buffer.
For example, in your copy of the example CFP file, you could insert the
following section between the Includes section and the Create a simple
main section:

%% Add a custom section to the model's C file model.c

%openfile tmpBuf
#include "moretables1.h"
#include "moretables2.h"
%closefile tmpBuf

%<LibAddSourceFileCustomSection(modelC,"Includes","Myincludes")>
%<LibSetSourceFileCustomSection(modelC,"Myincludes",tmpBuf)>

The LibAddSourceFileCustomSection function call declares an
association between the built-in section Includes and the custom
section Myincludes. In effect, Myincludes is a subsection of Includes.

17-43

17 Specifying Code Appearance and Documentation

The LibSetSourceFileCustomSection function call directs the code
in the tmpBuf buffer to the Myincludes section of the generated
file. LibSetSourceFileCustomSection is syntactically identical to
LibSetSourceFileSection.

In the generated code, the include directives generated to the custom section
appear after other code directed to Includes.

#include "rtwdemo_udt.h"
#include "rtwdemo_udt_private.h"

/* #include "mytables.h" */
#include "moretables1.h"
#include "moretables2.h"

Note The placement of the custom token in this example CGT file is
arbitrary. By locating %<Myincludes> after %<Includes>, the CGT file
ensures only that the Myincludes code appears after Includes code.

Comparison of a Template and Its Generated File
The next figure shows part of a user-modified MPF template and the resulting
generated code. This figure illustrates how you can use a template to

• Define what code the code generation software should add to the generated
file

• Control the location of code in the file

• Optionally insert comments in the generated file

Notice %<Includes>, for example, on the template. The term Includes is a
symbol name. A percent sign and brackets (%< >) must enclose every symbol
name. You can add the desired symbol name (within the %< > delimiter) at a
particular location in the template. This is how you control where the code
generator places an item in the generated file.

17-44

Configuring Templates for Customizing Code Organization and Format

Template and Generated File

234,5�"6%+-32
78,&�	���
9
234%+',5+-32
78%���&�
9
4����.��
���&�(
23%+',5,:,�5-32
78%���&����&
9
4����.��
���&�)
78%��	������&
9
78'�&����&
9

������&���
+0�.�	��:�.�	��� �����
��&��&��������&������&�������'�	�
�
�
�

�
�
�

/(1

/)1

/*1
/;1

/<1
/=1
/>1

)=�234,5�"6%+-32
)>�4�&�	����?��#��.�@������.�	����!?
)A�4�&�	����?��#��.�@������.�	���@��������!?
)B
*C�234%+',5+-32
*(�4����.��
���&�(
*)�23%+',5,:,�5-32
**��23�D	����
����
�/�����
������1�32
*;����%����E
*<
*=�23�+0���&�	��������/��������
��&�	
�#��!������
������1�32
*>����FE
*A
*B�23����	���.��.���	�32
;C����$@E
;(��3��$��G��$@E
;)�4����.��
���&�)
;*
;;�23�$���	�
������&����&�32
;<��������#��.�@������.�	���@
���/����1
;=�H
;>
;A�23�	���	��	�����2��������	�
�32
;B
<C�����@-#���!E
<(�����@��	���E
<)
<*�23�-�.I�JJ��&���������
I
<;�3�6&��%�	��I�JJ
<<�32
<=����@-#���!��/1//1��%�����K�L�(61E
<>
<A�23���	����&�	��������I�JJ�32
<B����@��	�����/���@-#���!�M�(=61E
=C
=(�23��������I�JJ�32
=)���F���������@��	���E
=*
=;�23�-#���!I�JJ�32
=<���/���@��	���1�H
==�N��	
��H
=>����@-#���!��C6E
=A�N
=B
>C�23�6����������6&��%�	��I�JJ�32
>(���%�����K�����@-#���!E
>)
>*�23�/&����������������O�����1�32
>;�N
�
�
�

5�&�

5�&�

17-45

17 Specifying Code Appearance and Documentation

How the Template Affects Code Generation

Generates in the file...This part of the template...

Line Description

Explanation

(1) /*#INCLUDES*/
%<Includes>

26–28 An /*#INCLUDES*/
comment, followed
by #include
statements

The code generator adds
the C/C++ comment as a
header, and then interprets
the %<Includes> template
symbol to list all the necessary
#include statements in the file.
This code is first in this section
of the file because the template
entries are first.

(2) /*DEFINES*/
%<Defines>

30 A */DEFINES*/
comment, but no
#define statements

Next, the code generator places
the comment as a header for
#define statements, but the file
does not need #define. No code
is added.

(3) #pragma string1 31

(5) #pragma string2 42

#pragma statements While the code generator
requires %<> delimiters for
template symbols, it can also
interpret C/C++ statements in
the template without delimiters.
In this case, the generator adds
the specified statements to the
code, following the order in
which the statements appear in
the template.

(4) /#DEFINITIONS*/
%<Definitions>

32–41 /*#DEFINITIONS*/
comment, followed
by definitions

The code generator places
the comment and definitions
needed in the file between the
#pragma statements, according
to the order in the template.
It also inserts comments (lines
33 and 36) that are preset
in the model’s Configuration
Parameters dialog box.

17-46

Configuring Templates for Customizing Code Organization and Format

How the Template Affects Code Generation (Continued)

Generates in the file...This part of the template...

Line Description

Explanation

(6) %<Declarations> 43 No declarations The file needs no declarations,
so the code generator does not
generate any for this file. The
template has no comment to
provide a header. Line 43 is left
blank.

(7) %<Functions> 44–74 Functions Finally, the code generator adds
functions from the model, plus
comments that are preset in
the Configuration Parameters
dialog box. But it adds no
comments as a header for the
functions, because the template
does not have one. This code is
last because the template entry
is last.

For a list of template symbols and the rules for using them, see “Template
Symbol Groups” on page 17-60, “Template Symbols” on page 17-62, and
“Rules for Modifying or Creating a Template” on page 17-66. To set
comment options, from the Simulation menu, select Configuration
Parameters. On the Configuration Parameters dialog box, select the Code
Generation > Comments pane. For details, see “Configuring a Model for
Code Generation” in the Simulink Coder documentation.

Code Template API Summary
Code Template API Functions on page 17-48 summarizes
the code template API. See the source code in
matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc for detailed information
on the arguments, return values, and operation of these calls.

17-47

17 Specifying Code Appearance and Documentation

Code Template API Functions

Function Description

LibGetNumSourceFiles Returns the number of created source files
(.c or .cpp and .h).

LibGetSourceFileTag Returns <filename>_h and <filename>_c
for header and source files, respectively,
where filename is the name of the model
file.

LibCreateSourceFile Creates a new C or C++ file and returns its
reference. If the file already exists, simply
returns its reference.

LibGetSourceFileFromIdx Returns a model file reference based on
its index. This is useful for a common
operation on all files, such as to set the
leading file banner of all files.

LibSetSourceFileSection Adds to the contents of a specified section
within a specified file (see also “Custom
File Processing (CFP) Template Structure”
on page 17-31).

LibIndentSourceFile Indents a file with the c_indent utility
(from within the TLC environment).

LibCallModelInitialize Returns code for calling the model’s
model_initialize function (valid for ERT
only).

LibCallModelStep Returns code for calling the model’s
model_step function (valid for ERT only).

LibCallModelTerminate Returns code for calling the model’s
model_terminate function (valid for ERT
only).

LibCallSetEventForThisBaseStep Returns code for calling the model’s set
events function (valid for ERT only).

LibWriteModelData Returns data for the model (valid for ERT
only).

17-48

Configuring Templates for Customizing Code Organization and Format

Code Template API Functions (Continued)

Function Description

LibSetRTModelErrorStatus Returns the code to set the model error
status.

LibGetRTModelErrorStatus Returns the code to get the model error
status.

LibIsSingleRateModel Returns true if model is single rate and
false otherwise.

LibGetModelName Returns name of the model (no extension).

LibGetMdlSrcBaseName Returns the name of model’s main source
file (for example, model.c or .cpp).

LibGetMdlPubHdrBaseName Returns the name of model’s public header
file (for example, model.h).

LibGetMdlPrvHdrBaseName Returns the name of the model’s
private header file (for example,
model_private.h).

LibIsSingleTasking Returns true if the model is configured for
single-tasking execution.

LibWriteModelInput Returns the code to write to a particular
root input (that is, a model inport block).
(valid for ERT only).

LibWriteModelOutput Returns the code to write to a particular
root output (that is, a model outport block).
(valid for ERT only).

LibWriteModelInputs Returns the code to write to root inputs
(that is, all model inport blocks). (valid for
ERT only)

LibWriteModelOutputs Returns the code to write to root outputs
(that is, all model outport blocks). (valid
for ERT only).

LibNumDiscreteSampleTimes Returns the number of discrete sample
times in the model.

17-49

17 Specifying Code Appearance and Documentation

Code Template API Functions (Continued)

Function Description

LibSetSourceFileCodeTemplate Set the code template to be used for
generating a specified source file.

LibSetSourceFileOutputDirectory Set the directory into which a specified
source file is to be generated.

LibAddSourceFileCustomSection Add a custom section to a source file.
The custom section must be associated
with one of the built-in (required)
sections: Includes, Defines, Types,
Enums, Definitions, Declarations, or
Functions.

LibSetSourceFileCustomSection Adds to the contents of a specified custom
section within a specified file. The custom
section must have been previously created
with LibAddSourceFileCustomSection.

LibGetSourceFileCustomSection Returns the contents of a specified custom
section within a specified file.

LibSetCodeTemplateComplianceLevel This function must be called from your
CFP template before any other code
template API functions are called. Pass in
2 as the level argument.

Note Some MathWorks TLC files pass
in 1 as the level argument. Currently,
there is no difference in handling of level 1
versus level 2 by MathWorks software.

Generating Custom File and Function Banners
Using code generation template (CGT) files, you can specify custom file
banners and function banners for the generated code files. File banners
are comment sections in the header and trailer sections of a generated file.

17-50

Configuring Templates for Customizing Code Organization and Format

Function banners are comment sections for each function in the generated
code. Use these banners to add a company copyright statement, specify a
special version symbol for your configuration management system, remove
time stamps, and for many other purposes. These banners can contain
characters, which propagate to the generated code.

To specify banners, create a custom CGT file with customized banner sections.
The build process creates an executable TLC file from the CGT file. The code
generation process then invokes the TLC file.

You do not need to be familiar with TLC programming to generate custom
banners. You can modify example files that are supplied with the ERT target.

Note Prior releases supported direct use of customized TLC files as banner
templates. You specified these with the Source file (.c) banner template
and Header file (.h) banner template options of the ERT target. You can
still use a custom TLC file banner templates, however, you can now use CGT
files instead.

ERT template options on the Code Generation > Templates pane of a
configuration set, in the Code templates section, support banner generation.

Code Generation: Templates Pane

17-51

17 Specifying Code Appearance and Documentation

The options for function and file banner generation are:

• “Code templates: Source file (*.c) template”: CGT file to use when
generating source (.c or .cpp) files. Place this file on the MATLAB path.

• “Code templates: Header file (*.h) template”: CGT file to use when
generating header (.h) files. You must place this file on the MATLAB
path. This file can be the same template specified in the Code templates:
Source file (*.c) template field, in which case identical banners are
generated in source and header files.

By default, the template for both source and header files is
matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt.

• In each of these fields, click Browse to navigate to and select an existing
CGT file for use as a template. Click Edit to open the specified file into the
MATLAB editor, where you can customize it.

17-52

Configuring Templates for Customizing Code Organization and Format

Creating a Custom File and Function Banner Template
To customize a CGT file for custom banner generation, make a local copy of
the default code template and edit it, as follows:

1 Activate the configuration set you that want to work with.

2 Open the Code Generation pane of the active configuration set.

3 Click the Templates tab.

4 By default, the code template specified in theCode templates: Source file
(*.c) template and Code templates: Header file (*.h) template fields
is matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt.

5 If you want to use a different template as your starting point, click Browse
to locate and select a CGT file.

6 Click Edit button to open the CGT file into the MATLAB editor.

7 Save a local copy of the CGT file. Store the copy in a directory that is
outside of the MATLAB directory structure, but on the MATLAB path. If
necessary, add the directory to the MATLAB path.

8 If you intend to use the CGT file with a custom target, locate the CGT file
in a folder under your target root directory.

9 Rename your local copy of the CGT file. When you rename the CGT file,
update the associated Code templates: Source file (*.c) template or
Code templates: Header file (*.h) template field to match the new
file name.

10 Edit and customize the local copy of the CGT file for banner generation,
using the information provided in “Customizing a Code Generation
Template (CGT) File for File and Function Banner Generation” on page
17-54.

11 Save your changes to the CGT file.

12 Click Apply to update the configuration set.

13 Save your model.

17-53

17 Specifying Code Appearance and Documentation

14 Generate code. Examine the generated source and header files to confirm
that they contain the banners specified by the template or templates.

Customizing a Code Generation Template (CGT) File for File
and Function Banner Generation
This section describes how to edit a CGT file for custom file and function
banner generation. For a description of CGT files, see “Code Generation
Template (CGT) Files” on page 17-27.

Components of the File and Function Banner Sections in the CGT file.
In a CGT file, you can modify the following sections: file banner, function
banner, shared utility function banner, and file trailer. Each section is
defined by open and close tags. The tags specific to each section are shown
in the following table.

CGT File Section Open Tag Close Tag

“File Banner” on page 17-56 <FileBanner> </FileBanner>

“Function Banner” on page
17-57

<FunctionBanner> </FunctionBanner>

“Shared Utility Function
Banner” on page 17-58

<SharedUtilityBanner> </SharedUtilityBanner>

“File Trailer” on page 17-59 <FileTrailer> </FileTrailer>

You can customize your banners by including tokens and comments between
the open and close tag for each section. Tokens are typically TLC variables,
for example <ModelVersion>, which are replaced with values in the generated
code.

Note Including C comment indicators, ’/*’ or a ’*/’, in the contents of your
banner might introduce an error in the generated code.

An open tag includes tag attributes. Enclose the value of the attribute in
double quotes. The attributes available for an open tag are:

17-54

Configuring Templates for Customizing Code Organization and Format

• width: specifies the width of the file or function banner comments in the
generated code. The default value is 80.

• style: specifies the boundary for the file or function banner comments in
the generated code. See Built-in Styles on page 17-55 for style options.

The open tag syntax is as follows:

<OpenTag style = “style_value” width = “num_width”>

The following table includes the built-in style options for the style attribute.

Built-in Styles

Style Value Example

classic
/* single line comments */
/*
* multiple line comments
* second line
*/

classic_cpp
// single line comments
//
// multiple line comments
// second line
//

box
/**
/* banner contents
/**

box_cpp
///
// banner contents
///

open_box
/**
* banner contents

open_box_cpp
///
// banner contents
///

17-55

17 Specifying Code Appearance and Documentation

File Banner. This section contains comments and tokens for use in
generating a custom file banner. The file banner precedes any C or C++
code generated by the model. If you omit the file banner section from the
CGT file, then no file banner emits to the generated code. The following
section is the file banner section provided with the default CGT file,
matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt.

%%%

%% Custom file banner section (optional)

%%

<FileBanner style="classic">

File: %<FileName>

Code generated for Simulink model %<ModelName>.

Model version : %<ModelVersion>

Simulink Coder version : %<RTWFileVersion>

TLC version : %<TLCVersion>

C/C++ source code generated on : %<SourceGeneratedOn>

%<CodeGenSettings>

</FileBanner>

Summary of Tokens for File Banner Generation

FileName Name of the generated file (for example,
"rtwdemo_udt.c").

FileType Either "source" or "header". Designates
whether generated file is a .c or .cpp file or an
.h file.

FileTag Given file names file.c or .cpp and file.h;
the file tags are "file_c" and "file_h",
respectively.

ModelName Name of generating model.

ModelVersion Version number of model.

RTWFileVersion Version number of model.rtw file.

RTWFileGeneratedOn Timestamp of model.rtw file.

17-56

Configuring Templates for Customizing Code Organization and Format

Summary of Tokens for File Banner Generation (Continued)

TLCVersion Version of Target Language Compiler.

SourceGeneratedOn Timestamp of generated file.

CodeGenSettings Code generation settings for model: target
language, target selection, embedded hardware
selection, emulation hardware selection, code
generation objectives (in priority order), and
Code Generation Advisor validation result.

Function Banner. This section contains comments and tokens for
use in generating a custom function banner. The function banner
precedes any C or C++ function generated during the build process.
If you omit the function banner section from the CGT file, the default
function banner emits to the generated code. The following section is
the default function banner section provided with the default CGT file,
matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt.

%%%

%% Custom function banner section (optional)

%% Customize function banners by using the following predefined tokens:

%% %<ModelName>, %<FunctionName>, %<FunctionDescription>, %<Arguments>,

%% %<ReturnType>, %<GeneratedFor>, %<BlockDescription>.

%%

<FunctionBanner style="classic">

%<FunctionDescription>

%<BlockDescription>

</FunctionBanner>

Summary of Tokens for Function Banner Generation

FunctionName Name of function

Arguments List of function arguments

ReturnType Return type of function

ModelName Name of generating model

FunctionDescription Short abstract about the function

17-57

17 Specifying Code Appearance and Documentation

Summary of Tokens for Function Banner Generation (Continued)

GeneratedFor Full block path for the generated function

BlockDescription User input from the Block Description
parameter of the block properties dialog box.
BlockDescription contains an optional token
attribute, style. The only valid value forstyle
is content_only, which is case-sensitive and
enclosed in double quotes. Use the content_only
style when you want to include only the block
description content that you entered in the block
parameter dialog. The syntax for the token
attribute style is:

%<BlockDescription style = content_only >

Shared Utility Function Banner. The shared utility function banner section
contains comments and tokens for use in generating a custom shared utility
function banner. The shared utility function banner precedes any C or C++
shared utility function generated during the build process. If you omit the
shared utility function banner section from the CGT file, the default shared
utility function banner emits to the generated code. The following section is the
default shared utility function banner section provided with the default CGT
file, matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt.

%%%

%% Custom shared utility function banner section (optional)

%% Customize banners for functions generated in shared location by using the

%% following predefined tokens: %<FunctionName>, %<FunctionDescription>,

%% %<Arguments>, %<ReturnType>.

%%

<SharedUtilityBanner style="classic">

%<FunctionDescription>

</SharedUtilityBanner>

17-58

Configuring Templates for Customizing Code Organization and Format

Summary of Tokens for Shared Utility Function Banner Generation

FunctionName Name of function

Arguments List of function arguments

ReturnType Return type of function

FunctionDescription Short abstract about function

File Trailer. The file trailer section contains comments for generating a
custom file trailer. The file trailer follows any C or C++ code generated from
the model. If you omit the file trailer section from the CGT file, no file trailer
emits to the generated code. The following section is the default file trailer
provided in the default CGT file.

%%%

%% Custom file trailer section (optional)

%%

<FileTrailer style="classic">

File trailer for generated code.

[EOF]

</FileTrailer>

All of the tokens available for the file banner are available for the file trailer.
See Summary of Tokens for File Banner Generation on page 17-56.

Template Symbols and Rules

Introduction
“Template Symbol Groups” on page 17-60 and “Template Symbols” on page
17-62 describe MPF template symbols and rules for using them. The location
of a symbol in one of the supplied template files (code_c_template.cgt,
code_h_template.cgt, data_c_template.cgt, or data_h_template.cgt)
determines where the items associated with that symbol are located in the
corresponding generated file. “Template Symbol Groups” on page 17-60
identifies the symbol groups, starting with the parent (“Base”) group, followed
by the children of each parent. “Template Symbols” on page 17-62 lists the
symbols alphabetically.

17-59

17 Specifying Code Appearance and Documentation

Template Symbol Groups

Symbol Group Symbol Names in This Group

Base (Parents) Declarations

Defines

Definitions

Documentation

Enums

Functions

Includes

Types

Declarations ExternalCalibrationLookup1D

ExternalCalibrationLookup2D

ExternalCalibrationScalar

ExternalVariableScalar

Defines LocalDefines

LocalMacros

Definitions FilescopeCalibrationLookup1D

FilescopeCalibrationLookup2D

FilescopeCalibrationScalar

FilescopeVariableScalar

GlobalCalibrationLookup1D

GlobalCalibrationLookup2D

GlobalCalibrationScalar

GlobalVariableScalar

17-60

Configuring Templates for Customizing Code Organization and Format

Symbol Group Symbol Names in This Group

Documentation Abstract

Banner

Created

Creator

Date

Description

FileName

History

LastModifiedDate

LastModifiedBy

ModelName

ModelVersion

ModifiedBy

ModifiedComment

ModifiedDate

ModifiedHistory

Notes

ToolVersion

Functions CFunctionCode

Types This parent has no children.

17-61

17 Specifying Code Appearance and Documentation

Template Symbols

Symbol Name*
Symbol
Group

Symbol
Scope

Symbol Description
(What the symbol puts in
the generated file)

Abstract Documentation N/A User-supplied description of
the model or file. Placed in
the generated file based on
the Stateflow note, Simulink
annotation, or DocBlock on the
model.**

Banner Documentation N/A Comments located near top of
the file. Contains information
that includes model and
software versions, and date
file was generated.

CFunctionCode Functions File All of the C/C++ functions.
Must be at the bottom of the
template.

Created Documentation N/A Date when model was created.
From Created on field on
Model Properties dialog box.

Creator Documentation N/A User who created model. From
Created by field on Model
Properties dialog box.

Date Documentation N/A Date file was generated.
Taken from computer clock.

Declarations Base Data declaration of any signal
or parameter. For example,
extern real_T globalvar;.

Defines Base File Any necessary #defines of .h
files.

Definitions Base File Data definition of any signal
or parameter.

17-62

Configuring Templates for Customizing Code Organization and Format

Symbol Name*
Symbol
Group

Symbol
Scope

Symbol Description
(What the symbol puts in
the generated file)

Description Documentation N/A Description of model. From
Model description field on
Model Properties dialog box.**

Documentation Base N/A Comments about how to
interpret the generated files.

Enums Base File Enumerated data type
definitions.

ExternalCalibrationLookup1D Declarations External ***

ExternalCalibrationLookup2D Declarations External ***

ExternalCalibrationScalar Declarations External ***

ExternalVariableScalar Declarations External ***

FileName Documentation N/A Name of the generated file.

FilescopeCalibrationLookup1D Definitions File ***

FilescopeCalibrationLookup2D Definitions File ***

FilescopeCalibrationScalar Definitions File ***

FilescopeVariableScalar Definitions File ***

Functions Base File Generated function code.

GlobalCalibrationLookup1D Definitions Global ***

GlobalCalibrationLookup2D Definitions Global ***

GlobalCalibrationScalar Definitions Global ***

GlobalVariableScalar Definitions Global ***

History Documentation N/A User-supplied revision history
of the generated files. Placed
in the generated file based on
the Stateflow note, Simulink
annotation, or DocBlock on the
model.**

17-63

17 Specifying Code Appearance and Documentation

Symbol Name*
Symbol
Group

Symbol
Scope

Symbol Description
(What the symbol puts in
the generated file)

Includes Base File #include preprocessor
directives.

LastModifiedDate Documentation N/A Date when model was last
saved. From Last saved
on field on Model Properties
dialog box.

LastModifiedBy Documentation N/A User who last saved model.
From Last saved by field on
Model Properties dialog box.

LocalDefines Defines File #define preprocessor
directives from
code-generation data
dictionary.

LocalMacros Defines File C/C++ macros local to the file.

ModelName Documentation N/A Name of the model.

ModelVersion Documentation N/A Version number of the
Simulink model.

ModifiedBy Documentation N/A Name of user who last
modified the model. From
Model version field on Model
Properties dialog box.

ModifiedComment Documentation N/A Comment user enters in the
Modified Comment field on
the Log Change dialog box.
See “Creating a Model Change
History” in the Simulink
documentation.

ModifiedDate Documentation N/A Date model was last modified
before code was generated.

17-64

Configuring Templates for Customizing Code Organization and Format

Symbol Name*
Symbol
Group

Symbol
Scope

Symbol Description
(What the symbol puts in
the generated file)

ModifiedHistory Documentation N/A Text from Modified history
field on Model Properties
dialog box.**

Notes Documentation N/A User-supplied miscellaneous
notes about the model or
generated files. Placed in
the generated file based on
the Stateflow note, Simulink
annotation, or DocBlock on the
model.**

ToolVersion Documentation N/A A list of the versions of the
toolboxes used in generating
the code.

Types Base Data types of generated code.

* All symbol names must be enclosed between %< >. For example,
%<Functions>.

** This symbol can be used to add a comment to the generated files. See
“Adding Global Comments” on page 17-5. The code generator places the
comment in each generated file whose template has this symbol name. The
code generator places the comment at the location that corresponds to where
the symbol name is located in the template file.

*** The description can be deduced from the symbol name. For example,
GlobalCalibrationScalar is a symbol that identifies a scalar. It contains
data of global scope that you can calibrate .

17-65

17 Specifying Code Appearance and Documentation

Rules for Modifying or Creating a Template
The following are the rules for creating any MPF template. “Comparison
of a Template and Its Generated File” on page 17-44 illustrates several of
these rules.

1 Place a symbol on a template within the %< > delimiter. For example, the
symbol named Includes should look like this on a template: %<Includes>.
Note that symbol names are case sensitive.

2 Place a symbol on a template where desired. Its location on the template
determines where the item associated with this symbol is located in the
generated file. If no item is associated with it, the symbol is ignored.

3 Place a C/C++ statement outside of the %< > delimiter, and on a different
line than a %< > delimiter, for that statement to appear in the generated
file. For example, #pragma message ("my text") in the template results
in #pragma message ("my text") at the corresponding location in the
generated file. Note that the statement must be compatible with your
C/C++ compiler.

4 Use the .cgt extension for every template filename. ("cgt" stands for code
generation template.)

5 Note that %% $Revision: 1.1.4.10.4.1 $ appears at the top of the
MathWorks supplied templates. This is for internal MathWorks use only.
It does not need to be placed on a user-defined template and does not show
in a generated file.

6 Place a comment on the template between /* */ as in standard ANSI C4.
This results in /*comment*/ on the generated file.

7 Each MPF template must have all of the Base group symbols, in predefined
order. They are listed in “Template Symbol Groups” on page 17-60. Each
symbol in the Base group is a parent. For example, Declarations is a
parent symbol.

8 Each symbol in a non-Base group is a child. For example, LocalMacros is
a child.

4. ANSI® is a registered trademark of the American National Standards Institute, Inc.

17-66

Configuring Templates for Customizing Code Organization and Format

9 Except for Documentation children, all children must be placed after their
parent, before the next parent, and before the Functions symbol.

10 Documentation children can be located before or after their parent in any
order anywhere in the template.

11 If a non-Documentation child is missing from the template, the code
generator places the information associated with this child at its parent
location in the generated file.

12 If a Documentation child is missing from the template, the code generator
omits the information associated with that child from the generated file.

17-67

17 Specifying Code Appearance and Documentation

Configuring the Placement of Data in Generated Code

To... Select or Enter...

Specify whether data is to be
defined in the generated source
file or in a single separate header
file

Select Auto,Data defined in source file, orData defined
in single separate source file for the Data definition
parameter.

Specify whether data is to be
declared in the generated source
file or in a single separate header
file

Select Auto,Data defined in source file, orData defined
in single separate source file for the Data declaration
parameter.

Specify the #include file
delimiter to be used in generated
files that contain the #include
preprocessor directive for mpt
data objects

Select Auto, Data defined in source file, or Data
defined in single separate source file for the #include
file delimiter parameter.

Name the generated module
using the same name as the
model or a user-specified name

Select Not specified, Same as model, or User specified
for the Module naming parameter.

Control whether signal data
objects are to be declared as
global data in the generated code

Enter an integer value for the Signal display level
parameter.

Declare a parameter data object
as tunable global data in the
generated code

Enter an integer value for the Parameter tune level
parameter.

For details about data placement, see Chapter 13, “Managing Placement of
Data Definitions and Declarations”.

17-68

Ensuring Delimiter Is Specified for All #Includes

Ensuring Delimiter Is Specified for All #Includes
Understanding the purpose of this procedure requires understanding the
Header file property of a data object, described in Parameter and Signal
Property Values on page 7-2, and applied in “Creating mpt Data Objects
with Data Object Wizard” on page 12-11. For a particular data object, you
can specify as the Header file property value a .h filename where that data
object will be declared. Then, in the IncludeFile section of the generated file,
this .h file is indicated in a #include preprocessor directive.

Further, when specifying the filename as the Header file property value, you
may or may not place it within the double-quote or angle-bracket delimiter.
That is, you can specify it as filename.h, "filename.h", or <filename.h>.
The code generator finds every data object for which you specified a filename
as its Header file property value without a delimiter. By default, it assigns
to each of these the double-quote delimiter.

This procedure allows you to specify the angle-bracket delimiter for these
instead of the default double-quote delimiter. See the figure below.

1 In the #include file delimiter field on the Code Placement pane of the
Configuration Parameters dialog box, select #include <header.h> instead
of the default #include "header.h".

2 Click Apply.

17-69

17 Specifying Code Appearance and Documentation

17-70

18

Defining Model
Configuration Variations

• “Introduction” on page 18-2

• “Viewing ERT Target Options in the Configuration Parameters Dialog
Box or Model Explorer” on page 18-3

18 Defining Model Configuration Variations

Introduction
This chapter explains how to use the Embedded Real-Time (ERT) target code
generation options to configure models for production code generation. The
discussion also includes other options that are not specific to the ERT target,
but which affect ERT code generation.

Every model contains one or more named configuration sets that specify
model parameters such as solver options, code generation options, and other
choices. A model can contain multiple configuration sets, but only one
configuration set is active at any time. A configuration set includes options
that affect code generation in general, and options that are specific to a given
target, such as the ERT target.

Configuration sets can be particularly useful in embedded systems
development. By defining multiple configuration sets in a model, you
can easily retarget code generation from that model. For example, one
configuration set might specify the default ERT target with external mode
support enabled for rapid prototyping, while another configuration set might
specify the ERT-based target for Visual C++ to generate production code for
deployment of the application. Activation of either configuration set fully
reconfigures the model for the appropriate type of code generation.

Before you work with the ERT target options, you should become familiar with

• Configuration sets and how to view and edit them in the Configuration
Parameters dialog box. The Simulink User’s Guide document contains
detailed information on these topics.

• Code generation options and the use of the System Target File Browser.
The “Configuration Parameters for Simulink Models” and “Preparing
Models for Code Generation” contains detailed information on these topics
in the Simulink Coder documentation.

For descriptions of the Embedded Real-Time (ERT) target code generation
options, see “Configuration Parameters”.

18-2

Viewing ERT Target Options in the Configuration Parameters Dialog Box or Model Explorer

Viewing ERT Target Options in the Configuration
Parameters Dialog Box or Model Explorer

The Configuration Parameters dialog box and Model Explorer provide the
quickest routes to a model’s active configuration set. Illustrations throughout
this chapter and the “Configuration Parameters” reference in the show the
Configuration Parameters dialog box view of model parameters (unless
otherwise noted).

18-3

18 Defining Model Configuration Variations

18-4

Generating Code and Building
Executables

• Chapter 19, “Generating Code Modules”

• Chapter 20, “Generating Reports for Code Reviews and Traceability
Analysis”

• Chapter 21, “Optimizing Generated Code”

• Chapter 22, “Developing Models and Code That Comply with
Industry Standards and Guidelines”

• Chapter 23, “Generating Reentrant Code from MATLAB Code”

19

Generating Code Modules

19 Generating Code Modules

Code Modules

In this section...

“Introduction” on page 19-2

“Generated Code Modules” on page 19-2

“User-Written Code Modules” on page 19-5

“Customizing Generated Code Modules” on page 19-5

Introduction
This section summarizes the code modules and header files that make up a
Embedded Coder program and describes where to find the code modules and
header files.

The easiest way to locate and examine the generated code files is to use the
HTML code generation report. The code generation report provides a table of
hyperlinks that you click to view the generated code in the MATLAB Help
browser. For more information, see “Generating an HTML Code Generation
Report” on page 20-4.

Generated Code Modules
The Embedded Coder software creates a build folder in your working folder
to store generated source code. The build folder also contains object files, a
makefile, and other files created during the code generation process. The
default name of the build folder is model_ert_rtw.

The Embedded Coder™ File Packaging on page 19-3 section summarizes the
structure of source code generated by the Embedded Coder software.

Note The Embedded Coder file packaging differs slightly (but significantly)
from the file packaging employed by the GRT, GRT malloc, and other
nonembedded targets. For more information, see the Simulink Coder
documentation.

19-2

Code Modules

Embedded Coder File Packaging

File Description

model.c or .cpp Contains entry points for code implementing the model
algorithm (for example, model_step, model_initialize, and
model_terminate).

model_private.h Contains local macros and local data that are required by the
model and subsystems. This file is included in the model.c file as a
#include statement. You do not need to include model_private.h
when interfacing handwritten code to the generated code of a
model.

model.h Declares model data structures and a public interface to the model
entry points and data structures. Also provides an interface to the
real-time model data structure (model_M) with accessor macros.
model.h is included in the subsystem .c or .cpp files of the model.

If you are interfacing your handwritten code to generated code for
one or more models, include model.h for each of those models.

model_data.c or .cpp
(conditional)

model_data.c or .cpp is conditionally generated. It contains
the declarations for the parameters data structure, the constant
block I/O data structure, and any zero representations for the
model structure data types. If these data structures and zero
representations are not used in the model, model_data.c or .cpp
is not generated. These structures and zero representations are
declared extern in model.h.

model_types.h Provides forward declarations for the real-time model data
structure and the parameters data structure. Function
declarations of reusable functions might need these declarations.
Also provides type definitions for user-defined types used by the
model.

rtwtypes.h Defines data types, structures, and macros required by Embedded
Coder generated code. Most other generated code modules also
require these definitions.

ert_main.c or .cpp
(optional)

If the Generate an example main program option is on, this
file is generated. (This option is on by default.) See “Generate an
example main program”.

19-3

19 Generating Code Modules

Embedded Coder File Packaging (Continued)

File Description

autobuild.h
(optional)

If the Generate an example main program option is off, this
file is generated. (See “Generate an example main program”.)

autobuild.h contains #include directives required by the static
version of the ert_main.c main program module. Because
the static ert_main.c is not created at code generation time,
ert_main.c includes autobuild.h to access model-specific data
structures and entry points.

For more information, see “Static Main Program Module” on page
34-14.

model_capi.c or .cpp
model_capi.h
(optional)

Provides data structures that enable a running program to access
model signals, states, and parameters without external mode. To
learn how to generate and use the model_capi.c or .cpp and .h
files, see “Interacting with Target Application Data Using the C
API” in the Simulink Coder documentation.

You can customize the generated set of files in several ways:

• File packaging formats: Specify the number of source files generated for
your model. In the Configuration Parameter dialog box, on the Code
Generation > Code Placement pane, specify the File packaging
format parameter. For more information, see “Customizing Generated
Code Modules” on page 19-5.

• Nonvirtual subsystem code generation: Instruct the code generation
software to generate separate functions, within separate code files, for any
nonvirtual subsystems. You can control the names of the functions and of
the code files. For further information, see “Creating Subsystems” in the
Simulink Coder documentation.

• Custom storage classes: Use custom storage classes to partition generated
data structures into different files based on file names that you specify. For
further information, see Chapter 8, “Creating and Using Custom Storage
Classes”.

19-4

Code Modules

• Module Packaging Features (MPF): Direct the generated code into a
required set of .c or .cpp and .h files, and control the internal organization
of the generated files. For details, see Defining Data Representation and
Storage for Code Generation on page 1.

User-Written Code Modules
Code that you write to interface with generated model code usually includes
a customized main module (based on a main program provided by the code
generation software), and may also include interrupt handlers, device driver
blocks and other S-functions, and other supervisory or supporting code.

Establish a working folder for your own code modules. Put your working
folder on the MATLAB path. Minimally, you must also modify the ERT
template makefile and system target file so that the build process can find
your source and object files. If you want to generate code for a particular
microprocessor or development board and deploy the code on target hardware
with a cross-development system, make more extensive modifications to the
ERT target files.

For information on how to customize the ERT target for your production
requirements, see “Customizing Targets” in the Simulink Coder
documentation.

Customizing Generated Code Modules
Embedded Coder software provides a configuration parameter to specify
how the generated source code is packaged into files. The configuration
parameter “File packaging format” drop-down list options are located in
the Configuration Parameter dialog box, on the Code Generation > Code
Placement pane, in the Code Packaging section. The options are: Modular,
Compact (with separate data file), and Compact. Generated Files
According to File Packaging Format on page 19-6 shows the files generated
for each file packaging format and the files that have been removed.

19-5

19 Generating Code Modules

Generated Files According to File Packaging Format

File Packaging
Format

Generated Files Removed Files

Modular (default) model.c

subsystem files
(optional)

model.h

model_types.h

model_private.h

model_data.c
(conditional)

None

Compact (with
separate data file)

model.c

model.h

model_data.c
(conditional)

model_private.h

model_types.h

Compact model.c

model.h

model_data.c

model_private.h

model_types.h

The code generation process places the content of the removed files as follows:

Removed File Generated Content In File

model_private.h model.c and model.h

model_types.h model.h

model_data.c model.c

You can specify a different file packaging format for each referenced model.

If you specify Utility code generation as Shared location on the Code
Generation > Interface pane of the Configuration Parameter dialog box, the
code generation process generates separate files for utility code in a shared

19-6

Code Modules

location, regardless of the file packaging format. If you specify the Utility
code generation as Auto, the generated code for utilities is dependent on
the file packaging format as follows:

• Modular: Some shared utility files are in the build directory

• Compact (with separate data file): Utility code is generated in
model.c

• Compact: Utility code is generated in model.c

File packaging formats, Compact or Compact (with separate data file)
generate model_types.h for models containing:

• A Model Variants block or a Variant Subsystem block. The model_types.h
file includes preprocessor directives defining the variant objects associated
with a variant block.

• Custom storage classes specifying a separate header file. The
model_types.h file includes the #include call to the external header file.

File packaging formats, Compact or Compact (with separate data file)
are not compatible with the following:

• A model containing a subsystem, which is configured to generate separate
source files

• A model containing a noninlined S-function

19-7

19 Generating Code Modules

19-8

20

Generating Reports for Code
Reviews and Traceability
Analysis

• “About HTML Code Generation Report Extensions” on page 20-2

• “Generating an HTML Code Generation Report” on page 20-4

• “Using the Code Interface Report to Analyze the Generated Code Interface”
on page 20-6

20 Generating Reports for Code Reviews and Traceability Analysis

About HTML Code Generation Report Extensions
The Embedded Coder code generation report is an enhanced version of the
HTML code generation report normally generated by the Simulink Coder
build process. In the report:

• The Summary section lists version, date, and code generation objectives
information. The Configuration settings at the time of code
generation link opens a noneditable view of the Configuration Parameters
dialog box that shows the Simulink model settings, including TLC options,
at the time of code generation.

• The Subsystem Report section contains information on nonvirtual
subsystems in the model.

• The Code Interface Report section provides information about the
generated code interface, including model entry point functions and
input/output data. For more information, see “Using the Code Interface
Report to Analyze the Generated Code Interface” on page 20-6.

• The Traceability Report section allows you to account for Eliminated
/ Virtual Blocks that are untraceable, versus the listed Traceable
Simulink Blocks / Stateflow Objects / MATLAB Scripts, providing
a complete mapping between model elements and code. For more
information, see “Customizing Traceability Reports” on page 37-8.

In the Generated Files section of the Contents pane, you can click the
names of source code files generated from your model to view their contents in
a MATLAB Web browser window. In the displayed source code:

• The summary information is included as the code header.

• Global variable instances are hyperlinked to their definitions.

• If you selected the traceability option Code-to-model, hyperlinks within
the displayed source code let you view the blocks or subsystems from which
the code was generated. Click the hyperlinks to view the relevant blocks
or subsystems in the Simulink model window. For more information
about tracing code to blocks, see “Tracing Code to Model Objects Using
Hyperlinks” on page 37-2.

• If you selected the traceability option Model-to-code, you can view the
generated code for any block in the model. To highlight the generated code

20-2

About HTML Code Generation Report Extensions

for a block in the HTML report, right-click the block and select Code
Generation > Navigate to Code. For more information about tracking
blocks to generated code, see “Tracing Model Objects to Generated Code”
on page 37-4.

• If you set the Code coverage tool parameter on the Code
Generation > SIL and PIL Verification pane, you can view the code
coverage data and annotations in the generated code in the HTML Code
Generation Report. For more information about the code coverage tool
for SIL and PIL verification, see “Using a Code Coverage Tool in a SIL
Simulation” on page 39-25.

For a complete discussion on using traceability to verify generated code, see
“Traceability for Production Code Generation” on page 37-2.

20-3

20 Generating Reports for Code Reviews and Traceability Analysis

Generating an HTML Code Generation Report
To generate an HTML code generation report,

1 With your ERT-based model open, open the Configuration
Parameters dialog box or Model Explorer and navigate to the Code
Generation > Report pane.

2 Select Create code generation report if it is not already selected. By
default, Launch report automatically and Code-to-model also are
selected, andModel-to-code is cleared, as shown in the figure below.

You can select or clear any of these options.

3 Generate code from your model or subsystem (for example, for a model,
by clicking Build on the Code Generation pane of the Configuration
Parameters dialog box).

4 The build process writes the code generation report files in the html
subdirectory of the build directory. The top-level HTML report file is
named model_codegen_rpt.html or subsystem_codegen_rpt.html.

5 If you selected Launch report automatically, the build process
automatically opens a MATLAB Web browser window and displays the
code generation report.

20-4

Generating an HTML Code Generation Report

If you did not select Launch report automatically, you can
open the code generation report (model_codegen_rpt.html or
subsystem_codegen_rpt.html) manually into a MATLAB Web browser
window, or into another Web browser.

6 If you selected Code-to-model, hyperlinks to blocks in the generating
model are created in the report files. When you view the report files
in a MATLAB Web browser, clicking on these hyperlinks displays and
highlights the referenced blocks in the model. For more information, see
“Tracing Code to Model Objects Using Hyperlinks” on page 37-2.

7 If you selected Model-to-code, model-to-code highlighting support is
included in the generated HTML report. To highlight the generated
code for a block in your Simulink model, right-click the block and select
Code Generation > Navigate to Code. This selection highlights the
generated code for the block in the HTML code generation report. For more
information, see “Tracing Model Objects to Generated Code” on page 37-4
and “Customizing Traceability Reports” on page 37-8.

Notes

• For large models (containing over 1000 blocks), you may find that HTML
report generation takes longer than you want. In this case, consider
clearing the Code-to-model andModel-to-code check boxes. The report
will be generated faster.

• You can also view the HTML report files, as well as the generated code files,
in the Simulink Model Explorer. See “Viewing Generated Code in the Model
Explorer Code Viewer” in the Simulink Coder documentation for details.

20-5

20 Generating Reports for Code Reviews and Traceability Analysis

Using the Code Interface Report to Analyze the Generated
Code Interface

In this section...

“Code Interface Report Overview” on page 20-6

“Generating a Code Interface Report” on page 20-7

“Navigating Code Interface Report Subsections” on page 20-9

“Interpreting the Entry Point Functions Subsection” on page 20-10

“Interpreting the Inports and Outports Subsections” on page 20-13

“Interpreting the Interface Parameters Subsection” on page 20-14

“Interpreting the Data Stores Subsection” on page 20-16

“Code Interface Report Limitations” on page 20-17

Code Interface Report Overview
When you select the Create code generation report option for an
ERT-based model, a Code Interface Report section is automatically
included in the generated HTML report. The Code Interface Report section
provides documentation of the generated code interface, including model entry
point functions and interface data, for consumers of the generated code. The
information in the report can help facilitate code review and code integration.

The code interface report includes the following subsections

• Entry Point Functions — interface information about each model
entry point function, including model_initialize, model_step, and (if
applicable) model_terminate

• Inports and Outports — interface information about each model inport
and outport

• Interface Parameters— interface information about tunable parameters
that are associated with the model

• Data Stores — interface information about global data stores and data
stores with non-auto storage that are associated with the model

20-6

Using the Code Interface Report to Analyze the Generated Code Interface

For limitations that apply to code interface reports, see “Code Interface Report
Limitations” on page 20-17

Note This section uses the following demo models for illustration purposes:

• rtwdemo_basicsc (with the ExportedGlobal Storage Class button
selected in the demo model window) for examples of report subsections

• rtwdemo_mrmtbb for examples of timing information

• rtwdemo_fcnprotoctrl for examples of function argument and return
value information

Generating a Code Interface Report
To generate a code interface report for your model, perform the following steps.

1 Open your model, go to the Code Generation pane of the Configuration
Parameters dialog box, and select ert.tlc or an ERT-based System
target file, if one is not already selected.

2 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the option Create code generation
report, if it is not already selected. The rtwdemo_basicsc,
rtwdemo_mrmtbb, and rtwdemo_fcnprotoctrl demo models used in this
section select every Report pane option by default, but selecting Create
code generation report alone is sufficient to generate a Code Interface
Report section in the HTML report.

Alternatively, you can programmatically select the option by issuing the
following MATLAB command:

set_param(bdroot, 'GenerateReport', 'on')

If the Report pane option Code-to-model is selected, the generated report
will contain hyperlinks to the model. You should leave this value selected
unless you plan to use the report outside the MATLAB environment.

20-7

20 Generating Reports for Code Reviews and Traceability Analysis

3 Build the model. If you selected the Report pane option Launch report
automatically, the code generation report opens automatically after the
build process completes. (Otherwise, you can launch it manually from
within the model build directory.)

4 To display the code interface report for your model, go to the Contents
pane of the HTML report and click the Code Interface Report link. For
example, here is the generated code interface report for the demo model
rtwdemo_basicsc (with the ExportedGlobal Storage Class button
selected in the demo model window).

20-8

Using the Code Interface Report to Analyze the Generated Code Interface

For help navigating the content of the code interface report subsections,
see “Navigating Code Interface Report Subsections” on page 20-9. For help
interpreting the content of the code interface report subsections, see the
sections beginning with “Interpreting the Entry Point Functions Subsection”
on page 20-10.

Navigating Code Interface Report Subsections
To help you navigate code interface descriptions, the code interface report
provides collapse/expand tokens and hyperlinks, as follows:

• For any lengthy subsection, the report provides [-] and [+] symbols
that allow you to collapse or expand that section. In the example in the
previous section, the symbols are provided for the Inports and Interface
Parameters sections.

• Several forms of hyperlink navigation are provided in the code interface
report. For example,

- The Table of Contents located at the top of the code interface report
provides links to each subsection.

- You can click on each function name to go to its declaration in model.c.

- You can click on each function’s header file name to go to the header
file source listing.

- If you selected the Report pane option Code-to-model for your
model, you can click hyperlinks for any of the following to go to the
corresponding location in the model display:

• Function argument

• Function return value

• Inport

• Outport

• Interface parameter (if the parameter source is a block)

• Data store (if the data store source is a Data Store Memory block)

20-9

20 Generating Reports for Code Reviews and Traceability Analysis

For general backward and forward navigation within the HTML code
generation report, use the Back and Forward buttons above the Contents
section in the upper left corner of the report.

Interpreting the Entry Point Functions Subsection
The Entry Point Functions subsection of the code interface report
provides the following interface information about each model entry point
function, including model_initialize, model_step, and (if applicable)
model_terminate.

Field Description

Function: Lists the function name. You can click on the function
name to go to its declaration in model.c.

Prototype Displays the function prototype, including the function
return value, name, and arguments.

Description Provides a text description of the function’s purpose in
the application.

Timing Describes the timing characteristics of the function,
such as how many times the function is called, or if
it is called periodically, at what time interval. For a
multirate timing example, see the rtwdemo_mrmtbb
report excerpt below.

Arguments If the function has arguments, displays the number,
name, data type, and Simulink description for
each argument. If you selected the Report pane
option Code-to-model for your model, you can click
the hyperlink in the description to go to the block
corresponding to the argument in the model display. For
argument examples, see the rtwdemo_fcnprotoctrl
report excerpt below.

20-10

Using the Code Interface Report to Analyze the Generated Code Interface

Field Description

Return value If the function has a return value, displays the return
value data type and Simulink description. If you
selected the Report pane option Code-to-model
for your model, you can click the hyperlink in the
description to go to the block corresponding to the return
value in the model display. For a return value example,
see the rtwdemo_fcnprotoctrl report excerpt below.

Header file Lists the name of the header file for the function. You
can click on the header file name to go to the header
file source listing.

For example, here is the Entry Point Functions subsection for the demo
model rtwdemo_basicsc.

To illustrate how timing information might be listed for a multirate model,
here are the Entry Point Functions and Inports subsections for the demo
model rtwdemo_mrmtbb. This multirate, discrete-time, multitasking model
contains Inport blocks 1 and 2, which specify 1-second and 2-second sample
times, respectively. The sample times are constrained to the specified times

20-11

20 Generating Reports for Code Reviews and Traceability Analysis

by the Periodic sample time constraint option on the Solver pane of the
Configuration Parameters dialog box.

To illustrate how function arguments and return values are displayed in the
report, here is the Entry Point Functions description of the model step
function for the demo model rtwdemo_fcnprotoctrl.

20-12

Using the Code Interface Report to Analyze the Generated Code Interface

Interpreting the Inports and Outports Subsections
The Inports and Outports subsections of the code interface report provide
the following interface information about each inport and outport in the model.

Field Description

Block Name Displays the Simulink block name of the inport or
outport. If you selected the Report pane option
Code-to-model for your model, you can click on each
inport or outport Block Name value to go to its location
in the model display.

Code Identifier Lists the identifier associated with the inport or outport
data in the generated code, as follows:

• If the data is defined in the generated code, the field
displays the identifier string.

• If the data is declared but not defined in the generated
code — for example, if the data is resolved with
an imported storage class — the field displays the
identifier string prefixed with the label ’Imported
data:’.

20-13

20 Generating Reports for Code Reviews and Traceability Analysis

Field Description

• If the data is neither defined nor declared in the
generated code — for example, if the option Generate
reusable code is selected for the model — the field
displays the string ’Defined externally’.

Data Type Lists the data type of the inport or outport.

Dimension Lists the dimensions of the inport or outport (for
example, 1 or [4, 5]).

For example, here are the Inports and Outports subsections for the demo
model rtwdemo_basicsc.

Interpreting the Interface Parameters Subsection
The Interface Parameters subsection of the code interface report provides
the following interface information about tunable parameters that are
associated with the model.

20-14

Using the Code Interface Report to Analyze the Generated Code Interface

Field Description

Parameter
Source

Lists the source of the parameter value, as follows:

• If the source of the parameter value is a block, the
field displays the block name, such as <Root>/Gain2
or <S1>/Lookup1. If you selected the Report pane
option Code-to-model for your model, you can
click on the Parameter Source value to go to the
parameter’s location in the model display.

• If the source of the parameter value is a workspace
variable, the field displays the name of the workspace
variable prefixed with the label ’Workspace
variable:’; for example, Workspace variable: K2.

Code Identifier Lists the identifier associated with the tunable
parameter data in the generated code, as follows:

• If the data is defined in the generated code, the field
displays the identifier string.

• If the data is declared but not defined in the generated
code — for example, if the data is resolved with
an imported storage class — the field displays the
identifier string prefixed with the label ’Imported
data:’.

• If the data is neither defined nor declared in the
generated code — for example, if the option Generate
reusable code is selected for the model — the field
displays the string ’Defined externally’.

Data Type Lists the data type of the tunable parameter.

Dimension Lists the dimensions of the tunable parameter (for
example, 1 or [4, 5, 6]).

For example, here is the Interface Parameters subsection for the demo
model rtwdemo_basicsc (with the ExportedGlobal Storage Class button
selected in the demo model window).

20-15

20 Generating Reports for Code Reviews and Traceability Analysis

Interpreting the Data Stores Subsection
The Data Stores subsection of the code interface report provides the following
interface information about global data stores and data stores with non-auto
storage that are associated with the model.

Field Description

Data Store
Source

Lists the source of the data store memory, as follows:

• If the data store is defined using a Data Store
Memory block, the field displays the block name,
such as <Root>/DS1. If you selected the Report pane
option Code-to-model for your model, you can click
on the Data Store Source value to go to the data
store’s location in the model display.

• If the data store is defined using a Simulink.Signal
object, the field displays the name of the
Simulink.Signal object prefixed with the label
’Global:’.

Code Identifier Lists the identifier associated with the data store data
in the generated code, as follows:

• If the data is defined in the generated code, the field
displays the identifier string.

20-16

Using the Code Interface Report to Analyze the Generated Code Interface

Field Description

• If the data is declared but not defined in the generated
code — for example, if the data is resolved with
an imported storage class — the field displays the
identifier string prefixed with the label ’Imported
data:’.

• If the data is neither defined nor declared in the
generated code — for example, if the option Generate
reusable code is selected for the model — the field
displays the string ’Defined externally’.

Data Type Lists the data type of the data store.

Dimension Lists the dimensions of the data store (for example, 1
or [1, 2]).

For example, here is the Data Stores subsection for the demo model
rtwdemo_basicsc (with the ExportedGlobal Storage Class button selected
in the demo model window).

Code Interface Report Limitations
The following limitations apply to code interface section of the HTML code
generation reports.

• The code interface report does not support the GRT interface with an
ERT target or the C++ (Encapsulated) language option. For these
configurations, the code interface report will not be generated and will not
appear in the HTML code generation report Contents pane.

• The code interface report supports data resolved with most custom storage
classes (CSCs), except when the CSC properties are set in any of the
following ways:

20-17

20 Generating Reports for Code Reviews and Traceability Analysis

- The CSC property Type is set to FlatStructure. For example, the
BitField and Struct CSCs in the Simulink package have Type set to
FlatStructure and are not supported by the code interface report.

- The CSC property Type is set to Other. For example, the GetSet CSC
in the Simulink package has Type set to Other and is not supported by
the code interface report.

- The CSC property Data access is set to Pointer, indicating that
imported symbols are declared as pointer variables rather than simple
variables. This property is accessible only when the CSC property Data
scope is set to Imported or Instance-specific.

In these cases, the report displays empty Data Type and Dimension
fields.

• For outports, the code interface report cannot describe the associated
memory (data type and dimensions) if the memory is optimized. In these
cases, the report displays empty Data Type and Dimension fields.

• The code interface report does not support data type replacement using the
Code Generation > Data Type Replacement pane of the Configuration
Parameters dialog box. The data types listed in the report will link to
built-in data types rather than their specified replacement data types.

20-18

21

Optimizing Generated Code

• “Configuring Production Code Optimizations” on page 21-2

• “Optimization Dependencies” on page 21-5

• “Optimizing Your Model with Configuration Wizard Blocks and Scripts”
on page 21-7

• “Tips for Optimizing the Generated Code” on page 21-19

21 Optimizing Generated Code

Configuring Production Code Optimizations
Several parameters available on the Optimization panes configure your
model to optimize product code generation. The following table includes
optimization parameters on the Optimization > General pane:

To... Select or Specify...

Generate initialization code for
root-level inports and outports with a
value of zero

Select Remove root level I/O zero initialization.

Generate additional code to set float and
double storage explicitly to value 0.0

SelectUse memset to initialize floats and doubles
to 0.0 When you set this parameter, the memset
function clears internal storage (regardless of type)
to the integer bit pattern 0 (that is, all bits are off).
The additional code generated when the option is
off, is slightly less efficient.If the representation of
floating-point zero used by your compiler and target
CPU is identical to the integer bit pattern 0, you can
gain efficiency by setting this parameter.

Suppress the generation of code that
initializes internal work structures (for
example, block states and block outputs)
to zero

Select Remove internal state zero initialization.

Generate run-time initialization code
for a block that has states only if the
block is in a system that can reset its
states, such as an enabled subsystem

Select Optimize initialization code for model
reference This results in more efficient code.

The following restrictions apply to using the
Optimize initialization code for model reference
parameter. However, these restrictions do not apply
to a Model block that references a function-call model.

• In a subsystem that resets states, do not include a
Model block that references a model that has this
parameter set to on. For example, in an enabled
subsystem with the States when enabling
block parameter set to reset, do not include a
Model block that references a model that has

21-2

Configuring Production Code Optimizations

To... Select or Specify...

the Optimize initialization code for model
reference parameter set to on.

• If you set the Optimize initialization code for
model reference parameter to off in a model that
includes a Model block that directly references a
submodel, do not set the Optimize initialization
code for model reference parameter for the
submodel to on.

Remove code that ensures that execution
of the generated code produces the same
results as simulation when out-of-range
conversions occur

Select Remove code from floating-point to
integer conversions that wraps out-of-range
values. This reduces the size and increases the
speed of the generated code at the cost of potentially
producing results that do not match simulation in the
case of out-of-range values.

Suppress generation of code that guards
against fixed-point division by zero

Select Remove code that protects against
division arithmetic exceptions. When you select
this parameter, simulation results and results
from generated code may no longer be in bit-for-bit
agreement.

To minimize the amount of memory
allocated for absolute and elapsed time
counters

Specify an integer value for Application lifespan
(days) For more information on the allocation and
operation of absolute and elapsed timers, see “Using
Timers”, “Using Timers in Asynchronous Tasks”, and
“Controlling Memory Allocation for Time Counters” in
the Simulink Coder documentation.

The following table includes optimization parameters on the
Optimization > Signals and Parameters pane:

21-3

21 Optimizing Generated Code

To... Select or Specify...

Control whether parameter data for
reusable subsystems is generated in a
separate header file for each subsystem
or in a single parameter data structure

Select Hierarchical or NonHierarchical for
Parameter structure.

Replace multiply operations in array
indices when accessing arrays in a loop

Select Simplify array indexing.

Store Boolean signals as one-bit bitfields
instead of as a Boolean data type

Select Pack Boolean data into bitfields. Selecting
this parameter enables the Bitfield declarator
type specifier. To optimize your code further,
select uchar_T, however this optimization benefit is
dependent on your choice of target.

Pass each reusable subsystem output
argument as an address of a local
to reduce global memory usage and
eliminate copying local variables back to
global block I/O structures

Select Individual arguments for Pass reusable
subsystem outputs as.

21-4

Optimization Dependencies

Optimization Dependencies
Several parameters available on the Optimization panes have dependencies
on settings of other options. The following table summarizes the dependencies
on the Optimization > General pane.

Option Dependencies? Dependency Details

Block reduction No

Conditional input branch
execution

No

Implement logic signals as
Boolean data (versus double)

Yes Disable for models created with a
Simulink version that supports only
signals of type double

Application lifespan (days) No

Remove root level I/O zero
initialization (ERT targets only)

No

Use memset to initialize floats
and doubles to 0.0

No

Remove internal data zero
initialization (ERT targets only)

No

Optimize initialization code for
model reference (ERT targets
only)

Yes Disable if model includes an enabled
subsystem and the model is referred to
from another model with a Model block

Remove code from
floating-point to integer
conversions that wrap
out-of-range values

No

Remove code from
floating-point to integer
conversions with saturation
that maps NaN to zero

Yes (ERT targets)
No (GRT targets)

For ERT targets, enabled by Support
floating-point numbers and
Support non-finite numbers in the
Code Generation > Interface pane

Remove code that protects
against division arithmetic
exceptions (ERT targets only)

No

21-5

21 Optimizing Generated Code

The following table summarizes the dependencies on the
Optimization > Signals and Parameters pane.

Option Dependencies? Dependency Details

Signal storage reuse No

Inline parameters Yes Disable for referenced models in a
model reference hierarchy

Parameter structure (ERT
targets only)

Yes Enabled by Inline parameters

Enable local block outputs Yes Enabled by Signal storage reuse

Reuse block outputs Yes Enabled by Signal storage reuse

Inline invariant signals Yes Enabled by Inline parameters

Eliminate superfluous local
variables (Expression folding)

Yes Enabled by Signal storage reuse

Pack Boolean data into bitfields
(ERT targets only)

No

Bitfield declarator type
specifier (ERT targets only)

Yes Enabled by Pack Boolean data into
bitfields

Minimize data copies between
local and global variables

Yes Enabled by Signal storage reuse

Simplify array indexing (ERT
targets only)

No

Loop unrolling threshold No

Maximum stack size (bytes) No

Use memcpy for vector
assignment

No

Memcpy threshold (bytes) Yes Enabled by Use memcpy for vector
assignment

Pass reusable subsystem output
as (ERT targets only)

No

21-6

Optimizing Your Model with Configuration Wizard Blocks and Scripts

Optimizing Your Model with Configuration Wizard Blocks
and Scripts

In this section...

“Overview” on page 21-7

“Adding a Configuration Wizard Block to Your Model” on page 21-9

“Using Configuration Wizard Blocks” on page 21-11

“Creating a Custom Configuration Wizard Block” on page 21-11

Overview
The Embedded Coder software provides a library of Configuration Wizard
blocks and scripts to help you configure and optimize code generation from
your models quickly and easily.

The library provides a Configuration Wizard block you can customize, and
four preset Configuration Wizard blocks.

Block Description

Custom MATLAB file Automatically update active
configuration parameters of parent
model using a custom file

ERT (optimized for fixed-point) Automatically update active
configuration parameters of parent
model for ERT fixed-point code
generation

ERT (optimized for floating-point) Automatically update active
configuration parameters of parent
model for ERT floating-point code
generation

21-7

21 Optimizing Generated Code

Block Description

GRT (debug for fixed/floating-point) Automatically update active
configuration parameters of
parent model for GRT fixed- or
floating-point code generation with
debugging enabled

GRT (optimized for
fixed/floating-point)

Automatically update active
configuration parameters of parent
model for GRT fixed- or floating-point
code generation

These are shown in the figure below.

When you add one of the preset Configuration Wizard blocks to your model
and double-click it, a predefined MATLAB file script executes and configures
all parameters of the model’s active configuration set without manual
intervention. The preset blocks configure the options optimally for one of the
following cases:

• Fixed-point code generation with the ERT target

• Floating-point code generation with the ERT target

21-8

Optimizing Your Model with Configuration Wizard Blocks and Scripts

• Fixed/floating-point code generation with TLC debugging options enabled,
with the GRT target.

• Fixed/floating-point code generation with the GRT target

The Custom block is associated with an example MATLAB file script that
you can adapt to your requirements.

You can also set up the Configuration Wizard blocks to invoke the build
process after configuring the model.

Adding a Configuration Wizard Block to Your Model
This section describes how to add one of the preset Configuration Wizard
blocks to a model.

The Configuration Wizard blocks are available in the Embedded Coder block
library. To use a Configuration Wizard block:

1 Open the model that you want to configure.

2 Open the Embedded Coder library by typing the command rtweclib.

3 The top level of the library is shown below.

4 Double-click the Configuration Wizards icon. The Configuration Wizards
sublibrary opens.

21-9

21 Optimizing Generated Code

5 Select the Configuration Wizard block you want to use and drag and
drop it into your model. In the figure below, the ERT (optimized for
fixed-point) Configuration Wizard block has been added to the model.

6 You can set up the Configuration Wizard block to invoke the build process
after executing its configuration script. If you do not want to use this
feature, skip to the next step.

If you want the Configuration Wizard block to invoke the build process,
right-click on the Configuration Wizard block in your model, and select
Mask Parameters... from the context menu. Then, select the Invoke
build process after configuration option, as shown below.

21-10

Optimizing Your Model with Configuration Wizard Blocks and Scripts

7 Click Apply, and close the Mask Parameters dialog box.

Note You should not change the Configure the model for option, unless
you want to create a custom block and script. In that case, see “Creating a
Custom Configuration Wizard Block” on page 21-11.

8 Save the model.

9 You can now use the Configuration Wizard block to configure the model, as
described in the next section.

Using Configuration Wizard Blocks
Once you have added a Configuration Wizard block to your model, just
double-click the block. The script associated with the block automatically
sets all parameters of the active configuration set that are relevant to code
generation (including selection of the appropriate target). You can verify that
the options have changed by opening the Configuration Parameters dialog box
and examining the settings.

If the Invoke build process after configuration option for the block was
selected, the script also initiates the code generation and build process.

Note You can add more than one Configuration Wizard block to your model.
This provides a quick way to switch between configurations.

Creating a Custom Configuration Wizard Block
The Custom Configuration Wizard block is shipped with an associated
MATLAB file script, rtwsampleconfig.m. The script is located in the
directory matlabroot/toolbox/rtw/rtw.

Both the block and the script are intended to provide a starting point for
customization. This section describes:

• How to create a custom Configuration Wizard block linked to a custom
script.

21-11

21 Optimizing Generated Code

• Operation of the example script, and programming conventions and
requirements for a customized script.

• How to run a configuration script from the MATLAB command line
(without a block).

Setting Up a Configuration Wizard Block
This section describes how to set up a custom Configuration Wizard block and
link it to a script. If you want to use the block in more than one mode, it is
advisable to create a Simulink library to contain the block.

To begin, make a copy of the example script for later customization:

1 Create a directory to store your custom script. This directory should not
be anywhere inside the MATLAB directory structure (that is, it should
not be under matlabroot).

The discussion below refers to this directory as /my_wizards.

2 Add the directory to the MATLAB path. Save the path for future sessions.

3 Copy the example script
(matlabroot/toolbox/rtw/rtw/rtwsampleconfig.m) to the /my_wizards
directory you created in the previous steps. Then, rename the script as
desired. The discussion below uses the name my_configscript.m.

4 Open the example script into the MATLAB editor. Scroll to the end of the
file and enter the following line of code:

disp('Custom Configuration Wizard Script completed.');

This statement is used later as a test to verify that your custom block has
executed the script.

5 Save your script and close the MATLAB editor.

The next step is to create a Simulink library and add a custom block to it.
Do this as follows:

21-12

Optimizing Your Model with Configuration Wizard Blocks and Scripts

1 Open the Embedded Coder library and the Configuration Wizards
sublibrary, as described in “Adding a Configuration Wizard Block to Your
Model” on page 21-9.

2 Select New > Library from the File menu of the Configuration Wizards
sublibrary window. An empty library window opens.

3 Select the Custom MATLAB file block from the Configuration Wizards
sublibrary and drag and drop it into the empty library window.

4 To distinguish your custom block from the original, edit the Custom
MATLAB file label under the block as desired.

5 Select Save as from the File menu of the new library window; save the
library to the /my_wizards directory, under your library name of choice.
In the figure below, the library has been saved as ex_custom_button, and
the block has been labeled my_wizard MATLAB-file.

The next step is to link the custom block to the custom script:

1 Right-click on the block in your model, and selectMask Parameters from
the context menu. Notice that the Configure the model for menu set to
Custom. When Custom is selected, the Configuration function edit field
is enabled, so you can enter the name of a custom script.

21-13

21 Optimizing Generated Code

2 Enter the name of your custom script into the Configuration function
field. (Do not enter the .m filename extension, which is implicit.) In the
figure below, the script name my_configscript has been entered into the
Configuration function field. This establishes the linkage between the
block and script.

3 Note that by default, the Invoke build process after configuration
option is deselected. You can change the default for your custom block by
selecting this option. For now, leave this option deselected.

4 Click Apply and close the Mask Parameters dialog box.

5 Save the library.

6 Close the Embedded Coder library and the Configuration Wizards
sublibrary. Leave your custom library open for use in the next step.

21-14

Optimizing Your Model with Configuration Wizard Blocks and Scripts

Now, test your block and script in a model. Do this as follows:

1 Open the vdp demo model by typing the command:

vdp

2 Open the Configuration Parameters dialog box and view the options by
clicking on the Code Generation in the list in the left pane of the dialog
box.

3 Observe that the vdp demo is configured, by default, for the GRT target.
Close the Configuration Parameters dialog box.

4 Select your custom block from your custom library. Drag and drop the block
into the vdp model.

5 In the vdp model, double-click your custom block.

6 In the MATLAB window, you should see the test message you previously
added to your script:

Custom Configuration Wizard Script completed.

This indicates that the custom block successfully executed the script.

7 Reopen the Configuration Parameters dialog box and view the Code
Generation pane again. You should now see that the model is configured
for the ERT target.

Before applying further edits to your custom script, proceed to the next section
to learn about the operation and conventions of Configuration Wizard scripts.

21-15

21 Optimizing Generated Code

Creating a Configuration Wizard Script
You should create your custom Configuration Wizard script by copying and
modifying the example script, rtwsampleconfig.m. This section provides
guidelines for modification.

The Configuration Function. The example script implements a single
function without a return value. The function takes a single argument cs:

function rtwsampleconfig(cs)

The argument cs is a handle to a proprietary object that contains information
about the model’s active configuration set. The Simulink software obtains
this handle and passes it in to the configuration function when the user
double-clicks a Configuration Wizard block.

Your custom script should conform to this prototype. Your code should use
cs as a “black box” object that transmits information to and from the active
configuration set, using the accessor functions described below.

Accessing Configuration Set Options. To set options or obtain option
values, use the Simulink set_param and get_param functions (if you are
unfamiliar with these functions, see the Simulink Reference document).

Option names are passed in to set_param and get_param as strings specifying
an internal option name. The internal option name is not always the same as
the corresponding option label on the GUI (for example, the Configuration
Parameters dialog box). The example configuration accompanies each
set_param and get_param call with a comment that correlates internal option
names to GUI option labels. For example:

set_param(cs,'LifeSpan','1'); % Application lifespan (days)

To obtain the current setting of an option in the active configuration set,
call get_param. Pass in the cs object as the first argument, followed by the
internal option name. For example, the following code excerpt tests the
setting of the Create code generation report option:

if strcmp(get_param(cs, 'GenerateReport'), 'on')
...

21-16

Optimizing Your Model with Configuration Wizard Blocks and Scripts

To set an option in the active configuration set, call set_param. Pass in the
cs object as the first argument, followed by one or more parameter/value
pairs that specify the internal option name and its value. For example, the
following code excerpt turns off the Support absolute time option:

set_param(cs,'SupportAbsoluteTime','off');

Selecting a Target. A Configuration Wizard script must select a target
configuration. The example script uses the ERT target as a default. The script
first stores string variables that correspond to the required System target
file, Template makefile, and Make command settings:

stf = 'ert.tlc';
tmf = 'ert_default_tmf';
mc = 'make_rtw';

The system target file is selected by passing the cs object and the stf string
to the switchTarget function:

switchTarget(cs,stf,[]);

The template makefile and make command options are set by set_param calls:

set_param(cs,'TemplateMakefile',tmf);
set_param(cs,'MakeCommand',mc);

To select a target, your custom script needs only to set up the string variables
stf, tmf, and mc and pass them to the appropriate calls, as above.

Obtaining Target and Configuration Set Information. The following
utility functions and properties are provided so that your code can obtain
information about the current target and configuration set, with the cs object:

• isValidParam(cs, 'option'): The option argument is an internal option
name. isValidParam returns true if option is a valid option in the context
of the active configuration set.

• getPropEnabled(cs, 'option'): The option argument is an internal
option name. Returns true if this option is enabled (that is, writable).

• IsERTTarget property: Your code can detect whether or not the currently
selected target is derived from the ERT target is selected by checking the
IsERTTarget property, as follows:

21-17

21 Optimizing Generated Code

isERT = strcmp(get_param(cs,'IsERTTarget'),'on');

This information can be used to determine whether or not the script should
configure ERT-specific options, for example:

if isERT
set_param(cs,'ZeroExternalMemoryAtStartup','off');
set_param(cs,'ZeroInternalMemoryAtStartup','off');
set_param(cs,'InitFltsAndDblsToZero','off');
set_param(cs,'InlinedParameterPlacement',...

'NonHierarchical');
set_param(cs,'NoFixptDivByZeroProtection','on')

end

Invoking a Configuration Wizard Script from the MATLAB
Command Prompt
Like any other MATLAB file, Configuration Wizard scripts can be run from
the MATLAB command prompt. (The Configuration Wizard blocks are
provided as a graphical convenience, but are not essential.)

Before invoking the script, you must open a model and instantiate a cs object
to pass in as an argument to the script. After running the script, you can
invoke the build process with the rtwbuild command. The following example
opens, configures, and builds a model.

open my_model;
cs = getActiveConfigSet ('my_model');
rtwsampleconfig(cs);
rtwbuild('my_model');

21-18

Tips for Optimizing the Generated Code

Tips for Optimizing the Generated Code

In this section...

“Introduction” on page 21-19

“Using Configuration Wizard Blocks” on page 21-19

“Setting Hardware Implementation Parameters Correctly” on page 21-20

“Removing Unnecessary Initialization Code” on page 21-22

“Generating Pure Integer Code If Possible” on page 21-23

“Disabling MAT-File Logging” on page 21-23

“Using Virtualized Output Ports Optimization” on page 21-24

“Controlling Signal Storage” on page 21-25

“Using External Mode with the ERT Target” on page 21-26

“Optimizing Generated Code Using Specified Minimum and Maximum
Values” on page 21-27

Introduction
The Embedded Coder software features a number of code generation options
that can help you further optimize the generated code. This section highlights
code generation options you can use to improve performance and reduce code
size.

Most of the tips in this section apply specifically to the ERT target. See
also the “Optimizing Generated Code” section of the Simulink Coder
documentation for optimization techniques that are common to all target
configurations.

Using Configuration Wizard Blocks
The Embedded Coder software provides a library of Configuration Wizard
blocks and scripts to help you configure and optimize code generation from
your models quickly and easily.

When you add one of the preset Configuration Wizard blocks to your model
and double-click it, a MATLAB file script executes and configures all

21-19

21 Optimizing Generated Code

parameters of the model’s active configuration set without user intervention.
The preset blocks configure the options optimally for common fixed- and
floating-point code generation scenarios.

You can also create custom Configuration Wizard scripts and blocks.

See “Optimizing Your Model with Configuration Wizard Blocks and Scripts”
on page 21-7 for detailed information.

Setting Hardware Implementation Parameters
Correctly
Correct specification of target-specific characteristics of generated code
(such as word sizes for char, short, int, and long data types, or desired
rounding behaviors in integer operations) can be critical in embedded
systems development. The Hardware Implementation category of options
in a configuration set provides a simple and flexible way to control such
characteristics in both simulation and code generation.

Before generating and deploying code, you should become familiar with the
options on the Hardware Implementation pane of the Configuration
Parameters dialog box. See “Hardware Implementation Pane” in the
Simulink documentation and “Configuring the Hardware Implementation”
in the Simulink Coder documentation for full details on the Hardware
Implementation pane.

By configuring the Hardware Implementation properties of your model’s
active configuration set to match the behaviors of your compiler and
hardware, you can generate more efficient code. For example, if you specify
the Byte ordering property, you can avoid generation of extra code that tests
the byte ordering of the target CPU.

You can use the rtwdemo_targetsettings demo model to determine some
implementation-dependent characteristics of your C or C++ compiler, as well
as characteristics of your target hardware. By using this model in conjunction
with your target development system and debugger, you can observe the
behavior of the code as it executes on the target. You can then use this
information to configure the Hardware Implementation parameters of
your model.

21-20

Tips for Optimizing the Generated Code

To use this model, type the command

rtwdemo_targetsettings

Follow the instructions in the model window.

21-21

21 Optimizing Generated Code

Removing Unnecessary Initialization Code
Consider selecting the Remove internal state zero initialization
and Remove root level I/O zero initialization options on the
Optimziation > General pane.

These options (both off by default) control whether internal data (block states
and block outputs) and external data (root inports and outports whose value
is zero) are initialized. Initializing the internal and external data whose value
is zero is a precaution and may not be necessary for your application. Many
embedded application environments initialize all RAM to zero at startup,
making generation of initialization code redundant.

However, be aware that if you select Remove internal state zero
initialization, it is not guaranteed that memory is in a known state each
time the generated code begins execution. If you turn the option on, running
a model (or a generated S-function) multiple times can result in different
answers for each run.

This behavior is sometimes desirable. For example, you can turn on Remove
internal state zero initialization if you want to test the behavior of
your design during a warm boot (that is, a restart without full system
reinitialization).

In cases where you have turned on Remove internal state zero
initialization but still want to get the same answer on every run from a
S-function generated by the Embedded Coder software, you can use either of
the following MATLAB commands before each run:

clear SFcnName

where SFcnName is the name of the S-function, or

clear mex

A related option, Use memset to initialize floats and doubles, lets
you control the representation of zero used during initialization. See “Use
memset to initialize floats and doubles to 0.0” in the Simulink reference
documentation.

21-22

Tips for Optimizing the Generated Code

Note that the code still initializes data structures whose value is not zero
when Remove internal state zero initialization and Remove root level
I/O zero initialization are selected.

Note also that data of ImportedExtern or ImportedExternPointer storage
classes is never initialized, regardless of the settings of these options.

Generating Pure Integer Code If Possible
If your application uses only integer arithmetic, deselect the Support
floating-point numbers option in the Software environment section of
the Interface pane to ensure that generated code contains no floating-point
data or operations. When this option is deselected, an error is raised if any
noninteger data or expressions are encountered during code generation. The
error message reports the offending blocks and parameters.

Disabling MAT-File Logging
Clear the MAT-file logging option in the Verification section of the
Interface pane. This setting is the default, and is recommended for
embedded applications because it eliminates the extra code and memory
usage required to initialize, update, and clean up logging variables. In
addition to these efficiencies, clearing the MAT-file logging option lets you
exploit further efficiencies under certain conditions. See “Using Virtualized
Output Ports Optimization” on page 21-24 for information.

Note also that code generated to support MAT-file logging invokes malloc,
which may be undesirable for your application.

21-23

21 Optimizing Generated Code

Using Virtualized Output Ports Optimization
The virtualized output ports optimization lets you store the signal entering
the root output port as a global variable. This eliminates code and data
storage associated with root output ports when the MAT-file logging option
is cleared and the TLC variable FullRootOutputVector equals 0, both of
which are defaults for Embedded Coder targets.

To illustrate this feature, consider the model shown in the following block
diagram. Assume that the signal exportedSig has exportedGlobal storage
class.

In the default case, the output of the Gain block is written to the signal
storage location, exportedSig. No code or data is generated for the Out1
block, which has become, in effect, a virtual block. This is shown in the
following code fragment.

/* Gain Block: <Root>/Gain */
exportedSig = rtb_PulseGen * VirtOutPortLogOFF_P.Gain_Gain;

In cases where either the MAT-file logging option is enabled, or
FullRootOutputVector = 1, the generated code represents root output ports
as members of an external outputs vector.

The following code fragment was generated from the same model shown in
the previous example, but withMAT-file logging enabled. The output port is
represented as a member of the external outputs vector VirtOutPortLogON_Y.
The Gain block output value is copied to both exportedSig and to the
external outputs vector.

/* Gain Block: <Root>/Gain */
exportedSig = rtb_PulseGen * VirtOutPortLogON_P.Gain_Gain;

/* Outport Block: <Root>/Out1 */
VirtOutPortLogON_Y.Out1 = exportedSig;

21-24

Tips for Optimizing the Generated Code

The overhead incurred by maintenance of data in the external outputs vector
can be significant for smaller models being used to perform benchmarks.

Note that you can force root output ports to be stored in the external outputs
vector (regardless of the setting of MAT-file logging) by setting the TLC
variable FullRootOutputVector to 1. You can do this by adding the statement

%assign FullRootOutputVector = 1

to the Embedded Coder system target file. Alternatively, you can enter
the assignment with TLC options on the Code Generation pane of the
Configuration Parameters dialog box.

For more information on how to control signal storage in generated code, see
the “Defining Data Representation and Storage for Code Generation” section
of the Simulink Coder documentation.

Controlling Signal Storage
There are a number of options that let you control how signals in your model
are stored and represented in the generated code. You can control whether
signal storage is declared in global memory space, or locally in functions (that
is, in stack variables).

For a complete discussion of signal storage options, see the “Defining Data
Representation and Storage for Code Generation” section of the Simulink
Coder documentation.

If you want to store signals in stack space, you must turn the Enable local
block outputs option on. To do this

1 Select theOptimization > Signals and Parameters of the Configuration
Parameters dialog box. Make sure that Signal storage reuse is selected.
If Signal storage reuse is cleared, Enable local block outputs is not
available.

2 Select the Enable local block outputs option. Click Apply if necessary.

21-25

21 Optimizing Generated Code

Using External Mode with the ERT Target
Selecting the External mode option turns on generation of code to support
external mode communication between host (Simulink) and target systems.
The Embedded Coder software supports all features of Simulink external
mode, as described in the “Communicating With Code Executing on a Target
System Using Simulink External Mode” section of the Simulink Coder
documentation.

This section discusses external mode options that may be of special interest
to embedded systems designers. The next figure shows the Data Exchange
subpane of the Configuration Parameters dialog box, Interface pane, with
External mode selected.

Memory Management
Consider the Memory management option Static memory allocation
before generating external mode code for an embedded target. Static memory
allocation is generally desirable, as it reduces overhead and promotes
deterministic performance.

When you select the Static memory allocation option, static external mode
communication buffers are allocated in the target application. When Static
memory allocation is deselected, communication buffers are allocated
dynamically (with malloc) at run time.

21-26

Tips for Optimizing the Generated Code

Generation of Pure Integer Code with External Mode
The Embedded Coder software supports generation of pure integer code when
external mode code is generated. To do this, select the External mode
option, and deselect the Support floating-point numbers option in the
Software environment section of the Interface pane.

This enhancement lets you generate external mode code that is free of any
storage definitions of double or float data type, and allows your code to run on
integer-only processors

If you intend to generate pure integer code with External mode on, note
the following requirements:

• All trigger signals must be of data type int32. Use a Data Type Conversion
block if needed.

• When pure integer code is generated, the simulation stop time specified
in the Solver options is ignored. To specify a stop time, run your target
application from the MATLAB command line and use the -tf option. (See
“Running the External Program” in the Simulink Coder documentation.)
If you do not specify this option, the application executes indefinitely (as
if the stop time were inf).

When executing pure integer target applications, the stop time specified
by the -tf command line option is interpreted as the number of base rate
ticks to execute, rather than as an elapsed time in seconds. The number of
ticks is computed as

stop time in seconds / base rate step size in seconds

Optimizing Generated Code Using Specified Minimum
and Maximum Values
To optimize the generated code for your model, you can choose an option to use
input range information, also known as design minimum and maximum, that
you specify on signals and parameters. These minimum and maximum values
usually represent environmental limits, such as temperature, or mechanical
and electrical limits, such as output ranges of sensors.

When you select the Optimize using specified minimum and maximum
values configuration parameter, the software uses the minimum and

21-27

21 Optimizing Generated Code

maximum values to derive range information for downstream signals in
the model. It then uses this derived range information to determine if it is
possible to streamline the generated code by, for example:

• Reducing expressions to constants

• Removing dead branches of conditional statements

• Eliminating unnecessary mathematical operations

This optimization results in:

• Reduced ROM and RAM consumption

• Improved execution speed

How to Configure Your Model
To make optimization more likely:

• Provide as much design minimum and maximum information as possible.
Specify minimum and maximum values for signals and parameters in the
model for:

- Inport and Outport blocks

- Block outputs

- Block inputs, for example, for the MATLAB Function and Stateflow
Chart blocks

- Simulink.Signal objects

• Ensure that the minimum and maximum values for signals and parameters
are accurate and trustworthy. Otherwise, optimization might result in
numerical mismatch with simulation.

Before generating code, test the values by simulating your model with
simulation range checking enabled. If errors or warnings occur, fix these
issues before generating code.

How to Enable Simulation Range Checking

1 In your model, select Simulation > Configuration Parameters to
open the Configuration Parameters dialog box.

21-28

Tips for Optimizing the Generated Code

2 In the Configuration Parameters dialog box, select Diagnostics > Data
Validity.

3 On the Data Validity pane, under Signals, set Simulation range
checking to warning or error.

• Provide design minimum and maximum information upstream of blocks as
close to the inputs of the blocks as possible. If you specify minimum and
maximum values for a block output, these values are most likely to affect
the outputs of the blocks immediately downstream. For more information,
see “Example: Optimizing Generated Code Using Specified Minimum and
Maximum Values” on page 21-29.

How to Enable Optimization
1 Set the Code Generation > System target file configuration parameter
to select an Embedded Real-Time (ERT) target (requires a Embedded Coder
license).

2 Specify design minimum and maximum values for signals and parameters
in your model using the tips in “How to Configure Your Model” on page
21-28.

3 Select the Optimization > General Optimize using specified
minimum and maximum values configuration parameter.

For more information, see “Optimize using the specified minimum and
maximum values” in the Simulink documentation.

Example: Optimizing Generated Code Using Specified
Minimum and Maximum Values
This example demonstrates how the software uses specified input range
information to determine whether it can eliminate unnecessary utility
functions from the generated code. It uses the rtwdemo_minmax demo model.

Generate Code Without Using Specified Minimum and Maximum
Values. First, generate code without taking into account the minimum and
maximum values for the inputs to the Sum and Gain blocks or the minimum
and maximum values for the Gain block parameter to see the code generated
without the optimization.

21-29

21 Optimizing Generated Code

1 Open the model. At the MATLAB command line, enter:

rtwdemo_minmax

2 Double-click the View Optimization Configuration button.

The Optimization pane of the Configuration Parameters dialog box
appears.

On the Code generation panel, note that the Optimize using specified
minimum and maximum values parameter is cleared.

3 Double-click the Generate Code button.

The code generation report appears.

4 In the left pane of the report, click the rtwdemo_minmax.c link.

The report displays the C code in the right pane.

The generated code for this model includes a branch for each of the
Relational Operator block inputs.

void rtwdemo_minmax_step(void)
{

if (U1 + U2 <= k * U3) {
rtY.Out1 = (U1 + U2) + U3;

} else {
rtY.Out1 = U1 * U2 * U3;

}
}

Generate Code Using Minimum and Maximum Values. Next, enable
the optimization and generate code for the model again, this time taking
into account the design minimum and maximum values for the inputs to the
Sum and Gain blocks and the minimum and maximum values for the Gain
block parameter.

21-30

Tips for Optimizing the Generated Code

Note that:

• The minimum value of the first input to the Relational Operator block is 50
because this value is the minimum output from the Sum block.

• The maximum value of the second input to the Relational Operator block
is 40 because this value is the maximum output of the Gain block.

Therefore, the output of the Relational Operator block is always false, and so
the output of the Switch block is always the product of the three inputs.

1 Double-click the View Optimization Configuration button.

The Optimization pane of the Configuration Parameters dialog box appears.

2 On the Code generation panel, select the Optimize using specified
minimum and maximum values parameter and click Apply.

3 Double-click the Generate Code button.

21-31

21 Optimizing Generated Code

The code generation report appears.

4 In the left pane of the report, click the rtwdemo_minmax.c link and inspect
the generated code. Using the minimum and maximum values, the software
optimized the generated code by eliminating the conditional statement.

void rtwdemo_minmax_step(void)
{

rtY.Out1 = U1 * U2 * U3;
}

Limitations

• This optimization does not take into account minimum and maximum
values for:

- Merge block inputs. To work around this issue, use a Simulink.Signal
object on the Merge block output and specify the range on this object.

- Bus elements.

- Conditionally-executed subsystem (such as a triggered subsystem) block
outputs that are directly connected to an Outport block.

Outport blocks in conditionally-executed subsystems can have an initial
value specified for use only when the system is not triggered. In this
case, the optimization cannot use the range of the block output because
the range might not cover the initial value of the block.

• If you use Polyspace® software to verify code generated using this
optimization, it might mark code that was previously green as orange.
For example, if your model contains a division where the range of the
denominator does not include zero, the generated code does not include
protection against division by zero. Polyspace might mark this code orange
because it does not have information about the minimum and maximum
values for the inputs to the division.

The Polyspace Model Link products do automatically capture some
minimum and maximum values specified in the MATLAB workspace, for
example, for Simulink.Signal and Simulink.Parameter objects. In this
example, to provide range information to the Polyspace software, use a
Simulink.Signal object on the input of the division and specify a range
that does not include zero.

21-32

Tips for Optimizing the Generated Code

The Polyspace Model Link products store these values in a Data Range
Specification (DRS) file. However, they do not capture all minimum and
maximum values in your Simulink model. To provide additional minimum
and maximum information to Polyspace, you can manually define a DRS
file. For more information, see the Polyspace Model Link documentation.

• If you are using double-precision data types and the Code
Generation > Interface > Support non-finite numbers configuration
parameter is selected, this optimization does not occur.

• If your model contains multiple instances of a reusable subsystem and
each instance uses input signals with different minimum and maximum
values, this optimization might result in different generated code for each
subsystem so code reuse does not occur. Without this optimization, code is
generated once for the subsystem and shares this code among the multiple
instances of the subsystem.

• The Model Advisor Check safety-related optimization settings check
generates a warning if this option is selected. For many safety-critical
applications, removing dead code automatically is unacceptable because
doing so might make code untraceable. For more information, see Check
safety-related optimization settings.

• If a block uses a Simulink.Parameter object to define the value of
a parameter, this optimization takes into account the minimum and
maximum values specified for the Simulink.Parameter object only if it is
used on its own. It does not use these minimum and maximum values if
the object is part of an expression. For example, if a Gain block has a gain
parameter specified as K1, where K1 is defined as a Simulink.Parameter
object in the base workspace, the optimization takes the minimum
and maximum values of K1 into account. However, if the Gain block
has a gain parameter of K1+5 or K1+K2+K3, where K2 and K3 are also
Simulink.Parameter objects, the optimization does not use the minimum
and maximum values of K1, K2 or K3.

21-33

http://www.mathworks.com/access/helpdesk/help/toolbox/polyspace/modellink_ug/br0lyk7-1.html

21 Optimizing Generated Code

21-34

22

Developing Models and
Code That Comply with
Industry Standards and
Guidelines

• “What Are the Standards and Guidelines?” on page 22-2

• “Developing Models and Code That Comply with MAAB Guidelines” on
page 22-4

• “Developing Models and Code That Comply with MISRA C Guidelines”
on page 22-5

• “Developing Models and Code That Comply with the IEC 61508 Standard”
on page 22-6

• “Developing Models and Code That Comply with the ISO 26262 Standard”
on page 22-8

• “Developing Models and Code That Comply with the DO-178B Standard”
on page 22-10

22 Developing Models and Code That Comply with Industry Standards and Guidelines

What Are the Standards and Guidelines?
If your application has mission-critical development and certification goals,
your models or subsystems and the code generated for them might need
to comply with one or more of the standards and guidelines listed in the
following table.

Standard or Guidelines Organization For More Information, See...

Guidelines: Use of MATLAB,
Simulink, and Stateflow
software for control algorithm
modeling – MathWorks
Automotive Advisory Board
(MAAB) Guidelines

MAAB • Control Algorithm Modeling
Guidelines Using MATLAB,
Simulink, and Stateflow
Software: PDF, Word

• “Developing Models and Code
That Comply with MAAB
Guidelines” on page 22-4

Guidelines: Use of the C
Language in Critical Systems
(MISRA C5)

Motor Industry Software
Reliability Association
(MISRA)

• MISRA C Web site

• Technical Solution 1-1IFP0W
on the MathWorks Web site

• “Developing Models and Code
That Comply with MISRA C
Guidelines” on page 22-5

Standard: AUTomotive
Open System ARchitecture
(AUTOSAR)

AUTOSAR Development
Partnership

• Publications and specifications
available from the AUTOSAR
Web site

• Technical Solution 1-2WFS27
on the MathWorks Web site

• Chapter 24, “Generating
Code for AUTOSAR Software
Components”

5. MISRA® and MISRA C® are registered trademarks of MISRA® Ltd., held on behalf of
the MISRA® Consortium.

22-2

http://www.mathworks.com/industries/auto/MAAB_Style_Guide_pdf_v2_00.zip
http://www.mathworks.com/industries/auto/MAAB_Style_Guide_pdf_v2_00.zip
http://www.mathworks.com/industries/auto/MAAB_Style_Guide_pdf_v2_00.zip
http://www.mathworks.com/industries/auto/maab.html
http://www.mathworks.com/industries/auto/MAAB_Style_Guide_pdf_v2_00.zip
http://www.mathworks.com/industries/auto/MAAB_Style_Guide_Word_v2_00.zip
http://www.misra.org.uk/
http://www.misra.org.uk/
http://www.misra.org.uk/
http://www.misra-c.com/
http://www.mathworks.com/support/solutions/data/1-1IFP0W.html
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.mathworks.com/support/solutions/data/1-2WFS27.html?solution=1-2WFS27

What Are the Standards and Guidelines?

Standard or Guidelines Organization For More Information, See...

Standard: IEC 61508,
Functional safety of
electrical/electronic/
programmable electronic
safety-related systems

International
Electrotechnical Commission

• IEC functional safety zone
Web site

• Model-Based Design for IEC
61508 (Excerpts) — For
the complete document, see
Technical Solution 1-32COJP
on the MathWorks Web site.

• “Developing Models and Code
That Comply with the IEC
61508 Standard” on page 22-6

Standard: ISO 26262, Road
Vehicles - Functional Safety

International Organization
for Standardization

• ISO 26262 Support in
MATLAB and Simulink

• “Developing Models and Code
That Comply with the ISO
26262 Standard” on page 22-8

Standard: DO-178B,
Software Considerations
in Airborne Systems and
Equipment Certification

Radio Technical Commission
for Aeronautics (RTCA)

• Model-Based Design for
DO-178B (Excerpts) — For
the complete document, see
Technical Solution 1-1ZLDDE
on the MathWorks Web site.

• “Developing Models and
Code That Comply with the
DO-178B Standard” on page
22-10

For information on whether Simulink Coder technology is certified or qualified
and whether safety-critical software has been developed with MathWorks
tools, see Embedded Coder — Code Certification with MathWorks Tools.

22-3

http://www.iec.ch/
http://www.iec.ch/
http://www.iec.ch/zone/fsafety/
http://www.iec.ch/zone/fsafety/
http://www.mathworks.com/products/embedded-coder/technicalliterature.html
http://www.mathworks.com/products/embedded-coder/technicalliterature.html
http://www.mathworks.com/support/solutions/data/1-32COJP.html?solution=1-32COJP
http://www.iso.org/iso/home.html
http://www.iso.org/iso/home.html
http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.rtca.org/aboutrtca.asp
http://www.rtca.org/aboutrtca.asp
http://www.mathworks.com/products/embedded-coder/technicalliterature.html
http://www.mathworks.com/products/embedded-coder/technicalliterature.html
http://www.mathworks.com/support/solutions/data/1-1ZLDDE.html?solution=1-1ZLDDE
http://www.mathworks.com/products/embedded-coder/technicalliterature.html

22 Developing Models and Code That Comply with Industry Standards and Guidelines

Developing Models and Code That Comply with MAAB
Guidelines

The MathWorks Automotive Advisory Board (MAAB) involves major
automotive OEMs and suppliers in the process of evolving MathWorks
controls, simulation, and code generation products, including Simulink,
Stateflow, and Simulink Coder. An important result of the MAAB has been
the MAAB Guidelines.

If you have a Simulink Verification and Validation product license, you can
check that your Simulink model or subsystem, and the code that you generate
from it, complies with MAAB guidelines. To check your model or subsystem,
open the Simulink Model Advisor. Navigate to By Product > Simulink
Verification and Validation > Modeling Standards > MathWorks
Automotive Advisory Board Checks and run the MathWorks Automotive
Advisory Board checks.

For more information on using the Model Advisor, see “Consulting the Model
Advisor” in the Simulink documentation.

22-4

http://www.mathworks.com/products/simverification/

Developing Models and Code That Comply with MISRA C® Guidelines

Developing Models and Code That Comply with MISRA
C Guidelines

The Motor Industry Software Reliability Association (MISRA6) has
established “Guidelines for the Use of the C Language in Critical Systems”
(MISRA C). For general information about MISRA C, see www.misra-c.com.

To configure a model or subsystem so that the code generator is most likely
to produce MISRA-C:2004 compliant code, use the Code Generation Advisor.
For more information, refer to:

• “Defining High-Level Code Generation Objectives” on page 15-3

•

The Model Advisor also checks that you developed your model or subsystem
to increase the likelihood of generating MISRA-C:2004 compliant code. To
check your model or subsystem:

1 Open the Model Advisor.

2 Navigate to By Product > Embedded Coder.

3 Run the following checks:

• “Check for blocks not recommended for MISRA-C:2004 compliance”

• “Check configuration parameters for MISRA-C:2004 compliance”

For more information, see “Consulting the Model Advisor” in the Simulink
documentation.

For information about using Embedded Coder software within MISRA C
guidelines, see Technical Solution 1-1IFP0W on the MathWorks Web site.

6. MISRA® and MISRA C® are registered trademarks of MISRA® Ltd., held on behalf of
the MISRA® Consortium.

22-5

http://www.misra-c.com
http://www.mathworks.com/support/solutions/data/1-1IFP0W.html

22 Developing Models and Code That Comply with Industry Standards and Guidelines

Developing Models and Code That Comply with the IEC
61508 Standard

In this section...

“Applying Simulink and Embedded Coder to the IEC 61508 Standard” on
page 22-6

“Checking for IEC 61508 Standard Compliance Using the Model Advisor”
on page 22-6

“Validating Traceability” on page 22-11

Applying Simulink and Embedded Coder to the IEC
61508 Standard
Applying Model-Based Design successfully to a safety-critical system requires
extra consideration and rigor to ensure the system adheres to defined safety
standards. IEC 61508, Functional safety of electrical/electronic/programmable
electronic safety related systems, is such a standard. Because the standard
was published when most software was coded by hand, the standard needs
to be mapped to Model-Based Design technologies. Model-Based Design for
IEC 61508 (Excerpts) provides a sampling of information available from a
document that offers recommendations on how to apply Simulink, Simulink
Coder, and third-party products for Model-Based Design to IEC 61508
measures and techniques. For the complete version of Model-Based Design
for IEC 61508, see Technical Solution 1-32COJP on the MathWorks Web site

Checking for IEC 61508 Standard Compliance Using
the Model Advisor
If you have a Simulink Verification and Validation product license, you
can check that your Simulink model or subsystem and the code that you
generate from it complies with selected aspects of the IEC 61508 standard by
running the Simulink Model Advisor. Navigate to By Product > Simulink
Verification and Validation > Modeling Standards > IEC 61508 and
ISO 26262 Checks or By Task > Modeling Standards for IEC 61508 and
run the “IEC 61508 and ISO 26262 Checks”.

22-6

http://www.mathworks.com/products/embedded-coder/technicalliterature.html
http://www.mathworks.com/products/embedded-coder/technicalliterature.html
http://www.mathworks.com/support/solutions/data/1-32COJP.html?solution=1-32COJP
http://www.mathworks.com/products/simverification/

Developing Models and Code That Comply with the IEC 61508 Standard

For more information on using the Model Advisor, see “Consulting the Model
Advisor” in the Simulink documentation.

Validating Traceability
Typically, applications that require certification require some level of
traceability between requirements, models, and corresponding code.

To... Use...

Associate requirements
documents with objects in
Simulink models

The Requirements Management
Interface (RMI) that is available if
you have a Simulink Verification and
Validation license.

Trace model blocks and
subsystems to generated
code

The Model-to-code traceability option
when generating an HTML report during
the code generation or build process.

Trace generated code to model
blocks and subsystems

The Code-to-model traceability option
when generating an HTML report during
the code generation or build process.

22-7

http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/

22 Developing Models and Code That Comply with Industry Standards and Guidelines

Developing Models and Code That Comply with the ISO
26262 Standard

In this section...

“Applying Simulink and Embedded Coder to the ISO 26262 Standard” on
page 22-8

“Checking for ISO 26262 Standard Compliance Using the Model Advisor”
on page 22-8

“Validating Traceability” on page 22-11

Applying Simulink and Embedded Coder to the ISO
26262 Standard
Applying Model-Based Design successfully to a safety-critical system requires
extra consideration and rigor to ensure the system adheres to defined
functional safety standards. ISO 26262, Road Vehicles - Functional Safety, is
such a standard. For further information about MathWorks support for ISO
26262, see ISO 26262 Support in MATLAB and Simulink.

Checking for ISO 26262 Standard Compliance Using
the Model Advisor
If you have a Simulink Verification and Validation product license, you
can check that your Simulink model or subsystem and the code that you
generate from it complies with selected aspects of the ISO 26262 standard by
running the Simulink Model Advisor. Navigate to By Product > Simulink
Verification and Validation > Modeling Standards > IEC 61508 and
ISO 26262 Checks or By Task > Modeling Standards for ISO 26262 and
run the “IEC 61508 and ISO 26262 Checks”.

For more information on using the Model Advisor, see “Consulting the Model
Advisor” in the Simulink documentation.

Validating Traceability
Typically, applications that require certification require some level of
traceability between requirements, models, and corresponding code.

22-8

http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.mathworks.com/products/simverification/

Developing Models and Code That Comply with the ISO 26262 Standard

To... Use...

Associate requirements
documents with objects in
Simulink models

The Requirements Management
Interface (RMI) that is available if
you have a Simulink Verification and
Validation license.

Trace model blocks and
subsystems to generated
code

The Model-to-code traceability option
when generating an HTML report during
the code generation or build process.

Trace generated code to model
blocks and subsystems

The Code-to-model traceability option
when generating an HTML report during
the code generation or build process.

22-9

http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/

22 Developing Models and Code That Comply with Industry Standards and Guidelines

Developing Models and Code That Comply with the
DO-178B Standard

In this section...

“Applying Simulink and Embedded Coder to the DO-178B Standard” on
page 22-10

“Checking for Standard Compliance Using the Model Advisor” on page 22-10

“Validating Traceability” on page 22-11

Applying Simulink and Embedded Coder to the
DO-178B Standard
Applying Model-Based Design successfully to a safety-critical system, requires
extra consideration and rigor to ensure the system adheres to defined safety
standards. DO-178B, Software Considerations in Airborne Systems and
Equipment Certification, is such a standard. Because the standard was
published when most software was coded by hand, the standard needs to
be mapped to Model-Based Design technologies. Model-Based Design for
DO-178B (Excerpts) provides a sampling of information available from a
document that offers recommendations on how to apply Simulink, Simulink
Coder, and third-party products for Model-Based Design to DO-178B
measures and techniques. For the complete version of Model-Based Design
for DO-178B, see Technical Solution 1-1ZLDDE on the MathWorks Web site.

Checking for Standard Compliance Using the Model
Advisor
If you have a Simulink Verification and Validation product license, you can
check that your Simulink model or subsystem and the code that you generate
from it complies with selected aspects of the DO-178B standard by running the
Simulink Model Advisor. Navigate to By Product > Simulink Verification
and Validation > Modeling Standards > DO-178B Checks or By
Task > Modeling Standards for DO-178B and run the DO-178B checks.

For more information on using the Model Advisor, see “Consulting the Model
Advisor” in the Simulink documentation.

22-10

http://www.mathworks.com/products/embedded-coder/technicalliterature.html
http://www.mathworks.com/products/embedded-coder/technicalliterature.html
http://www.mathworks.com/support/solutions/data/1-1ZLDDE.html?solution=1-1ZLDDE
http://www.mathworks.com/products/simverification/

Developing Models and Code That Comply with the DO-178B Standard

Validating Traceability
Typically, applications that require certification require some level of
traceability between requirements, models, and corresponding code.

To... Use...

Associate requirements
documents with objects in
Simulink models

The Requirements Management
Interface (RMI) that is available if
you have a Simulink Verification and
Validation license.

Trace model blocks and
subsystems to generated
code

The Model-to-code traceability option
when generating an HTML report during
the code generation or build process.

Trace generated code to model
blocks and subsystems

The Code-to-model traceability option
when generating an HTML report during
the code generation or build process.

22-11

http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/

22 Developing Models and Code That Comply with Industry Standards and Guidelines

22-12

23

Generating Reentrant Code
from MATLAB Code

• “What Is Reentrant Code?” on page 23-2

• “When to Generate Reentrant Code” on page 23-3

• “How to Generate Reentrant Code” on page 23-4

• “Generated Code API” on page 23-5

• “How to Call Reentrant Code in a Single-Thread Environment” on page 23-6

• “How to Call Reentrant Code in a Multithreaded Environment” on page
23-7

• “Example: Calling Reentrant Code with No Persistent or Global Data
(UNIX Only)” on page 23-9

• “Example: Calling Reentrant Code — Multithreaded with Persistent Data
(Windows Only)” on page 23-15

• “Example: Calling Reentrant Code — Multithreaded with Persistent Data
(UNIX Only)” on page 23-21

23 Generating Reentrant Code from MATLAB Code

What Is Reentrant Code?
Reentrant code is a reusable programming routine that multiple programs
can use simultaneously. Operating systems and other system software that
uses multithreading to handle concurrent events use reentrant code. Sharing
code with persistent or static data in a concurrent environment is difficult
because multiple threads or processes might attempt to simultaneously read
and write the static data. Reentrant code does not contain any static data.
Calling programs maintain their state variables and pass them into the
function. Therefore, any number of threads or processes can share one copy of
a reentrant routine.

With an Embedded Coder license, you can use codegen to generate reusable
code. For more information, see “How to Generate Reentrant Code” on page
23-4.

23-2

When to Generate Reentrant Code

When to Generate Reentrant Code
Generate reentrant code when you want to:

• Deploy your code in multi-threaded environments.

• Share the same algorithm with different persistent data.

• Compile code that uses function variables that are too large to fit on the
stack.

If you do not choose to generate reentrant code, codegen generates code that
uses statically allocated memory for function variables that are too large to
fit on the stack, and for global and persistent variables. The use of static
memory allocation for these variables means that you cannot deploy the
generated code in environments that require code to be reentrant. In addition,
the generated code can result in static memory size overflow if you cannot
adjust the static memory allocation size to accommodate the static memory
requirements of the program.

When you generate reentrant code, codegen creates input data structures for
function variables that are too large to fit on the stack, and for persistent and
global variables. You can then dynamically allocate memory for these input
structures. The use of dynamic memory allocation means that you can deploy
the code in reentrant environments.

23-3

23 Generating Reentrant Code from MATLAB Code

How to Generate Reentrant Code

Prerequisites
This option requires an Embedded Coder license.

Procedure
Use the MultiInstanceCode option of the coder.EmbeddedCodeConfig code
generation configuration object. For example, to compile the file foo.m and
generate reusable code:

1 Create a code generation configuration object and enable the
MultiInstanceCode option.

cfg = coder.config('lib', 'ecoder', true);
cfg.MultiInstanceCode = true;

2 Pass the configuration object to codegen using the -config option.

codegen -config cfg foo

Alternatively, you can set this parameter using the MATLAB® Coder™ Project
Settings dialog box. On the Interface pane , selectGenerate reusable code.

23-4

Generated Code API

Generated Code API
When you generate reusable code, codegen supports dynamic allocation of
function variables that are too large for the stack, as well as persistent and
global variables. It generates a header file, primary_function_name_types.h,
which you must include when using the generated code. This header file
contains the following structures:

• primary_function_nameStackData

This structure contains the user allocated memory. You must pass a
pointer to this structure as the first parameter to all functions that use
it either directly, because the function uses a field in the structure, or
indirectly, because the function passes the structure to a called function.

The primary_function_nameStackData structure also contains a pointer
to the primary_function_namePersistentData structure if the algorithm
uses persistent or global data. Including this pointer means that you have
to pass only one parameter to each calling function.

• primary_function_namePersistentData

If your algorithm uses persistent or global variables, codegen provides a
separate structure for them and adds a pointer to this structure to the
memory allocation structure. Having a separate structure for persistent
and global variables allows you to allocate memory for these variables
once and share them with all threads if desired. However, if there is no
communication between threads, you can choose to allocate memory for
these variables per thread or per application.

For more information on using these global structures, see “Multithreaded
Examples” on page 23-7.

23-5

23 Generating Reentrant Code from MATLAB Code

How to Call Reentrant Code in a Single-Thread
Environment

To call reentrant code in a single-thread environment, create a main function
that:

• Includes the header file primary_function_name.h.

• Allocates memory for the global memory allocation structure
primary_function_nameStackData.

• If the algorithm uses persistent or global data, allocates memory for the
global structure primary_function_namePersistentData, .

• Calls these functions:

- primary_function_name_initialize.

- primary_function_name.

- primary_function_name_terminate.

When you convert a MATLAB function to a C/C++ library function or a
C/C++ executable, codegen automatically generates two housekeeping
functions that you must call with the C/C++ function. For more information,
see “Calling Initialize and Terminate Functions”.

• Frees the memory used for global structures.

23-6

How to Call Reentrant Code in a Multithreaded Environment

How to Call Reentrant Code in a Multithreaded
Environment

To call reentrant code, create a main function that:

• Includes the header file primary_function_name.h.

• For each thread, allocates memory for the global memory allocation
structure primary_function_nameStackData.

• If the algorithm uses persistent or global data, allocates memory for the
global structure primary_function_namePersistentData. If there is
communication between threads, you must allocate this memory once for
the application. Otherwise, you can choose to allocate memory per thread
or per application.

• Contains a thread function that calls these functions:

- primary_function_name_initialize.

- primary_function_name.

- primary_function_name_terminate.

When you convert a MATLAB function to a C/C++ library function or a
C/C++ executable, codegen automatically generates two housekeeping
functions that you must call with the C/C++ function. For more information,
see “Calling Initialize and Terminate Functions” in the MATLAB Coder
documentation.

• Initializes each thread and passes in a pointer to the memory allocation
structure as the first parameter to the thread function.

• Frees the memory used for global structures.

Multithreaded Examples

Type of Reentrant
Code

Platform Reference

Windows “Generating Reentrant C Code from MATLAB Code”Multithreaded with no
persistent or global data UNIX “Example: Calling Reentrant Code with No Persistent

or Global Data (UNIX Only)” on page 23-9

23-7

23 Generating Reentrant Code from MATLAB Code

Type of Reentrant
Code

Platform Reference

Windows “Example: Calling Reentrant Code — Multithreaded
with Persistent Data (Windows Only)” on page 23-15

Multithreaded with
persistent or global data

UNIX “Example: Calling Reentrant Code — Multithreaded
with Persistent Data (UNIX Only)” on page 23-21

23-8

Example: Calling Reentrant Code with No Persistent or Global Data (UNIX® Only)

Example: Calling Reentrant Code with No Persistent or
Global Data (UNIX Only)

This example requires POSIX thread (pthread) libraries and, therefore, runs
only on UNIX platforms. It is a simple multithreaded example that uses no
persistent or global data. Two threads call the MATLAB function matrix_exp
with different sets of input data.

MATLAB Code Used for This Example

function Y = matrix_exp(X) %#codegen

%

% The function matrix_exp computes matrix exponential

% of the input matrix using Taylor series and returns

% the computed output.

%

E = zeros(size(X));

F = eye(size(X));

k = 1;

while norm(E+F-E,1) > 0

E = E + F;

F = X*F/k;

k = k+1;

end

Y = E;

Providing a main Function
To call the reentrant code, you must provide a main function that:

• Includes the header file matrix_exp.h.

• For each thread, allocates memory for stack data.

• Calls the matrix_exp_initialize housekeeping function. For more
information, see “Calling Initialize and Terminate Functions”.

• Calls matrix_exp.

• Calls matrix_exp_terminate.

• Frees the memory used for stack data.

23-9

23 Generating Reentrant Code from MATLAB Code

For this example, main.c contains:

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include "matrix_exp.h"

#include "matrix_exp_initialize.h"

#include "matrix_exp_terminate.h"

#include "rtwtypes.h"

#define NUMELEMENTS (160*160)

typedef struct {

real_T in[NUMELEMENTS];

real_T out[NUMELEMENTS];

matrix_expStackData* spillData;

} IODATA;

/* The thread_function calls the matrix_exp function written in MATLAB */

void *thread_function(void *dummyPtr) {

IODATA *myIOData = (IODATA*)dummyPtr;

matrix_exp_initialize();

matrix_exp(myIOData->spillData, myIOData->in, myIOData->out);

matrix_exp_terminate();

}

int main() {

pthread_t thread1, thread2;

int iret1, iret2;

IODATA data1;

IODATA data2;

int32_T i;

/*Initializing data for passing to the 2 threads*/

matrix_expStackData* sd1=(matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

matrix_expStackData* sd2=(matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

data1.spillData = sd1;

data2.spillData = sd2;

23-10

Example: Calling Reentrant Code with No Persistent or Global Data (UNIX® Only)

for (i=0;i<NUMELEMENTS;i++) {

data1.in[i] = 1;

data1.out[i] = 0;

data2.in[i] = 1.1;

data2.out[i] = 0;

}

/*Initializing the 2 threads and passing appropriate data to the thread functions*/

printf("Starting thread 1...\n");

iret1 = pthread_create(&thread1, NULL, thread_function, (void*) &data1);

if (iret1 != 0){

perror("Thread 1 creation failed.");

exit(EXIT_FAILURE);

}

printf("Starting thread 2...\n");

iret2 = pthread_create(&thread2, NULL, thread_function, (void*) &data2);

if (iret2 != 0){

perror("Thread 2 creation failed.");

exit(EXIT_FAILURE);

}

/*Wait for both the threads to finish execution*/

iret1 = pthread_join(thread1, NULL);

if (iret1 != 0){

perror("Thread 1 join failed.");

exit(EXIT_FAILURE);

}

iret2 = pthread_join(thread2, NULL);

if (iret2 != 0){

perror("Thread 2 join failed.");

exit(EXIT_FAILURE);

}

free(sd1);

free(sd2);

printf("Finished Execution!\n");

exit(EXIT_SUCCESS);

23-11

23 Generating Reentrant Code from MATLAB Code

}

Generating Reentrant C Code
Run the following script at the MATLAB command line to generate code.

% This example can only be run on Unix platforms

if ~isunix

error('This example requires pthread libraries and can only be run on Unix.');

end

% Setting the correct options for the Config object

% Create a code gen configuration object

e = coder.config('exe','ecoder', true);

% Enable reentrant code generation

e.MultiInstanceCode = true;

% Set the post code generation command to be the 'setbuildargs' function

e.PostCodeGenCommand = 'setbuildargs(buildInfo)';

% Compiling

codegen -config e main.c matrix_exp.m -report -args ones(160,160)

These commands:

• Check that the example is running on UNIX platforms and generates an
error message if not.

• Create a Simulink Coder configuration object for an ERT target.

• Enable the MultiInstanceCode option to generate reusable, reentrant code.

• Use the PostCodeGenCommand option to set the post-code-generation
command to be the setbuildargs function. This function sets the
-lpthread flag to specify that the build include the pthread library.

function setbuildargs(buildInfo)

23-12

Example: Calling Reentrant Code with No Persistent or Global Data (UNIX® Only)

% The example being compiled requires pthread support.

% The -lpthread flag requests that the pthread library

% be included in the build

linkFlags = {'-lpthread'};

addLinkFlags(buildInfo, linkFlags);

For more information about the PostCodeGenCommand option, see
“Customizing the Post-Code-Generation Build Process”.

• Invoke codegen with the following options:

- -config to pass in the code generation configuration object e.

- main.c to include this file in the compilation.

- -report to create a code generation report.

- -args to specify an example input with the correct class, size, and
complexity.

For more information on these options, see codegen.

Examining the Generated Code
codegen generates a header file matrix_exp_types.h, which defines the
matrix_expStackData global structure. This structure contains local
variables that are too large to fit on the stack.

/*

* matrix_exp_types.h

*

* MATLAB Coder code generation for function 'matrix_exp'

*/

#ifndef __MATRIX_EXP_TYPES_H__

#define __MATRIX_EXP_TYPES_H__

/* Type Definitions */

typedef struct {

struct {

real_T F[25600];

real_T Y[25600];

} f0;

23-13

23 Generating Reentrant Code from MATLAB Code

} matrix_expStackData;

#endif

/* End of MATLAB Coder code generation (matrix_exp_types.h) */

Running the Code
Finally, call the code using the command:

system('./matrix_exp')

The executable runs and reports successful completion.

23-14

Example: Calling Reentrant Code — Multithreaded with Persistent Data (Windows® Only)

Example: Calling Reentrant Code — Multithreaded with
Persistent Data (Windows Only)

This example requires libraries that are specific to the Microsoft® Windows
operating system and, therefore, runs only on Windows platforms. It is a
multithreaded example that uses persistent data. Two threads call the
MATLAB function matrix_exp with different sets of input data.

MATLAB Code Used for This Example

function [Y,numTimes] = matrix_exp(X) %#codegen

%

% The function matrix_exp computes matrix exponential

% of the input matrix using Taylor series and returns

% the computed output. It also returns the number of

% times this function has been called.

%

persistent count;

if isempty(count)

count = 0;

end

count = count+1;

E = zeros(size(X));

F = eye(size(X));

k = 1;

while norm(E+F-E,1) > 0

E = E + F;

F = X*F/k;

k = k+1;

end

Y = E ;

numTimes = count;

23-15

23 Generating Reentrant Code from MATLAB Code

Providing a main Function
To call reentrant code that uses persistent data, you must provide a main
function that:

• Includes the header file matrix_exp.h.

• For each thread, allocates memory for stack data.

• Allocates memory for persistent data, once per application if threads share
data, and once per thread otherwise.

• Calls the matrix_exp_initialize housekeeping function. For more
information, see “Calling Initialize and Terminate Functions”.

• Calls matrix_exp.

• Calls matrix_exp_terminate.

• Frees the memory used for stack and persistent data.

For this example, main.c contains:

#include <stdio.h>

#include <stdlib.h>

#include <windows.h>

#include "matrix_exp.h"

#include "matrix_exp_initialize.h"

#include "matrix_exp_terminate.h"

#include "rtwtypes.h"

#define NUMELEMENTS (160*160)

typedef struct {

real_T in[NUMELEMENTS];

real_T out[NUMELEMENTS];

real_T numTimes;

matrix_expStackData* spillData;

} IODATA;

/*The thread_function calls the matrix_exp function written in MATLAB*/

DWORD WINAPI thread_function(PVOID dummyPtr) {

IODATA *myIOData = (IODATA*)dummyPtr;

matrix_exp_initialize(myIOData->spillData);

23-16

Example: Calling Reentrant Code — Multithreaded with Persistent Data (Windows® Only)

matrix_exp(myIOData->spillData, myIOData->in, myIOData->out, &myIOData->numTimes);

printf("Number of times function matrix_exp is called is %g\n",myIOData->numTimes);

matrix_exp_terminate();

return 0;

}

void main() {

HANDLE thread1, thread2;

IODATA data1;

IODATA data2;

int32_T i;

/*Initializing data for passing to the 2 threads*/

matrix_expPersistentData* pd1 = (matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));

matrix_expPersistentData* pd2 = (matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));

matrix_expStackData* sd1 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

matrix_expStackData* sd2 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

sd1->pd = pd1;

sd2->pd = pd2;

data1.spillData = sd1;

data2.spillData = sd2;

for (i=0;i<NUMELEMENTS;i++) {

data1.in[i] = 1;

data1.out[i] = 0;

data2.in[i] = 1.1;

data2.out[i] = 0;

}

data1.numTimes = 0;

data2.numTimes = 0;

/*Initializing the 2 threads and passing appropriate data to the thread functions*/

printf("Starting thread 1...\n");

thread1 = CreateThread(NULL, 0, thread_function, (PVOID) &data1, 0, NULL);

if (thread1 == NULL){

perror("Thread 1 creation failed.");

exit(EXIT_FAILURE);

}

23-17

23 Generating Reentrant Code from MATLAB Code

printf("Starting thread 2...\n");

thread2 = CreateThread(NULL, 0, thread_function, (PVOID) &data2, 0, NULL);

if (thread2 == NULL){

perror("Thread 2 creation failed.");

exit(EXIT_FAILURE);

}

/*Wait for both the threads to finish execution*/

if (WaitForSingleObject(thread1, INFINITE) != WAIT_OBJECT_0){

perror("Thread 1 join failed.");

exit(EXIT_FAILURE);

}

if (WaitForSingleObject(thread2, INFINITE) != WAIT_OBJECT_0){

perror("Thread 2 join failed.");

exit(EXIT_FAILURE);

}

free(sd1);

free(sd2);

free(pd1);

free(pd2);

printf("Finished Execution!\n");

exit(EXIT_SUCCESS);

}

Generating Reentrant C Code
Run the following script at the MATLAB command line to generate code.

23-18

Example: Calling Reentrant Code — Multithreaded with Persistent Data (Windows® Only)

% This example can only be run on Windows platforms

if ~ispc

error...

('This example requires Windows-specific libraries and can only be run on Windows.');

end

% Setting the correct options for the Config object

% Create a code gen configuration object

e = coder.config('exe', 'ecoder', true);

% Enable reentrant code generation

e.MultiInstanceCode = true;

% Compiling

codegen -config e main.c -report matrix_exp.m -args ones(160,160)

These commands:

• Check that the example is running on Windows platforms and generates an
error message if not.

• Create a code generation configuration object for an ERT target.

• Enable the MultiInstanceCode option to generate reusable, reentrant code.

• Invoke codegen with the following options:

- -config to pass in the code generation configuration object e.

- main.c to include this file in the compilation.

- -report to create a code generation report.

- -args to specify an example input with the correct class, size, and
complexity.

For more information on these options, see codegen.

Examining the Generated Code
codegen generates a header file matrix_exp_types.h, which defines:

23-19

23 Generating Reentrant Code from MATLAB Code

• The matrix_expStackData global structure that contains local
variables that are too large to fit on the stack and a pointer to the
matrix_expPersistentData global structure.

• The matrix_expPersistentData global structure that contains persistent
data.

/*

* matrix_exp_types.h

*

* MATLAB Coder code generation for function 'matrix_exp'

*

*/

#ifndef __MATRIX_EXP_TYPES_H__

#define __MATRIX_EXP_TYPES_H__

/* Type Definitions */

typedef struct {

real_T count;

} matrix_expPersistentData;

typedef struct {

struct {

real_T F[25600];

real_T Y[25600];

} f0;

matrix_expPersistentData *pd;

} matrix_expStackData;

#endif

/* End of code generation (matrix_exp_types.h) */

Running the Code
Finally, call the code using the command:

system('matrix_exp.exe')

The executable runs and reports successful completion.

23-20

Example: Calling Reentrant Code — Multithreaded with Persistent Data (UNIX® Only)

Example: Calling Reentrant Code — Multithreaded with
Persistent Data (UNIX Only)

This example requires POSIX thread (pthread) libraries and, therefore, runs
only on UNIX platforms. It is a multithreaded example that uses persistent
data. Two threads call the MATLAB function matrix_exp with different
sets of input data.

MATLAB Code Used for This Example

function [Y,numTimes] = matrix_exp(X) %#codegen

%

% The function matrix_exp computes matrix exponential

% of the input matrix using Taylor series and returns

% the computed output. It also returns the number of

% times this function has been called.

%

persistent count;

if isempty(count)

count = 0;

end

count = count+1;

E = zeros(size(X));

F = eye(size(X));

k = 1;

while norm(E+F-E,1) > 0

E = E + F;

F = X*F/k;

k = k+1;

end

Y = E ;

numTimes = count;

23-21

23 Generating Reentrant Code from MATLAB Code

Providing a main Function
To call reentrant code that uses persistent data, you must provide a main
function that:

• Includes the header file matrix_exp.h.

• For each thread, allocates memory for stack data.

• Allocates memory for persistent data, once per application if threads share
data, and once per thread otherwise.

• Calls the matrix_exp_initialize housekeeping function. For more
information, see “Calling Initialize and Terminate Functions”.

• Calls matrix_exp.

• Calls matrix_exp_terminate.

• Frees the memory used for stack and persistent data.

For this example, main.c contains:

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include "matrix_exp.h"

#include "matrix_exp_initialize.h"

#include "matrix_exp_terminate.h"

#include "rtwtypes.h"

#define NUMELEMENTS (160*160)

typedef struct {

real_T in[NUMELEMENTS];

real_T out[NUMELEMENTS];

real_T numTimes;

matrix_expStackData* spillData;

} IODATA;

/*The thread_function calls the matrix_exp function written in MATLAB*/

void *thread_function(void *dummyPtr) {

IODATA *myIOData = (IODATA*)dummyPtr;

matrix_exp_initialize(myIOData->spillData);

23-22

Example: Calling Reentrant Code — Multithreaded with Persistent Data (UNIX® Only)

matrix_exp(myIOData->spillData, myIOData->in, myIOData->out, &myIOData>numTimes);

printf("Number of times function matrix_exp is called is %g\n",myIOData->numTimes);

matrix_exp_terminate();

}

int main() {

pthread_t thread1, thread2;

int iret1, iret2;

IODATA data1;

IODATA data2;

int32_T i;

/*Initializing data for passing to the 2 threads*/

matrix_expPersistentData* pd1 =

(matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));

matrix_expPersistentData* pd2 =

(matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));

matrix_expStackData* sd1 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

matrix_expStackData* sd2 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

sd1->pd = pd1;

sd2->pd = pd2;

data1.spillData = sd1;

data2.spillData = sd2;

for (i=0;i<NUMELEMENTS;i++) {

data1.in[i] = 1;

data1.out[i] = 0;

data2.in[i] = 1.1;

data2.out[i] = 0;

}

data1.numTimes = 0;

data2.numTimes = 0;

/*Initializing the 2 threads and passing appropriate data to the thread functions*/

printf("Starting thread 1...\n");

iret1 = pthread_create(&thread1, NULL, thread_function, (void*) &data1);

if (iret1 != 0){

perror("Thread 1 creation failed.");

23-23

23 Generating Reentrant Code from MATLAB Code

exit(EXIT_FAILURE);

}

printf("Starting thread 2...\n");

iret2 = pthread_create(&thread2, NULL, thread_function, (void*) &data2);

if (iret2 != 0){

perror("Thread 2 creation failed.");

exit(EXIT_FAILURE);

}

/*Wait for both the threads to finish execution*/

iret1 = pthread_join(thread1, NULL);

if (iret1 != 0){

perror("Thread 1 join failed.");

exit(EXIT_FAILURE);

}

iret2 = pthread_join(thread2, NULL);

if (iret2 != 0){

perror("Thread 2 join failed.");

exit(EXIT_FAILURE);

}

free(sd1);

free(sd2);

free(pd1);

free(pd2);

printf("Finished Execution!\n");

return(0);

}

Generating Reentrant C Code
Run the following script at the MATLAB command line to generate code.

23-24

Example: Calling Reentrant Code — Multithreaded with Persistent Data (UNIX® Only)

% This example can only be run on Unix platforms

if ~isunix

error('This example requires pthread libraries and can only be run on Unix.');

end

% Setting the correct options for the Config object

% Specify an ERT target

e = coder.config('exe','ecoder', true);

% Enable reentrant code generation

e.MultiInstanceCode = true;

% Set the post code generation command to be the 'setbuildargs' function

e.PostCodeGenCommand = 'setbuildargs(buildInfo)';

% Compiling

codegen -config e main.c -report matrix_exp.m -args ones(160,160)

These commands:

• Check that the example is running on UNIX platforms and generates an
error message if not.

• Create a code generation configuration object.

• Enable the MultiInstanceCode option to generate reusable, reentrant code.

• Use the PostCodeGenCommand option to set the post-code-generation
command to be the setbuildargs function. This function sets the
-lpthread flag to specify that the build include the pthread library.

function setbuildargs(buildInfo)

% The example being compiled requires pthread support.

% The -lpthread flag requests that the pthread library

% be included in the build

linkFlags = {'-lpthread'};

addLinkFlags(buildInfo, linkFlags);

23-25

23 Generating Reentrant Code from MATLAB Code

For more information about the PostCodeGenCommand option, see
“Customizing the Post-Code-Generation Build Process”.

• Invokes codegen with the following options:

- -config to pass in the code generation configuration object e.

- main.c to include this file in the compilation.

- -report to create a code generation report.

- -args to specify an example input with the correct class, size, and
complexity.

For more information on these options, see codegen.

Examining the Generated Code
codegen generates a header file matrix_exp_types.h, which defines:

• The matrix_expStackData global structure that contains local
variables that are too large to fit on the stack and a pointer to the
matrix_expPersistentData global structure.

• The matrix_expPersistentData global structure that contains persistent
data.

/*

* matrix_exp_types.h

*

* MATLAB Coder code generation for function 'matrix_exp'

*

*/

#ifndef __MATRIX_EXP_TYPES_H__

#define __MATRIX_EXP_TYPES_H__

/* Type Definitions */

typedef struct {

real_T count;

} matrix_expPersistentData;

typedef struct {

struct {

23-26

Example: Calling Reentrant Code — Multithreaded with Persistent Data (UNIX® Only)

real_T F[25600];

real_T Y[25600];

} f0;

matrix_expPersistentData *pd;

} matrix_expStackData;

#endif

/* End of code generation (matrix_exp_types.h) */

Running the Code
Finally, call the code using the command:

system('./matrix_exp')

The executable runs and reports successful completion.

23-27

23 Generating Reentrant Code from MATLAB Code

23-28

24

Generating Code for
AUTOSAR Software
Components

• “Overview of AUTOSAR Support” on page 24-2

• “Simulink Modeling Patterns for AUTOSAR” on page 24-3

• “Workflow for AUTOSAR” on page 24-26

• “Importing an AUTOSAR Software Component” on page 24-28

• “Preparing a Simulink Model for AUTOSAR Code Generation” on page
24-31

• “Generating AUTOSAR Code and Description Files” on page 24-58

• “Configuring AUTOSAR Options Programmatically” on page 24-64

• “Verifying the AUTOSAR Code with SIL and PIL Simulations” on page
24-65

• “Limitations and Tips” on page 24-68

• “Demos and Further Reading” on page 24-73

24 Generating Code for AUTOSAR Software Components

Overview of AUTOSAR Support
Embedded Coder software supports AUTOSAR (AUTomotive Open System
ARchitecture), an open and standardized automotive software architecture.
AUTOSAR is developed jointly by automobile manufacturers, suppliers, and
tool developers.

The AUTOSAR standard addresses:

• Architecture – Three layers, Application, Runtime Environment (RTE), and
Basic Software, enable decoupling of AUTOSAR Software Components from
the execution platform. Standard interfaces between AUTOSAR Software
Components and the Runtime Environment allow reuse or relocation of
components within the Electronic Control Unit (ECU) topology of a vehicle.

• Methodology – Specification of code formats and description file templates,
for example.

• Application Interfaces – Specification of interfaces for typical automotive
applications.

For details on the AUTOSAR standard, go to www.autosar.org.

In Simulink, you can model AUTOSAR Software Components and related
concepts. See “Simulink Modeling Patterns for AUTOSAR” on page 24-3.

Using Embedded Coder software, you can generate AUTOSAR-compliant code
and description files. See “Workflow for AUTOSAR” on page 24-26.

24-2

http://www.autosar.org

Simulink® Modeling Patterns for AUTOSAR

Simulink Modeling Patterns for AUTOSAR

In this section...

“About Simulink Modeling Patterns for AUTOSAR” on page 24-3

“AUTOSAR Software Components” on page 24-3

“AUTOSAR Communication” on page 24-9

“Calibration Parameters” on page 24-15

“Inter-Runnable Variables” on page 24-16

“Data Types” on page 24-17

“Per-Instance Memory” on page 24-22

“AUTOSAR Terminology” on page 24-23

About Simulink Modeling Patterns for AUTOSAR
This section describes how you model AUTOSAR Software Components and
related concepts in Simulink.

AUTOSAR Software Components
In AUTOSAR, application software consists of separate units, AUTOSAR
Software Components.

Note An AUTOSAR Software Component is sometimes referred to as atomic
because it is never split across more than one Electronic Control Unit (ECU).
Do not confuse atomic in this context with the concept of Simulink atomic
subsystems.

The behavior of an AUTOSAR Software Component is implemented by a
single or multiple runnable entities (runnables), which expose well-defined
connection points, ports.

In Simulink, you can represent an AUTOSAR Software Component using a
model or a subsystem. For example, the following figure shows modeling

24-3

24 Generating Code for AUTOSAR Software Components

patterns for AUTOSAR Software Components (ASWC) labeled ASWC1, ASWC2,
ASWC3, and ASWC4.

Runnables
AUTOSAR Software Components contain runnables that are directly or
indirectly scheduled by the underlying AUTOSAR operating system.

The following figure shows an AUTOSAR Software Component with two
runnables, Runnable 1 and Runnable 2. Each runnable is triggered by
RTEEvents, events generated by the AUTOSAR Runtime Environment (RTE).
For example, TimingEvent is an RTEEvent that is generated periodically.

24-4

Simulink® Modeling Patterns for AUTOSAR

The components ASWC1, ASWC2 and ASWC4 contain single runnables. These
components are represented by a subsystem or a model, and can be single-
or multirate. However, the software implements each component as a
single-tasking operation.

Note The software generates an additional runnable for the initialization
function regardless of the modeling pattern.

ASWC2 is modeled as a single-rate, single-tasking atomic subsystem.

You can generate the ASWC2 runnable, which corresponds to the step function
of the subsystem. Use the Configure AUTOSAR Interface dialog box to
specify the names of the initial and periodic runnables, as shown by the
following figure.

24-5

24 Generating Code for AUTOSAR Software Components

The software generates TimingEvents for the runnables. The TimingEvent
period for the periodic runnable is the fundamental sample time of the model
or atomic subsystem. Specify this sample time in the Subsystem Parameters
dialog box, in the Sample time (-1 for inherited) field.

The component ASWC3 contains multiple runnables.

24-6

Simulink® Modeling Patterns for AUTOSAR

Use the Export Functions feature to map the runnables to Simulink
function-call subsystems. See “Configuring Multiple Runnables” on page
24-47 and “Exporting AUTOSAR Software Component” on page 24-61. The
software also generates an initialization runnable for the initialization
function.

Use the Configure AUTOSAR Interface dialog box to specify the names of the
multiple runnables and the periods of TimingEvents.

24-7

24 Generating Code for AUTOSAR Software Components

Multiple Instantiation
AUTOSAR supports multiple instantiations of software components.
However, Simulink supports multiple instantiations (reentrant code) only
if a model is configured as a server operation. See “Configuring a Server
Operation” on page 24-40.

24-8

Simulink® Modeling Patterns for AUTOSAR

To generate reentrant code for a model configured as a server operation, on
the Code Generation > Interface pane, select the Generate reusable
code check box.

AUTOSAR Communication
AUTOSAR Software Components provide well-defined connection points,
ports. There are two types of AUTOSAR ports:

• Require

• Provide

In addition, these AUTOSAR ports can reference two kinds of interfaces:

• Sender-Receiver

• Client-Server

The following figure shows an AUTOSAR Software Component with four
ports representing all port and interface combinations.

Sender-Receiver Interface
A Sender-Receiver Interface consists of one or more data elements. Although
a Require or Provide port may reference a Sender-Receiver Interface, the
AUTOSAR Software Component does not necessarily access all the data
elements. For example, consider the following figure.

24-9

24 Generating Code for AUTOSAR Software Components

The AUTOSAR Software Component has a Require and Provide port that
references the same Sender-Receiver Interface, interface1. Although this
interface contains data elements DE1, DE2, DE3, DE4, and DE5, the component
does not utilize all the data elements.

The following figure is an example of how you model, in Simulink, an
AUTOSAR Software Component that accesses data elements.

ASWC accesses data elements DE1 and DE2. You model data element access as
follows:

24-10

Simulink® Modeling Patterns for AUTOSAR

• For Require ports, use Simulink inports. For example, RPort1_DE1 and
RPort1_DE2.

• For Provide ports, use Simulink outports. For example, PPort1_DE1 and
PPort1_DE2.

ErrorStatus is a value that the AUTOSAR Runtime Environment (RTE)
returns to indicate errors that the communication system detects for each
data element. You can use a Simulink inport to model error status, for
example, RPort1_DE1 (ErrorStatus).

Use the Configure AUTOSAR Interface dialog box to specify the AUTOSAR
settings for each inport and outport. The following figure shows settings
for ASWC.

24-11

24 Generating Code for AUTOSAR Software Components

For example, the Data Access Mode for RPort1_DE1 is set to ImplicitReceive.
For information on how you specify settings, see “Using the Configure
AUTOSAR Interface Dialog Box” on page 24-31.

Client-Server Interface
A Client-Server Interface consists of one or more operation prototypes. An
operation prototype contains one or more arguments of specific data types. A
Client-Server Interface can be referenced by either a Require or Provide port.

The following figure shows an AUTOSAR Software Component with Require
ports (RPort2 and NvM) that reference Client-Server Interfaces (Interface2
and NvM).

Simulink provides the following modeling patterns for Client-Server
Interfaces:

• If you want to invoke a Basic Software interface with operations that have
only one argument, for example, Client-Server Interface: NvM, use
an inport or outport.

• If you want to invoke Basic Software or application software interfaces
that contain operations with any number of arguments, for example,
Client-Server Interface: Interface2, use the Invoke AUTOSAR
Server Operation block. See “Configuring the Invoke AUTOSAR Server
Operation Block” on page 24-43

The following figure shows the use of the Invoke AUTOSAR Server Operation
block in modeling an AUTOSAR Software Component in Simulink.

24-12

Simulink® Modeling Patterns for AUTOSAR

Use the Configure AUTOSAR Interface dialog box to specify the AUTOSAR
settings for each inport and outport. See “Using the Configure AUTOSAR
Interface Dialog Box” on page 24-31.

The following figure shows an AUTOSAR Software Component with a
Provide port that references a Client-Server Interface.

24-13

24 Generating Code for AUTOSAR Software Components

In Simulink, you can model a single operation of an AUTOSAR Software
Component that is referenced by a Client-Server Interface. Consider the
following model.

Use the Configure AUTOSAR Interface dialog box to map the inports and
outports to the arguments of the operation prototype. For example, the
inports map to arguments upper, input, and lower.

24-14

Simulink® Modeling Patterns for AUTOSAR

For more information, see “Configuring a Server Operation” on page 24-40 .

Calibration Parameters

About Calibration Parameters
A calibration parameter is a value in an Electronic Control Unit (ECU). You
tune or modify these parameters using a calibration data management tool
or an offline calibration tool.

The AUTOSAR standard specifies the following types of calibration
parameters:

24-15

24 Generating Code for AUTOSAR Software Components

• Calibration parameters that belong to a calibration component, which can
be accessed by all AUTOSAR Software Components.

You define calibration components using an AUTOSAR authoring tool.

• Internal calibration parameters, which are defined and accessed by only
one AUTOSAR Software Component.

The software supports import, export, and code generation for both types of
calibration parameters.

Importing and Exporting Calibration Parameters
You can import calibration parameters into the MATLAB base workspace.

For example, to import parameters from an AUTOSAR calibration component
description, use arxml.importer.createCalibrationComponentObjects.

To provide your Simulink model with access to these parameters, assign the
imported parameters to block parameters.

For more information, see “Importing an AUTOSAR Software Component” on
page 24-28.

You can specify the type of calibration parameter exported by
configuring properties of the corresponding block parameter in the base
workspace. See “Configuring Calibration Parameters” on page 24-53 and
rtwdemo_autosar_legacy_script.

Inter-Runnable Variables
In AUTOSAR, inter-runnable variables are used to communicate primitive
type data between runnables in the same component. You define these
variables in a Simulink model by the signal lines that connect subsystems
(runnables). For example, in the following figure, irv1, irv2, irv3, and irv4
are inter-runnable variables.

24-16

Simulink® Modeling Patterns for AUTOSAR

You can specify the names and data access modes of the inter-runnable
variables that you export. See “Configuring Inter-Runnable Variables” on
page 24-48.

Data Types
AUTOSAR specifies data types that apply to:

• Data elements of a Sender-Receiver Interface

• Operation arguments of a Client-Server Interface

• Calibration parameters

• Inter-runnable variables

The data types fall into two categories:

• Primitive data types, which allow a direct mapping to C intrinsic types.

• Composite data types, which map to C arrays and structures.

24-17

24 Generating Code for AUTOSAR Software Components

You can use Simulink data types to define AUTOSAR primitive types.

AUTOSAR Data Type Simulink Data Type

UInt4 uint8

SInt4 int8

UInt8 uint8

SInt8 int8

UInt16 uint16

SInt16 int16

UInt32 uint32

SInt32 int32

Float_with_NaN single

Float single

Double_with_NaN double

Double double

Boolean boolean

Char8 uint8

Char16 Not supported

AUTOSAR composite data types are arrays and records, which are
represented in Simulink by wide signals and bus objects, respectively. In the
Inport or Outport Block Parameters dialog box, use the Signal Attributes
pane to configure wide signals and bus objects.

The following figure shows how to specify a wide signal, which corresponds to
an AUTOSAR composite array.

24-18

Simulink® Modeling Patterns for AUTOSAR

The following figure shows how to specify a bus object, which corresponds
to an AUTOSAR composite record.

24-19

24 Generating Code for AUTOSAR Software Components

You can use the Data Type Assistant on the Signal Attributes pane of the
Inport or Outport Block Parameters dialog box to specify the data types of
data elements and arguments of an operation prototype. If you selectMode to
be Built in, then you can specify the data type to be, for example, single or
boolean. Alternatively, if you selectMode to be Expression, you can specify

24-20

Simulink® Modeling Patterns for AUTOSAR

an (alias) expression for data type. As an example, the following figure shows
an alias UInt4 in the Data type field.

24-21

24 Generating Code for AUTOSAR Software Components

Enumerated Data Types
AUTOSAR supports enumerated data types. For the import process, if there
is a corresponding Simulink enumerated data type, then the software uses
this data type. Through a check, the software ensures that the two data types
are consistent. However, if there is no corresponding Simulink data type,
then the software automatically creates the enumerated data type using the
Simulink.defineIntEnumType class. This automatic creation of data types is
useful when you want to import a large number of enumerated data types.

Consider the following example:

<SHORT-NAME>BasicColors</SHORT-NAME>
<COMPU-INTERNAL-TO-PHYS>
<COMPU-SCALES>

<COMPU-SCALE>
<LOWER-LIMIT>0</LOWER-LIMIT>
<UPPER-LIMIT>0</UPPER-LIMIT>
<COMPU-CONST>

<VT>Red</VT>
....

The software creates an enumerated data type using:

Simulink.defineIntEnumType('BasicColors', ...
{'Red', 'Green', 'Blue'}, ...
[0;1;2], ...
'Description', 'Type definition of BasicColors.', ...
'HeaderFile', 'Rte_Type.h', ...
'AddClassNameToEnumNames', false);

Per-Instance Memory
AUTOSAR supports per-instance memory, which allows you to specify
instance-specific global memory within a software component. An AUTOSAR
run-time environment generator allocates this memory and provides an API
through which you access this memory.

In Simulink, you can model per-instance memory through the use
of Data Store Memory and Data Store Read/Write blocks together
with an AUTOSAR.Signal data object that specifies, for example, the
PerInstanceMemory custom storage class.

24-22

Simulink® Modeling Patterns for AUTOSAR

AUTOSAR also allows you to use per-instance memory as a RAM mirror for
data in non-volatile RAM (NVRAM), which enables you to access and use
NVRAM in your AUTOSAR application.

Once an AUTOSAR.Signal data object specifies the PerInstanceMemory custom
storage class, you can configure this per-instance memory to be a mirror block
for a specific NVRAM block by setting the attribute needsNVRAMAccess to true.

For detailed information about how you model per-instance memory, see the
demo rtwdemo_autosar_PIM_script. For an outline, see “Using Data Store
Memory Blocks to Specify Per-Instance Memory” on page 24-55.

AUTOSAR Terminology

Term Notes

AUTOSAR Runtime
Environment (RTE)

• Layer between Application and Basic Software
layers

• Realizes communication between:

- AUTOSAR Software Components

- AUTOSAR Software Components and Basic
Software

AUTOSAR Software
Component

• A software component containing one or more
algorithms, which communicates with its
environment through ports

• Connected to the AUTOSAR Runtime
Environment (RTE)

• Relocatable (not tied to a particular ECU)

Characteristics Values of characteristics can be changed on an
ECU through a calibration data management tool
or an offline calibration tool.

Client-Server Interface • PortInterface for client-server communication

• Defines operations provided by server and used
by client

24-23

24 Generating Code for AUTOSAR Software Components

Term Notes

Composite data types Category of data types, such as one of the
following:
• Array — Contains more than one element of
the same type, and has zero-based indexing

• Record — Non-empty set of objects, where each
object has a unique identifier

ComSpec Defines specific communication attributes.

DataElementPrototype
(data element)

Data value (signal) exchanged between a sender
and a receiver.

Data types • Either primitive or composite

• Types data elements, arguments of operations
in a Client-Server Interface, and constants

ErrorStatus Indicates errors detected by communication
system. Runtime Environment defines
the following macros for sender-receiver
communication:
• RTE_E_OK: no errors

• RTE_E_INVALID: data element invalid

• RTE_E_MAX_AGE_EXCEEDED: data element
outdated

OperationPrototype
(operation)

• Invoked by a client

• Provides value for each argument with
direction in or inout, which must be of the
correct data type

• Client expects to receive a response to the
invoked operation, part of which is a value (of
correct data type) with direction out or inout

PortInterface • Characterizes information provided or required
by a port

• Can be either Sender-Receiver Interface or
Client-Server Interface

24-24

Simulink® Modeling Patterns for AUTOSAR

Term Notes

Primitive data types Category of data types that allow a direct mapping
to C intrinsic types.

Provide port (PPort) Port providing data or service of a server.

Require port (RPort) Port requiring data or service of a server.

RTEEvent Event or situation that triggers execution of a
runnable by the Runtime Environment (RTE).
The software supports the following RTEEvents:
• OperationInvokedEvent (applicable to server
operations)

• TimingEvent

• DataReceivedEvent

Runnable entity
(runnable)

Part of AUTOSAR Software-Component that can
be executed and scheduled independently of other
runnable entities (runnables).

Sender-Receiver
Interface

• PortInterface for sender-receiver
communication

• Defines data elements sent by sending
component (with Provide port providing
Sender-Receiver Interface) or received by
receiving component (with Require requiring
Sender-Receiver Interface)

Sender Receiver
Annotation

Annotation of data elements in a port that
implements Sender-Receiver Interface.

Sensor Actuator
Software Component

AUTOSAR Software Component dedicated to the
control of a sensor or actuator.

Service Logical entity of Basic Software that offers
functionality, which is used by various AUTOSAR
Software Components.

24-25

24 Generating Code for AUTOSAR Software Components

Workflow for AUTOSAR
This section describes how you use Embedded Coder software to generate
AUTOSAR-compliant code.

The following diagram shows a workflow that you can follow.

In this round-trip workflow, you perform the following tasks:

1 Import previously specified AUTOSAR Software Components, including
definitions of calibration parameters, into Simulink. See “Importing
an AUTOSAR Software Component” on page 24-28 and “Configuring
Calibration Parameters” on page 24-53.

24-26

Workflow for AUTOSAR

2 Incorporate your Simulink design into the skeleton model or subsystem
created by the import process.

3 Export, generating code and description files. This process involves
configuring the AUTOSAR interface, validating this interface, and then
building your Simulink models. See:

• “Using the Configure AUTOSAR Interface Dialog Box” on page 24-31

• “Configuring Ports for Basic Software and Error Status Receivers” on
page 24-37

• “Configuring Client-Server Communication” on page 24-38

• “Configuring AUTOSAR Options Programmatically” on page 24-64

• “Modifying and Validating an Existing AUTOSAR Interface” on page
24-57

• “Exporting AUTOSAR Software Component” on page 24-61

• “Configuring Multiple Runnables” on page 24-47

You can also verify your generated code in a simulation. See “Verifying the
AUTOSAR Code with SIL and PIL Simulations” on page 24-65.

4 Merge generated code and description files with other systems using an
AUTOSAR authoring tool, for example, the DaVinci tool suite from Vector
Informatik GmbH. See demo rtwdemo_autosar_roundtrip_script.

You can use the authoring tool to export specifications, which can be
imported back into Simulink.

24-27

24 Generating Code for AUTOSAR Software Components

Importing an AUTOSAR Software Component
Use the arxml.importer class to:

• Parse an AUTOSAR Software Component description file, for example,
exported from the DaVinci tool suite from Vector Informatik GmbH

• Import the software component into a Simulink model for configuration,
code generation, and XML export

For a complete list of methods, see “AUTOSAR” in the Embedded Coder
Function Reference documentation.

Use arxml.importer methods in the following order:

1 Call the constructor arxml.importer, for example,
arxml.importer('mySoftwareComponentFile.arxml'), to
create an importer object that looks for atomic software components in the
specified XML file. In the Command Window, you see reports describing
identified atomic software components. You can have multiple components.
For example:

The file "mySoftwareComponentFile.arxml" contains:

1 Atomic-Software-Component-Type:

'/ComponentType/complex_type_component'

3 CalPrm-Component-Type:

'/ComponentType/MyCalibComp1'

'/ComponentType/MyCalibComp2'

'/ComponentType/MyCalibComp3'

To change the main file and update the list of components, use
arxml.importer.setFile.

Each software component requires an arxml.importer object. For
each arxml.importer object, specify the file that contains the software
component that you want.

2 Use arxml.importer.setDependencies if you need to specify additional
dependent XML files containing the information that completes the
software component description (for example, data types, interfaces). You
can specify a cell array of files or a single file.

24-28

Importing an AUTOSAR Software Component

Complete specifying dependencies only for components that you intend to
import into Simulink.

3 To import a parsed atomic software component into a Simulink model, call
one of the following methods. If you have not specified all dependencies for
the components, you will see errors.

• arxml.importer.createComponentAsSubsystem — Creates and
configures a Simulink subsystem skeleton corresponding to the specified
atomic software component description.

• arxml.importer.createComponentAsModel— Creates and configures a
Simulink model skeleton corresponding to the specified atomic software
component description.

For example:

importer_obj.createComponentAsModel('/ComponentType/complex_type_component')

• arxml.importer.createCalibrationComponentObjects — Creates
Simulink calibration objects corresponding to the specified AUTOSAR
calibration component description.

For example:

[success] = createCalibrationComponentObjects(importer_obj,

'CreateSimulinkObject', true)

See also the limitation, “Cannot Import Internal Behavior” on page 24-68.

After you import your software component into Simulink, you can modify the
skeleton model or subsystem. For parameters from a calibration component,
after importing the parameters into the MATLAB workspace, assign the
calibration parameters to block parameters in your model.

To configure AUTOSAR code generation options and XML export options, see:

• “Preparing a Simulink Model for AUTOSAR Code Generation” on page
24-31

• “Generating AUTOSAR Code and Description Files” on page 24-58

• “Configuring AUTOSAR Options Programmatically” on page 24-64

24-29

24 Generating Code for AUTOSAR Software Components

To see how to import, modify, and export AUTOSAR Software Components,
view the demo Import and Export an AUTOSAR Software Component.

24-30

Preparing a Simulink® Model for AUTOSAR Code Generation

Preparing a Simulink Model for AUTOSAR Code
Generation

In this section...

“Using the Configure AUTOSAR Interface Dialog Box” on page 24-31

“Configuring Ports for Basic Software and Error Status Receivers” on page
24-37

“Configuring Client-Server Communication” on page 24-38

“Configuring Multiple Runnables” on page 24-47

“Configuring Calibration Parameters” on page 24-53

“Using Data Store Memory Blocks to Specify Per-Instance Memory” on
page 24-55

“Modifying and Validating an Existing AUTOSAR Interface” on page 24-57

Using the Configure AUTOSAR Interface Dialog Box
Use the Configure AUTOSAR Interface dialog box to configure your AUTOSAR
code generation and XML import and export options. Alternatively, you can
control all AUTOSAR options programmatically. See “Configuring AUTOSAR
Options Programmatically” on page 24-64.

In any model using the autosar.tlc system target file, you can open the
Configure AUTOSAR Interface dialog box by right-clicking a subsystem and
selecting Code Generation > AUTOSAR Single or Multi-Runnable
Component > Configure.

Single-Runnable menu options are enabled for only atomic or function-call
subsystems.

Multi-Runnable menu options are enabled for only virtual subsystems.

24-31

24 Generating Code for AUTOSAR Software Components

To configure your AUTOSAR options:

1 If the Configure I/O for server operation check box is selected, clear it.
Select this check box only when you want to configure your Simulink model
as a server operation (see “Configuring a Server Operation” on page 24-40).

2 Click Get Default Configuration to populate the controls for your model.

24-32

Preparing a Simulink® Model for AUTOSAR Code Generation

The runnable names, XML properties, and I/O configuration are initialized.
If you click Get Default Configuration again later, only the I/O
configurations are reset to default values.

3 Under Configure AUTOSAR Interface, use the controls to change your
AUTOSAR code generation options and XML export options. For example,
send and receive communication options such as port and interface names,
data access modes, and initial and periodic runnable names.

• On the Input/Output tab, designate inports and outports as data
sender/receiver ports, error status receivers, or as access points to basic
software.

To designate inports and outports as sender or receiver ports, set each
port’s Data Access Mode to one of the following:

– Implicit (recommended). Data is buffered by the Runtime
Environment (RTE).

– Explicit. Data is not buffered.

Use the port interface settings to reflect your AUTOSAR port best
practices. For example, some AUTOSAR users like to group related
data into the same AUTOSAR port. You can achieve this arrangement
in the GUI by duplicating AUTOSAR port names. Alternatively, you
can use the AUTOSAR port to group information individually. In this
case, a common approach is to set all of the data element settings to
something neutral, for example, 'data', and leave the AUTOSAR port
names as they are. You can also use the AUTOSAR interface name for
any best practices that you might have. For example, you can set up
interfaces for individual AUTOSAR ports by ensuring that the interface
names change when the AUTOSAR port name changes, for example,
by prefixing the AUTOSAR interface of the corresponding AUTOSAR
port name with an 'if_'.

For more information on all these options, see “AUTOSAR” in the
Embedded Coder Function Reference documentation.

You also use Data Access Mode to designate ports to access basic
software or error status. See “Configuring Ports for Basic Software and
Error Status Receivers” on page 24-37.

• On the Runnables tab, specify the names of your initial and periodic
runnables, for example, Runnable_Init and Runnable_Step.

24-33

24 Generating Code for AUTOSAR Software Components

• On the XML Options tab, specify the names and package paths of the
XML files that you publish when you generate code. See also “Exporting
AUTOSAR Software Component” on page 24-61.

4 After you configure your options, click Validate, which calls
runValidation. If there are problems, you see messages describing why
the configuration is invalid.

Note For information on all validation checks, see
RTW.AutosarInterface.runValidation in the Embedded Coder
Function Reference documentation.

24-34

Preparing a Simulink® Model for AUTOSAR Code Generation

5 If validation succeeds, click OK to return to the Configuration Parameters
dialog box.

6 Save your model and then generate code to export your AUTOSAR
component.

Configuring Single Runnables for DataReceivedEvents
The AUTOSAR Runtime Environment uses the event type DataReceivedEvent
to trigger a runnable only when the value of a received data element is
updated.

The software supports two data access modes that enable DataReceivedEvents
to act as triggers, ExplicitReceive and QueuedExplicitReceive. The latter,
in principle, allows the queuing of events. However, by default, the software
restricts the queue length to one event only. If you want a different queue
length, you must edit the generated XML file.

To create a runnable trigger with a DataReceivedEvent:

1 Under Configure AUTOSAR Interface, select the Input/Output tab.

2 If you want an input data signal to be a trigger (for example, Input) set
Data Access Mode for the corresponding inport to ExplicitReceive or
QueuedExplicitReceive.

24-35

24 Generating Code for AUTOSAR Software Components

3 Select the Runnables tab. To create a new trigger event, click Add Event.
By default, from the Event Type drop-down list, the software selects
DataReceivedEvent.

4 In the Event Name column, specify an appropriate event name.

5 In the Trigger Port column, from the drop-down list, select the Simulink
port, for example, Input.

6 To create an additional trigger event, repeat steps 3 – 5. You can remove a
trigger event by selecting the event row and clicking Delete Event.

7 To verify that you have configured the event triggers correctly, click
Validate.

24-36

Preparing a Simulink® Model for AUTOSAR Code Generation

Note If you define a DataReceivedEvent in a top-model or right-click
build configuration, MathWorks recommends that you specify sample time
independance for the model, that is, you set the Periodic sample time
constraint on the Solver configuration parameters dialog pane to Ensure
sample time independent. This action ensures that the generated code can
be executed at non-periodic rates, for example, asynchronously. However, if
you know the execution context, for example, the data triggers periodically,
then you do not have to specify sample time independence.

Configuring Ports for Basic Software and Error Status
Receivers
You can configure ports to access AUTOSAR services and device drivers
(AUTOSAR basic software), and to access communication error status in your
model. You can configure ports programmatically or by using the AUTOSAR
Model Interface dialog box. To open the dialog box, right-click a subsystem

24-37

24 Generating Code for AUTOSAR Software Components

and select Code Generation > AUTOSAR Single or Multirunnable
Component > Configure.

In the dialog box, you can specify the Data Access Mode of every port.

• Designate inports and outports as access points to basic software.

If you select Basic Software, specify the service name, operation, and
interface. The service name and operation must be valid AUTOSAR
identifiers, and the service interface must be a valid path of the form
AUTOSAR/Service/servicename.

After you export your AUTOSAR components, you must include your
service interface definition XML file to import these components correctly
into an authoring tool.

• Designate inports to receive error status.

If you select Error Status for an inport, you must select the other port (of
mode Implicit or Explicit Receive) to listen for error status. Error status
ports must use uint8 data type (or an alias).

Configuring Client-Server Communication

• “Configuring a Server Operation” on page 24-40

• “Configuring the Invoke AUTOSAR Server Operation Block” on page 24-43

24-38

Preparing a Simulink® Model for AUTOSAR Code Generation

• “Creating Configurable Subsystems from a Client-Server Interface” on
page 24-45

• “Simulating and Generating Code for Client-Server Communication” on
page 24-46

AUTOSAR allows client-server communication between:

• Application software components

• An application software component and Basic Software

An AUTOSAR Client-Server Interface defines the interaction between a
software component that provides the interface and a software component
that requires the interface. The component that provides the interface is the
server. The component that requires the interface is the client.

In Simulink, you can:

• Configure your model to implement a server operation. When you build
your model, you generate AUTOSAR-compliant code and XML description
files, including a client-server interface. See “Configuring a Server
Operation” on page 24-40.

• Configure a client port for your model using an Invoke AUTOSAR Server
Operation block that references a client-server interface. When you build
your model, you generate AUTOSAR-compliant code and XML description
files for your client port. See “Configuring the Invoke AUTOSAR Server
Operation Block” on page 24-43.

Once you create a client-server interface, you can generate a Simulink library
of configurable, client-server subsystems that reference the:

• Invoke AUTOSAR Server Operation block for code generation

• Server operation model block for simulation

For information on how to generate this library, see “Creating Configurable
Subsystems from a Client-Server Interface” on page 24-45

You can deploy the client-server subsystem in a Simulink model and, using
the Mode Switch for Invoke AUTOSAR Server Operation, run the model in

24-39

24 Generating Code for AUTOSAR Software Components

either a simulation or code-generation mode. See “Simulating and Generating
Code for Client-Server Communication” on page 24-46.

For a demo on generating and using an AUTOSAR Client-Server Interface,
see rtwdemo_autosar_clientserver_script.

Configuring a Server Operation
In the Configure AUTOSAR Interface dialog box, you can configure
your Simulink model as a server operation. Then you can generate
AUTOSAR-compliant code and XML files, including the client-server
interface.

1 Select the Configure I/O for server operation check box. The
Input/Output tab becomes the Server Operation tab.

24-40

Preparing a Simulink® Model for AUTOSAR Code Generation

2 Click Get Default Configuration to populate the controls for your model.

The runnable names, XML properties, and I/O configuration are initialized.
If you click Get Default Configuration again later, only the I/O
configurations are reset to default values.

On the Configure AUTOSAR Interface pane, use the controls to change
your AUTOSAR code generation options and XML export options.

3 On the Server Operation tab, specify the following:

• Server port name. Use a valid AUTOSAR short-name identifier.

• Operation prototype . The names of the prototype and its arguments
must be valid AUTOSAR short-name identifiers, for example

24-41

24 Generating Code for AUTOSAR Software Components

rtwdemo_autosar_server_operation(IN double upper, IN double
input, IN double lower, OUT double output).

• Interface name. The path reference of the client-server interface. Use
a valid AUTOSAR short-name path, for example, csinterface.

• Server type. From the drop-down list, select either Application
software or Basic software.

4 On the Runnables tab, specify the names of your initial and periodic
runnables, for example, Runnable_Init and Runnable_Step.

5 On the XML Options tab, specify the names and package paths of the
XML files that you publish when you generate code. For more details about
these files, see “Exporting AUTOSAR Software Component” on page 24-61.

6 After you configure your options, click Validate, which calls
runValidation. If there are problems, you see messages describing why
the configuration is invalid.

24-42

Preparing a Simulink® Model for AUTOSAR Code Generation

Note For information on all validation checks, see
RTW.AutosarInterface.runValidation in the Embedded Coder
Function Reference documentation.

7 If validation succeeds, click OK to return to the Configuration Parameters
dialog box.

8 Save your model.

9 To generate AUTOSAR-compliant code and XML files, select Tools > Code
Generation > Build Model.

Configuring the Invoke AUTOSAR Server Operation Block
You can use the Invoke AUTOSAR Server Operation block in your Simulink
model to configure a client port (that accesses either application software
or AUTOSAR Basic Software). You can then build the model to generate
AUTOSAR-compliant code and XML files.

1 Drag an Invoke AUTOSAR Server Operation block into your model.

24-43

24 Generating Code for AUTOSAR Software Components

2 Double-click the block to open the Invoke AUTOSAR Server Operation
dialog box. Specify the following:

• Client port name. A valid AUTOSAR short-name identifier.

• Operation prototype. The names of the prototype and its arguments
must be valid AUTOSAR short-name identifiers, for example,
rtwdemo_autosar_server_operation(IN double upper, IN double
input, IN double lower, OUT double output).

• Interface path. The path reference of the client-server interface.
You must use a valid AUTOSAR short-name path, for example,
/AUTOSAR/Interface.

• Server type. From the drop-down list, select either Application
software or Basic software.

• Show error status. If you want the client port to receive the error
status of client-server communication, select this check box.

• Sample time. Set this parameter to -1 to inherit the sample time.

3 Click OK. Your Invoke AUTOSAR Server Operation block is updated.

24-44

Preparing a Simulink® Model for AUTOSAR Code Generation

4 Connect the updated Invoke AUTOSAR Server Operation block to your
model.

5 Select Tools > Code Generation > Build Model. AUTOSAR-compliant
code and XML files for the client port are generated.

Creating Configurable Subsystems from a Client-Server
Interface
You can generate a Simulink library of configurable subsystems by
applying the createOperationAsConfigurableSubsystems method to the
arxml.importer object with the client-server interface. For example:

% Create an AUTOSAR importer object

obj = arxml.importer('rtwdemo_autosar_csinterface.arxml');

% Create the client-server operation configurable subsystem library

obj.createOperationAsConfigurableSubsystems('/PortInterface/csinterface', ...

'CreateSimulinkObject', false);

yield the following PortInterface_csinterface library.

24-45

24 Generating Code for AUTOSAR Software Components

Simulating and Generating Code for Client-Server
Communication
Use the Template block from the client-server subsystem library to construct
a model that can be run in either code-generation or simulation mode.

1 Drag the Template block from the subsystem library into your model
window and connect it to other blocks.

2 Place the Mode Switch for Invoke AUTOSAR Server Operation in your
model window.

24-46

Preparing a Simulink® Model for AUTOSAR Code Generation

To simulate the model:

1 Double-click the Mode Switch for AUTOSAR Server Operation to change
the current mode from code generation to simulation.

2 Select Simulation > Start.

To generate code for the model:

1 Double-click the Mode Switch for AUTOSAR Server Operation to change
the current mode from simulation to code generation.

2 Select Tools > Code Generation > Build Model.

Configuring Multiple Runnables
You can use function-call subsystems within a wrapper subsystem to
represent multiple runnables in a single AUTOSAR Software Component,
and export each function-call subsystem as an AUTOSAR runnable.

If you group function-call subsystems within your wrapper subsystem into
virtual subsystems, for example, to improve the graphical layout of your

24-47

24 Generating Code for AUTOSAR Software Components

model, you can still export the function-call subsystems as AUTOSAR
runnables. For information about virtual subsystems, see “Creating
Subsystems” and “Virtual Blocks” in the Simulink documentation.

In addition to function-call subsystems, the software supports the following
blocks within a wrapper subsystem:

• Data Store

• Display

• DocBlock

• From

• Goto

• Merge

• Model Info

• Scope

• Signal Specification

Use the Configure AUTOSAR Interface dialog box to specify an AUTOSAR
interface for each function-call subsystem that you want to export as
a runnable. To open this dialog box, right-click the top-level wrapper
subsystem and select Code Generation > AUTOSAR Multi-Runnable
Component > Configure. For information on how you configure multiple
runnables, see:

• “Using the Configure AUTOSAR Interface Dialog Box” on page 24-31

• “Configuring Inter-Runnable Variables” on page 24-48

• “Specifying Execution Period” on page 24-50

• “Configuring Multiple Runnables for DataReceivedEvents” on page 24-51

See also the AUTOSAR Code Generation for Multiple Runnable Entities demo.

Configuring Inter-Runnable Variables
Inter-runnable variables communicate primitive type data between runnables
in a component. You define these inter-runnable variables by the signal lines

24-48

Preparing a Simulink® Model for AUTOSAR Code Generation

that connect subsystems. For an example, see “Inter-Runnable Variables” on
page 24-16.

By default, the software assigns the signal name to the exported
inter-runnable variable. If you want to edit the name, before generating code,
double-click the signal name and enter a new name. However, you can specify
a different name for the exported variable. In addition, you can specify the
data access mode of the inter-runnable variable.

To configure an inter-runnable variable:

1 In the Configure AUTOSAR Interface dialog box, select the
Inter-Runnable Variables tab. You see Simulink signals with (default)
inter-runnable names and data access modes.

2 For each signal that you want to configure:

a In the Inter-Runnable cell, specify your AUTOSAR name for the
exported variable.

b In the Data Access Mode cell, from the drop-down list, select either
Explicit or Implicit (recommended).

3 Click OK.

When you select a signal, links appear under Source ports for signal .

24-49

24 Generating Code for AUTOSAR Software Components

Each link corresponds to an instance of the signal and is associated with a
source port in the Simulink model. Click a link to go to the corresponding
model signal. For example, clicking rtw.../ASWC/Runnable1/2 takes you
to the following.

Specifying Execution Period
You may need to use blocks that depend on time for a software component
with multiple runnables, for example, the Discrete-Time Integrator block. In
this case, you can specify a timer for each AUTOSAR runnable. The timer
increments at each execution of the runnable.

Use the Configure AUTOSAR Interface dialog box to specify the execution
period:

24-50

Preparing a Simulink® Model for AUTOSAR Code Generation

1 Select the Runnables tab.

2 Under Runnable, select a runnable, for example, Runnable1.

3 In the Execution Period cell for the runnable’s TimingEvent, enter the
execution period.

4 Click OK.

Note The timer value in an AUTOSAR runnable is valid only if the runnable
runs at a periodic rate that corresponds to the execution period that you
specify. If the runnable runs at different rate, or does not begin executing at t
= 0, then the timer value will be incorrect.

The timer data type generated depends on the execution period and the
application life span. To specify the application life span:

1 Select Configuration Parameters > Optimization.

2 In the Application lifespan (days) field, enter the required value.

Configuring Multiple Runnables for DataReceivedEvents
The AUTOSAR Runtime Environment uses the event type DataReceivedEvent
to trigger runnables only when the value of a received data element is updated.

The software supports two data access modes that enable DataReceivedEvents
to act as triggers, ExplicitReceive and QueuedExplicitReceive. The latter,
in principle, allows the queuing of events. However, by default, the software
restricts the queue length to one event only. If you want a different queue
length, you must edit the generated XML file.

To create runnable triggers with DataReceivedEvents:

1 Under Configure AUTOSAR Interface, select the Input/Output tab.

2 If you want an input data signal to be a trigger, for example, RPort_DE1,
from the corresponding Data Access Mode drop-down list, select either
ExplicitReceive or QueuedExplicitReceive.

24-51

24 Generating Code for AUTOSAR Software Components

3 Select the Runnables tab. Under Runnable, select the runnable that you
want to configure, for example, Runnable1.

4 Click Add Event to create a new trigger event. By default, from the Event
Type drop-down list, the software selects DataReceivedEvent .

5 In the Event Name column, specify an appropriate event name.

6 In the Trigger Port column, from the drop-down list, select the Simulink
port, for example, RPort_DE1.

7 To create an additional trigger event, for example, using NvM_ReadBlock,
repeat steps 4 – 6. You can remove a trigger event by selecting the event
row and clicking Delete Event.

8 To verify that you have configured the trigger events correctly, click
Validate.

24-52

Preparing a Simulink® Model for AUTOSAR Code Generation

Note If a runnable contains blocks that use absolute time, for example, a
discrete-time integrator, then MathWorks recommends that you:

• Use a timing event to trigger the runnable

• Specify the execution period of the timing event to be the same as the
sample time of the function-call trigger.

Configuring Calibration Parameters
You can specify the type of calibration parameter that you export by
configuring properties of the corresponding block parameter in the base
workspace.

For example, to configure an internal calibration parameter for your
AUTOSAR model:

24-53

24 Generating Code for AUTOSAR Software Components

1 Create an AUTOSAR.Parameter object.

a Open the Model Explorer (Ctrl+H).

b In the Model Heirarchy view, under Simulink Root, select Base
Workspace.

c Select Add > Add Custom. The Model Explorer – Select Object dialog
box opens.

d Specify a value in the Object Name(s) field, for example, myPrm.

e From the Object class drop-down list, select AUTOSAR.Parameter.

f Click OK. A new object myPrm appears in the base workspace.

2 In the Contents pane, select the object, for example, myPrm.

3 Using the Dialog pane, configure the following properties of this data
object:

• Value— Specify a value for the calibration parameter. For an internal
calibration parameter, this value represents the initial value.

• Data type. For information about a creating data type, for example,
a bus object data type, see “Using the Data Type Assistant” in the
Simulink documentation.

• Storage class — To specify an internal calibration parameter, from
the drop-down list, select InternalCalPrm. You must then specify Per
instance behavior. Select one of the following:

– Parameter shared by all instances of the Software
Component

– Each instance of the Software Component has its own copy
of the parameter

For information about the Dialog pane, see “The Model Explorer: Dialog
Pane” in the Simulink documentation.

4 In the Block Parameters dialog box, assign the data object to your model,
for example:

24-54

Preparing a Simulink® Model for AUTOSAR Code Generation

Before you generate code, you must:

• Select Configuration Parameters > Optimization > Signals and
Parameters > Inline parameters.

• Clear Configuration Parameters > Code Generation > Ignore
custom storage classes.

These actions ensure that the software exports calibration parameters
correctly. See “Generating Code with Custom Storage Classes” on page 8-58.

For calibration component parameters, after you export your AUTOSAR
components, you must include your calibration interface definition XML file
to import the parameters correctly into an authoring tool.

Note The software does not support the use of AUTOSAR calibration
parameters within Model blocks.

Using Data Store Memory Blocks to Specify
Per-Instance Memory
You can model per-instance memory through the use of Data Store Memory
blocks together with an AUTOSAR.Signal data object. For a detailed example,
see the rtwdemo_autosar_PIM_script demo. The following is an outline
of the required steps:

1 In the base workspace, create an AUTOSAR.Signal object.

2 Set the storage class of this object to PerInstanceMemory.

3 If required, set needsNVRAMAccess property to true.

4 Create a Data Store Memory block that references the AUTOSAR.Signal
object. See Data Store Memory in the Simulink Reference documentation.

24-55

24 Generating Code for AUTOSAR Software Components

Note The software does not support per-instance memory modeling within
a submodel.

When you build your model, the XML files that are generated define an
exclusive area for each Data Store Memory block that references per-instance
memory. Every runnable that accesses per-instance memory runs inside the
corresponding exclusive area. If multiple AUTOSAR runnables have access
to the same Data Store Memory block, the exported AUTOSAR specification
enforces data consistency by using an AUTOSAR exclusive area. This
specification ensures that runnables have mutually exclusive access to the
per-instance memory global data, preventing data corruption.

If you set needsNVRAMAccess to true, then a SERVICE-NEEDS entry (schema
version 3.0) or NVRAM-MAPPINGS entry (schema version 2.1) is declared in
XML files to indicate that the per-instance memory is a RAM mirror block
and must be serviced by the NvM manager module.

Creating an AUTOSAR.Signal Object
To create an AUTOSAR.Signal object in the base workspace:

1 Open the Model Explorer (Ctrl+H).

2 In the Model Heirarchy view, under Simulink Root, select Base
Workspace.

3 Select Add > Add Custom. The Model Explorer – Select Object dialog
box opens.

4 Specify a value in the Object Name(s) field, for example, nvmImplicitRW.

5 From the Object class drop-down list, select AUTOSAR.Signal.

6 Click OK. A new object nvmImplicitRW appears in the base workspace.

24-56

Preparing a Simulink® Model for AUTOSAR Code Generation

Modifying and Validating an Existing AUTOSAR
Interface
You can validate your AUTOSAR interface using the Configure AUTOSAR
Interface dialog box. See “Using the Configure AUTOSAR Interface Dialog
Box” on page 24-31. The following steps show how you can modify and
validate your AUTOSAR interface programmatically:

1 Get the handle to an existing model-specific RTW.AutosarInterface object
that is attached to your loaded Simulink model. Enter:

obj = RTW.getFunctionSpecification(modelName)

modelName is a string specifying the name of a loaded Simulink model,
and obj returns a handle to an RTW.AutosarInterface object attached to
the specified model.

Test the AUTOSAR interface object. Enter:

isa(obj,'RTW.AutosarInterface')

This test must return 1. If the model does not have an AUTOSAR interface
object, the function returns [].

2 To view and change items, use the AUTOSAR get and set functions listed
in “AUTOSAR” in the Embedded Coder Function Reference documentation.

3 Validate the function prototype using
RTW.AutosarInterface.runValidation.

Note For information on all validation checks, see
RTW.AutosarInterface.runValidation in the Embedded Coder
Function Reference documentation.

4 If validation succeeds, save your model and then generate code.

24-57

24 Generating Code for AUTOSAR Software Components

Generating AUTOSAR Code and Description Files

In this section...

“Selecting an AUTOSAR Schema” on page 24-58

“Specifying Maximum SHORT-NAME Length” on page 24-58

“Configuring AUTOSAR Compiler Abstraction Macros” on page 24-59

“Root-Level Matrix I/O” on page 24-61

“Exporting AUTOSAR Software Component” on page 24-61

Selecting an AUTOSAR Schema
The default AUTOSAR schema version is 3.1. If you need to change the
schema version, you must do so before exporting your AUTOSAR Software
Component. Embedded Coder supports the following AUTOSAR schema
versions:

• 3.1 (3.1.4 r65277)

• 3.0 (3.0.2 r21527)

• 2.0 (XSD build 49632)

• 2.1 (XSD rev 0017)

To select a schema version, open the Configuration Parameters dialog box:

1 In any model using the autosar.tlc system target file, the AUTOSAR
Code Generation Options component appears in the tree.

Click AUTOSAR Code Generation Options to open the AUTOSAR
Code Generation Options pane.

2 From the drop-down list for Generate XML file for schema version,
select the schema version that you require.

Specifying Maximum SHORT-NAME Length
The AUTOSAR standard specifies that SHORT-NAME XML elements must not
be greater than 32 characters in length. However, your authoring tool may

24-58

Generating AUTOSAR Code and Description Files

support the use of longer elements, for example, to name ports and interfaces.
The software allows you to specify the maximum length of your SHORT-NAME
elements.

Before you build your model, on the Code Generation > AUTOSAR Code
Generation Optionspane, in the Maximum SHORT-NAME length field,
specify the maximum length of your SHORT-NAME elements. You may specify a
maximum length of up to 128 characters. The default is 32 characters.

Configuring AUTOSAR Compiler Abstraction Macros
Compilers for 16-bit platforms (for example, Cosmic and Metrowerks for S12X
or Tasking for ST10) use special keywords to deal with the limited 16-bit
addressing range. The location of data and code beyond the 64 k border is
selected explicitly by special keywords. However, if such keywords are used
directly within the source code, then software must be ported separately for
each microcontroller family, that is, the software is not platform-independent.

AUTOSAR specifies C macros to abstract compiler directives (near/far
memory calls) in a platform-independent manner. These compiler directives,
derived from the 16-bit platforms, enable better code efficiencies for 16-bit
micro-controllers without separate porting of source code for each compiler.
This approach allows your system integrator, rather than your software
component implementer, to choose the location of data and code for each
software component.

For more information on AUTOSAR compiler abstraction, see
www.autosar.org

Configuring AUTOSAR Compiler Macro Generation
Before you build your model, on the Simulink Coder AUTOSAR Code
Generation Options pane, select the Use AUTOSAR compiler
abstraction macros check box.

When you build the model, the software applies compiler abstraction macros
to global data and function definitions in the generated code.

For data, the macros are in the following form:

24-59

http://www.autosar.org

24 Generating Code for AUTOSAR Software Components

• CONST(consttype, memclass) varname;

• VAR(type, memclass) varname;

where

• consttype and type are data types

• memclass is a macro string SWC_VAR (SWC is the software component
identifier)

• varname is the variable identifier

For functions (model and subsystem), the macros are in the following form:

• FUNC(type, memclass) funcname(void)

where

• type is the data type of the return argument

• memclass is a macro string. This string can be either SWC_CODE for
runnables (external functions), or SWC_CODE_LOCAL for internal functions
(SWC is the software component identifier).

Example

If you do not select the Use AUTOSAR compiler abstraction macros
check box, the software generates the following code:

/* Block signals (auto storage) */
BlockIO rtB;

/* Block states (auto storage) */
D_Work rtDWork;

/* Model step function */
void Runnable_Step(void)

However, if you select the Use AUTOSAR compiler abstraction macros
check box, the software generates macros in the code:

/* Block signals (auto storage) */

24-60

Generating AUTOSAR Code and Description Files

VAR(BlockIO, SWC1_VAR) rtB;

/* Block states (auto storage) */
VAR(D_Work, SWC1_VAR) rtDWork;

/* Model step function */
FUNC(void, SWC1_CODE) Runnable_Step(void)

Root-Level Matrix I/O
The software supports matrix I/O at the root-level by generating code that
implements matrices as one-dimensional arrays. However, this behavior
is not the default. Before you build your model, on the AUTOSAR Code
Generation Options pane, select the Support root-level matrix I/O
using one-dimensional arrays check box.

Exporting AUTOSAR Software Component
After configuring your AUTOSAR export options, generate code to export
your AUTOSAR Software Component.

To generate code and XML files:

• For a single runnable from a top model, build the model (Ctrl+B).

• For multiple runnables from subsystems:

1 Right-click the top-level subsystem.

2 Select Code Generation > AUTOSAR Multi-Runnable
Component > Export Functions. The Build Code for Subsystem
dialog box opens.

3 Click Build.

This command builds code for an AUTOSAR runnable for each
subsystem. The build also creates an additional runnable to aggregate
the initialization functions for each of the function-call subsystems.

The software component C code and the following XML files are exported to
the build folder.

24-61

24 Generating Code for AUTOSAR Software Components

File Name Description

modelname_behavior.arxml Specifies the software component
internal behavior

modelname_implementation.arxml Specifies the software component
implementation

modelname_interface.arxml Specifies the software component
interfaces, including extra interfaces

modelname_component.arxml Specifies the software component
type, including additional ports
added to the Simulink model

modelname_datatype.arxml Specifies the software component
data types, including any modified
or additional data types

Note In addition to the AUTOSAR software component C code, Embedded
Coder creates the following header files in the stub subfolder of the build
folder:

• Rte_Type.h

• Rte_SWC.h, where SWC is the name of the software component

• Compiler.h

These files contain dummy implementations of AUTOSAR functions, which
the software uses for SIL and PIL simulations. You must not use these
files outside Simulink. Your AUTOSAR RTE generator should produce the
equivalent files.

You can merge the software component information back into an AUTOSAR
authoring tool. This software component information is partitioned into
separate files to facilitate merging. The partitioning attempts to minimize the
number of merges that you must do. You do not need to merge the data type
file into the authoring tool because data types are usually defined early in the
design process. You must, however, merge the internal behavior file because
this information is part of the model implementation.

24-62

Generating AUTOSAR Code and Description Files

For examples of how to generate AUTOSAR-compliant code and export
AUTOSAR Software Component description XML files from a Simulink
model, see the following demos.

• AUTOSAR Code Generation

• AUTOSAR Code Generation for Multiple Runnable Entities

24-63

24 Generating Code for AUTOSAR Software Components

Configuring AUTOSAR Options Programmatically
To control AUTOSAR options programmatically, use the AUTOSAR functions
listed in the following tables in the Embedded Coder Function Reference
documentation.

• “AUTOSAR Component Import”

• “AUTOSAR Configuration”

24-64

Verifying the AUTOSAR Code with SIL and PIL Simulations

Verifying the AUTOSAR Code with SIL and PIL Simulations

In this section...

“Overview” on page 24-65

“Using the SIL and PIL Simulation Modes” on page 24-65

“Using a SIL or PIL Block for AUTOSAR Verification” on page 24-66

Overview
You can carry out model-based verification of AUTOSAR software components
using software-in-the-loop (SIL) and processor-in-the-loop (PIL) simulations.
Use SIL for verification of generated source code on your host computer, and
PIL for verification of object code on your production target.

Using the SIL and PIL Simulation Modes
You can run a top model or Model block that is configured for the AUTOSAR
target (autosar.tlc) using the Software-in-the-Loop (SIL) and
Processor-in-the-Loop (PIL) simulation modes.

For more information, see “Top-Model SIL or PIL Simulation” on page 39-16
and “Model Block SIL or PIL Simulation” on page 39-18.

AUTOSAR Top Model SIL and PIL Support
For a top model running in SIL or PIL simulation mode, the software does not
support the following AUTOSAR features:

• AUTOSAR calibration parameters

• Client-server operations

Logging Invariant Output Signals. Through signal logging, you can
configure your top model to log invariant output signals. However, the
software will log these invariant signals as periodically sampled data.

24-65

24 Generating Code for AUTOSAR Software Components

AUTOSAR Model Block SIL and PIL Support
The software supports testing of AUTOSAR components that are modeled
as model reference components. These model reference components are
implemented as standard model reference Simulink Coder targets and do not
contain any special AUTOSAR behavior.

Using a SIL or PIL Block for AUTOSAR Verification
To verify source code, you create a SIL block, which wraps the generated
code in an S-function. The AUTOSAR target automatically configures the
generated S-function to route simulation data using AUTOSAR run-time
environment (RTE) API calls.

To verify the behavior of production-intent object code, you create a PIL
block. You must provide an implementation of the target connectivity API
for this block.

To carry out a verification using a SIL or PIL block:

1 In the Configuration Parameters dialog box, select Code Generation, and
clear the check box Generate code only. If you select Generate code
only, the software does not create a SIL or PIL block.

2 Select Code Generation > SIL and PIL Verification.

3 From the Create block drop-down list, select either SIL or PIL. Click OK.

4 To create your SIL or PIL block, generate code in the usual way.
See “Exporting AUTOSAR Software Component” on page 24-61 and
“Configuring Multiple Runnables” on page 24-47.

5 Once the SIL or PIL block is built, replace the existing component in your
model with the new block.

6 Simulate the model and check the output to verify that the code produces
the same data as the original subsystem.

24-66

Verifying the AUTOSAR Code with SIL and PIL Simulations

Note The software does not propagate non-zero outport initialization inside
an AUTOSAR model to the outports (via the RTE) until the step function
executes. When you run the generated code in a SIL simulation, you do not
see the outport initialization until the SIL wrapper executes the step function
for the first time.

For more information about configuring and running simulations with SIL or
PIL blocks, see “Using a SIL or PIL Block” on page 39-20.

AUTOSAR SIL and PIL Block Support
The following features are not supported:

• AUTOSAR calibration parameters

• Server operations

Runnable with Stateflow Chart Using Absolute Time. Consider a
runnable (function-call subsystem) in a model, which contains a Stateflow
chart using absolute-time temporal logic. Replace the runnable with a SIL
block and run a simulation with the model. If the SIL block is executed
conditionally in the model, then the results of the SIL simulation differ from
the results of the Normal mode simulation.

Runnables in Feedback Loops. If your model has function-call subsystems
and you export a runnable that has context-dependent inputs (for example,
feedback signals), then the results of a SIL/PIL simulation with the generated
code may not match the results of the Normal mode simulation of your model.
See “Exported Functions in Feedback Loops” on page 39-83.

24-67

24 Generating Code for AUTOSAR Software Components

Limitations and Tips

In this section...

“Cannot Import Internal Behavior” on page 24-68

“Cannot Copy Subsystem Blocks Without Losing Interface Information” on
page 24-68

“Error If No Default Configuration” on page 24-69

“The Generate Code Only Check Box” on page 24-69

“Specify Sample Time Independent Server Operation Model” on page 24-69

“Invoke AUTOSAR Server Operation Block in Referenced Model” on page
24-69

“Cannot Save Importer Objects in MAT-Files” on page 24-69

“Using the Merge Block for Inter-Runnable Variables” on page 24-70

“Using Goto and From Blocks Within Wrapper Subsystems” on page 24-70

“AUTOSAR Compiler Abstraction Macros” on page 24-70

“Intrinsic Fixed-Point Types for Model Configured as Server” on page 24-71

“Server Operation Model with Tunable Parameters” on page 24-71

“Migrating AUTOSAR Development Kit Models” on page 24-72

Cannot Import Internal Behavior
Internal behavior is not parsed. This means any I/O information stored at
the runnable level (for example, implicit or explicit) is not imported, and
all internal I/O settings default to implicit. You can subsequently configure
these I/O ports with the setIODataAccessMode method or in the Configure
AUTOSAR Interface dialog box.

Cannot Copy Subsystem Blocks Without Losing
Interface Information
If you copy and paste a subsystem block to create a new block in either a new
model or the same model, the AUTOSAR interface information stored with
the original subsystem block does not copy to the new subsystem block.

24-68

Limitations and Tips

Error If No Default Configuration
If you do not configure your model using the Get Default Configuration
button or the RTW.AutosarInterface.getDefaultConf method, when you
build the model the software produces an error message indicating this.

The Generate Code Only Check Box
If you do not select the Generate code only check box, the software produces
an error message when you build the model. The message states that you can
build an executable with the AUTOSAR target only if you:

• Configure the model to create a software-in-the-loop (SIL) or
processor-in-the-loop (PIL) block

• Run the model in SIL or PIL simulation mode

• Provide a custom template makefile

Specify Sample Time Independent Server Operation
Model
For a server operation model, MathWorks recommends that you set the
Periodic sample time constraint on the Solver configuration parameters
dialog pane to Ensure sample time independent. This action ensures that
you can specify the sample time of the client model that invokes the server
model (through an Invoke AUTOSAR Server Operation block) independently
of the server model. If you do not specify this parameter, you must ensure that
the client block calls the server block at the same sample time. Otherwise, the
data returned from the server model may be invalid.

Invoke AUTOSAR Server Operation Block in
Referenced Model
The software does not support the use of the Invoke AUTOSAR Server
Operation block in a referenced model.

Cannot Save Importer Objects in MAT-Files
If you try to save an arxml.importer object in a MAT-file, you lose all the
information. If you reload the MAT-file, then the object is null (handle = –1),
because of the Java™ objects that compose the arxml.importer object.

24-69

24 Generating Code for AUTOSAR Software Components

Using the Merge Block for Inter-Runnable Variables
You can use the Merge block to merge inter-runnable variables. However,
you must do the following:

• Ensure that the output signal of the Merge block is connected to either one
root outport or one or more subsystems.

• If the output signal of the Merge block is connected to the inputs of one or
more subsystems, assign the same signal name to the Merge block’s output
and inputs.

Using Goto and From Blocks Within Wrapper
Subsystems
If your wrapper subsystem contains Goto and From blocks, you can generate
code and XML files for multiple runnables. However, you must:

• Set the scope of the Goto block tag to local.

• Label, unambiguously, signals entering and leaving Goto and From blocks
that connect subsystems. If the signal into the Goto block and the signal
out of the corresponding From block connect two subsystems (runnables),
then these signal segments represent an inter-runnable variable. You must
provide a label for at least one signal segment, for example, the signal into
the Goto block. In addition, if there are labels for other segments of the
same signal, you must ensure that these labels are the same.

AUTOSAR Compiler Abstraction Macros
The software does not generate AUTOSAR compiler abstraction macros for
data or functions arising from the following:

• Model blocks

• Stateflow

• MATLAB Coder

• Shared utility functions

• Custom storage classes

• Local or temporary variables

24-70

Limitations and Tips

Intrinsic Fixed-Point Types for Model Configured as
Server
The software does not support operation prototype arguments with intrinsic
fixed-point data types. For example, ufix5 shown in the following figure.

The software produces an error when you build the model.

To work around this limitation, before building the model, create a
Simulink.NumericType base workspace object with the required property
values. For example, to create a Simulink.NumericType object ufix5, enter
the following in the Command Window:

>> ufix5 = Simulink.NumericType;

>> ufix5.DataTypeMode = 'Fixed-point: binary point scaling';

>> ufix5.Signedness = 'Signed'

>> ufix5.WordLength = 16

>> ufix5.FractionLength = 0

>> ufix5.IsAlias = 1;

>> ufix.HeaderFile = 'Rte_Type.h'

For more information, see Simulink.NumericType in the Simulink
documentation.

Server Operation Model with Tunable Parameters
The software does not provide AUTOSAR support for a model that is
configured as a server operation and has tunable parameters with storage
class set to SimulinkGlobal (Auto).

24-71

24 Generating Code for AUTOSAR Software Components

Migrating AUTOSAR Development Kit Models
Use the autosar_adk_migrate function to migrate an AUTOSAR
Development Kit (ADK) model (from releases before R2008a) to the
AUTOSAR interface.

Enter:

autosar_adk_migrate(PATHNAME)

to migrate the ADK model/system specified by the full path name PATHNAME
from the ADK settings to the new AUTOSAR interface. The model must be
open before you invoke this function. MathWorks recommends that you save
the migrated model to a different file name.

24-72

Demos and Further Reading

Demos and Further Reading

AUTOSAR Demos
For detailed explanations of AUTOSAR workflows with Embedded Coder
software, see the demos in the following table.

Demo How to ...

AUTOSAR Code Generation:
rtwdemo_autosar_legacy_script

Generate AUTOSAR-compliant
code and export AUTOSAR
Software Component description
XML files from a Simulink model

Using an AUTOSAR Client-Server
Interface
rtwdemo_autosar_clientserver_script

Configure and generate
AUTOSAR-compliant code
and export AUTOSAR-compliant
XML files for a Simulink model
with an AUTOSAR client-server
interface

AUTOSAR Code Generation for
Multiple Runnable Entities:
rtwdemo_autosar_multirunnables_script

Configure and generate
AUTOSAR-compliant code
and export AUTOSAR Software
Component description XML
files for a Simulink model with
multiple runnables.

Import and Export an AUTOSAR
Software Component:
rtwdemo_autosar_roundtrip_script

Use an AUTOSAR authoring
tool with Simulink to
develop AUTOSAR Software
Components. Learn how to
import software component
interfaces into Simulink, modify
and export them, and merge the
completed software component
back into an AUTOSAR authoring
tool.

Using Data Stores to Access
Per-Instance Memory:
rtwdemo_autosar_PIM_script

Publish an AUTOSAR Software
Component with per-instance
memory

24-73

24 Generating Code for AUTOSAR Software Components

Further Reading
For more information, see the AUTOSAR Web site:
http://www.autosar.org/

24-74

http://www.autosar.org/

Integrating External Code and
Generated C and C++ Code

• Chapter 25, “About External Code Integration Extensions”

• Chapter 26, “Generating S-Function Wrappers”

• Chapter 27, “Exporting Function-Call Subsystems”

• Chapter 28, “Nonvirtual Subsystem Modular Function Code
Generation”

• Chapter 29, “Controlling Generation of Function Prototypes”

• Chapter 30, “Controlling Generation of Encapsulated C++ Model
Interfaces”

• Chapter 31, “Replacing Math Functions and Operators Using Target
Function Libraries”

25

About External Code
Integration Extensions

The Simulink Coder documentation introduces capabilities for integrating
external code with generated C and C++ code. Topics include

• “About External Code Integration”

• “Integrating External Code Using Model Configuration Parameters”

• “Integrating External Code Using Custom Code Blocks”

• “Integrating External Code Using S-Functions”

The Embedded Coder product extends the preceding capabilities to support

• Chapter 26, “Generating S-Function Wrappers”

• Chapter 27, “Exporting Function-Call Subsystems”

• Chapter 28, “Nonvirtual Subsystem Modular Function Code Generation”

• Chapter 29, “Controlling Generation of Function Prototypes”

• Chapter 30, “Controlling Generation of Encapsulated C++Model Interfaces”

• Chapter 31, “Replacing Math Functions and Operators Using Target
Function Libraries”

25 About External Code Integration Extensions

25-2

26

Generating S-Function
Wrappers

• “About S-Function Wrapper Generation” on page 26-2

• “Creating a SIL Block” on page 26-3

• “S-Function Wrapper Generation Limitations” on page 26-4

26 Generating S-Function Wrappers

About S-Function Wrapper Generation
An S-function wrapper is an S-function that calls your C or C++ code from
within Simulink. S-function wrappers provide a standard interface between
Simulink and externally written code, allowing you to integrate your code into
a model with minimal modification. This is useful for software-in-the-loop
(SIL) code verification (validating your generated code in Simulink), as well as
for simulation acceleration purposes (see “Using a SIL or PIL Block” on page
39-20). For a complete description of wrapper S-functions, see the Simulink
Writing S-Functions document.

Using the Create block parameter, on the Code Generation > SIL and
PIL Verification pane, you can build in one automated step:

• A noninlined C or C++ MEX S-function wrapper that calls generated code

• A model with a SIL block. This block, which contains the generated
S-function, is ready for use with other blocks or models

When the Create block parameter is set to SIL, the build process generates
an additional source code file, model_sf.c or .cpp, in the build directory.
This module contains the S-function that calls the generated code that you
deploy. You can use this S-function within Simulink.

The build process then compiles and links model_sf.c or .cpp with model.c
or .cpp and the other generated code modules, building a MEX-file. The
MEX-file is named model_sf.mexext. (mexext is the file extension for
MEX-files on your platform, as given by the MATLAB mexext command.)
The MEX-file is stored in your working directory. Finally, the build process
creates and opens an untitled model containing the SIL block with the
generated S-function.

Note To generate a wrapper S-function for a subsystem, you can use a
right-click subsystem build. Right-click the subsystem block in your model,
select Code Generation > Generate S-Function, and in the Generate
S-Function dialog box, select Create Software-In-the-Loop (SIL) block
and click Build.

26-2

Creating a SIL Block

Creating a SIL Block
To create a SIL block with the S-function wrapper for your generated code,
open your ERT-based Simulink model and do the following:

1 Open the Configuration Parameters dialog box.

2 Select the Code Generation > SIL and PIL Verification pane.

3 From the Create block drop-down list, select SIL.

4 Configure the other code generation options as required.

5 To ensure that memory for the S-function is initialized to zero, you must
clear the following options in the Data initialization section of the
Optimization > General pane:

• “Remove root level I/O zero initialization”

• “Remove internal data zero initialization”

• “Use memset to initialize floats and doubles to 0.0”

6 Select the Code Generation pane, and click Build.

7 When the build process completes, an untitled model window opens. This
model contains a SIL block with the generated S-function.

8 Save the new model.

9 You can now use the SIL block with other blocks or models in Simulink.

26-3

26 Generating S-Function Wrappers

S-Function Wrapper Generation Limitations
The following limitations apply to Embedded Coder S-function wrapper
generation:

• Continuous sample time is not supported. The Support continuous time
option should not be selected when creating a SIL block.

• Models that contain S-function blocks for which the S-function is not
inlined with a TLC file are not supported when creating a SIL block.

• You cannot use multiple instances of a SIL block within a model, because
the code uses static memory allocation. Each instance potentially can
overwrite global data values of the others.

• SIL blocks can be used with other blocks and models for SIL code
verification and simulation acceleration, but they cannot be used for code
generation.

• A MEX S-function wrapper must only be used in the version of MATLAB in
which the wrapper is created.

26-4

27

Exporting Function-Call
Subsystems

• “Overview” on page 27-2

• “Requirements for Exporting Function-Call Subsystems” on page 27-4

• “Techniques for Exporting Function-Call Subsystems” on page 27-7

• “Optimizing Exported Function-Call Subsystems” on page 27-10

• “Exporting Function-Call Subsystems That Depend on Elapsed Time” on
page 27-11

• “Function-Call Subsystem Export Example” on page 27-12

• “Function-Call Subsystems Export Limitations” on page 27-16

27 Exporting Function-Call Subsystems

Overview
Embedded Coder software provides code export capabilities that you can use to

• Automatically generate code for

- A function-call subsystem that contains only blocks that support code
generation

- A virtual subsystem that contains only such subsystems and a few other
types of blocks

• Create a SIL block that represents the generated code

You can use these capabilities only if the subsystem and its interface to
the Simulink model conform to certain requirements and constraints, as
described in “Requirements for Exporting Function-Call Subsystems” on page
27-4. For limitations that apply, see “Function-Call Subsystems Export
Limitations” on page 27-16.

Note For models designed in earlier releases, Embedded Coder software
also supports the ability to export functions from triggered subsystems. In
general, the requirements and limitations stated for exporting functions from
function-call subsystems also apply to exporting functions from triggered
subsystems, with the following exceptions:

• Triggered subsystems from which you intend to export functions must be
encapsulated in a single top-level virtual subsystem.

• Triggered subsystems do not have to meet the requirements in “Trigger
Signals Require a Common Source” on page 27-5 and “Requirements for
Exported Virtual Subsystems” on page 27-5.

• The section “Exporting Function-Call Subsystems That Depend on Elapsed
Time” on page 27-11 is not applicable to exporting functions from triggered
subsystems.

27-2

Overview

Exported Subsystems Demo
To see a demo of exported function-call subsystems, type
rtwdemo_export_functions in the MATLAB Command Window.

Additional Information
See the following in the Simulink documentation for additional information
relating to exporting function-call subsystems:

• “Systems and Subsystems”

• “Signals”

• “Triggered Subsystems”

• “Function-Call Subsystems”

• Developing S-Functions

If you want to use Stateflow blocks to trigger exportable function-call
subsystems, you may also need information from the Stateflow User’s Guide.

27-3

27 Exporting Function-Call Subsystems

Requirements for Exporting Function-Call Subsystems
To be exportable as code, a function-call subsystem, or a virtual subsystem
that contains such subsystems, must meet certain requirements. Most
requirements are similar for either type of export, but some apply only
to virtual subsystems. The requirements that affect all Simulink code
generation also apply.

For brevity, exported subsystem in this section means only an exported
function-call subsystem or an exported virtual subsystem that contains such
subsystems. The requirements listed do not necessarily apply to other types
of exported subsystems.

Requirements for All Exported Subsystems
These requirements apply to both exported function-call subsystems and
exported virtual subsystems that contain such subsystems.

Blocks Must Support Code Generation
All blocks within an exported subsystem must support code generation.
However, blocks outside the subsystem need not support code generation
unless they will be converted to code in some other context.

Blocks Must Not Use Absolute Time
Certain blocks use absolute time. Blocks that use absolute time are not
supported in exported function-call subsystems. For a complete list of such
blocks, see “Limitations on the Use of Absolute Time” in the Simulink Coder
documentation.

Blocks Must Not Depend on Elapsed Time
Certain blocks, like the Sine Wave block and Discrete Integrator block,
depend on elapsed time. If an exported function-call subsystem contains any
blocks that depend on elapsed time, the subsystem must specify periodic
execution. See “Exporting Function-Call Subsystems That Depend on Elapsed
Time” on page 27-11 in the Simulink Coder documentation.

27-4

Requirements for Exporting Function-Call Subsystems

Trigger Signals Require a Common Source
If more than one trigger signal crosses the boundary of an exported system,
all of the trigger signals must be periodic and originate from the same
function-call initiator.

Trigger Signals Must Be Scalar
A trigger signal that crosses the boundary of an exported subsystem must
be scalar. Input and output data signals that do not act as triggers need
not be scalar.

Data Signals Must Be Nonvirtual
A data signal that crosses the boundary of an exported system cannot be
a virtual bus, and cannot be implemented as a Goto-From connection.
Every data signal crossing the export boundary must be scalar, muxed, or a
nonvirtual bus.

Requirements for Exported Virtual Subsystems
These requirements apply only to exported virtual subsystems that contain
function-call subsystems.

Virtual Subsystem Must Use Only Permissible Blocks
The top level of an exported virtual subsystem that contains function-call
subsystem blocks can contain only the following other types of blocks:

• Input and Output blocks (ports)

• Constant blocks (including blocks that resolve to constants, such as Add)

• Merge blocks

• Virtual connection blocks (Mux, Demux, Bus Creator, Bus Selector, Signal
Specification)

• Signal-viewer blocks, such as Scope blocks

These restrictions do not apply within function-call subsystems, whether
or not they appear in a virtual subsystem. They apply only at the top level

27-5

27 Exporting Function-Call Subsystems

of an exported virtual subsystem that contains one or more function-call
subsystems.

Constant Blocks Must Be Inlined
When a constant block appears at the top level of an exported virtual
subsystem, the containing model must check Inline parameters on the
Optimization > Signals and Parameters pane of the Configuration
Parameters dialog box.

Constant Outputs Must Specify a Storage Class
When a constant signal drives an output port of an exported virtual
subsystem, the signal must specify a storage class.

27-6

Techniques for Exporting Function-Call Subsystems

Techniques for Exporting Function-Call Subsystems

In this section...

“General Workflow” on page 27-7

“Specifying a Custom Initialize Function Name” on page 27-8

“Specifying a Custom Description” on page 27-8

General Workflow
To export a function-call subsystem, or a virtual subsystem that contains
function-call subsystems,

1 Ensure that the subsystem to be exported satisfies the “Requirements for
Exporting Function-Call Subsystems” on page 27-4.

2 In the Configuration Parameters dialog box:

a On the Code Generation pane, specify an ERT code generation target
such as ert.tlc.

b If you want a SIL block with the generated code, go to the SIL and
PIL Verification pane and, from the Create block drop-down list,
select SIL.

c Click OK or Apply.

3 Right-click the subsystem block and choose Code Generation > Export
Functions from the context menu.

The Build code for subsystem: Subsystem dialog box appears. This
dialog box is not specific to exporting function-call subsystems, and
generating code does not require entering information in the box.

4 Click Build.

The MATLAB Command Window displays messages similar to those for
any code generation sequence. Simulink generates code and places it in
the working directory.

27-7

27 Exporting Function-Call Subsystems

If you set Create block to SIL in step 2b, Simulink opens a new window
that contains an S-function block that represents the generated code. This
block has the same size, shape, and connectors as the original subsystem.

Code generation and optional block creation are now complete. You can test
and use the code and optional block as you could any generated ERT code
and S-function block.

Specifying a Custom Initialize Function Name
You can specify a custom name for the initialize function of your exported
function as an argument to the rtwbuild command. When used for this
purpose, the command takes the following form:

blockHandle = rtwbuild('subsystem', 'Mode', 'ExportFunctionCalls',..

'ExportFunctionInitializeFunctionName', 'fcnname')

where fcnname specifies the desired function name. For example, if you
specify the name 'myinitfcn', the build process emits code similar to the
following:

/* Model initialize function */
void myinitfcn(void){
...
}

Specifying a Custom Description
You can enter a custom description for an exported function using the Block
Properties dialog box of an Inport block. To do this, go to the subsystem
that is to be exported as a function, right-click on the Inport block that
drives the control port of the subsystem, and select Block Properties. In
the General tab, use the Description field to enter your descriptive text.
During function export, the text you enter is emitted to the generated code in
the header for the Inport block. For example, if you open the demo program
rtwdemo_export_functions and enter a description in the Block Properties
dialog box for port t_1tic_A, code similar to the following is emitted:

/*
* Output and update for exported function: t_1tic_A
*

27-8

Techniques for Exporting Function-Call Subsystems

* My custom description of the exported function
*/
void t_1tic_A(void)
{
...
}

27-9

27 Exporting Function-Call Subsystems

Optimizing Exported Function-Call Subsystems
To optimize the code generated for a function-call subsystem or virtual block
that contains such subsystems, you can

• Specify a storage class for every input signal and output signal that crosses
the boundary of the subsystem.

• For each function-call subsystem to be exported (whether directly or within
a virtual subsystem):

1 Right-click the subsystem and choose Subsystem Parameters from
the context menu.

2 Select the Code Generation tab and set the Function packaging
parameter to Auto.

3 Click OK or Apply.

27-10

Exporting Function-Call Subsystems That Depend on Elapsed Time

Exporting Function-Call Subsystems That Depend on
Elapsed Time

Some blocks, such as the Sine Wave block (if sample-based) and the
Discrete-Time Integrator block, depend on elapsed time. See “Absolute and
Elapsed Time Computation” in the Simulink Coder documentation for more
information.

When a block that depends on elapsed time exists in a function-call subsystem,
the subsystem cannot be exported unless it specifies periodic execution. To
provide the necessary specification,

1 Right-click the trigger port block in the function-call subsystem and choose
TriggerPort Parameters from the context menu.

2 Specify periodic in the Sample time type field.

3 Set the Sample time to the same granularity specified (directly or by
inheritance) in the function-call initiator.

4 Click OK or Apply.

27-11

27 Exporting Function-Call Subsystems

Function-Call Subsystem Export Example
The next figure shows the top level of a model that uses a Stateflow chart
named Chart to input two function-call trigger signals (denoted by dash-dot
lines) to a virtual subsystem named Subsystem.

The next figure shows the contents of Subsystem in the previous figure. The
subsystem contains two function-call subsystems, each driven by one of the
signals input from the top level.

In the preceding model, the Stateflow chart can assert either of two scalar
signals, Toggle and Select.

27-12

Function-Call Subsystem Export Example

• Asserting Toggle toggles the Boolean state of the function-call subsystem
Toggle Output Subsystem.

• Asserting Select causes the function-call subsystem Select Input
Subsystem to assign the value of DataIn1 or DataIn2 to its output signal.
The value assigned depends on the current state of Toggle Output
Subsystem.

The following generated code implements the subsystem named Subsystem.
The code is typical for virtual subsystems that contain function-call
subsystems. It specifies an initialization function and a function for each
contained subsystem, and would also include functions to enable and disable
subsystems if applicable.

#include "Subsystem.h"

#include "Subsystem_private.h"

/* Exported block signals */

real_T DataIn1; /* '<Root>/In3' */

real_T DataIn2; /* '<Root>/In4' */

real_T DataOut; /* '<S4>/Switch' */

boolean_T SelectorSignal; /* '<S5>/Logical Operator' */

/* Exported block states */

boolean_T SelectorState; /* '<S5>/Unit Delay' */

/* Real-time model */

RT_MODEL_Subsystem Subsystem_M_;

RT_MODEL_Subsystem *Subsystem_M = &Subsystem_M_;

/* Initial conditions for exported function: Toggle */

void Toggle_Init(void)

{

/* Initial conditions for function-call system: '<S1>/Toggle Output Subsystem' */

/* InitializeConditions for UnitDelay: '<S5>/Unit Delay' */

SelectorState = Subsystem_P.UnitDelay_X0;

}

/* Output and update for exported function: Toggle */

27-13

27 Exporting Function-Call Subsystems

void Toggle(void)

{

/* Output and update for function-call system: '<S1>/Toggle Output Subsystem' */

/* Logic: '<S5>/Logical Operator' incorporates:

* UnitDelay: '<S5>/Unit Delay'

*/

SelectorSignal = !SelectorState;

/* Update for UnitDelay: '<S5>/Unit Delay' */

SelectorState = SelectorSignal;

}

/* Output and update for exported function: Select */

void Select(void)

{

/* Output and update for function-call system: '<S1>/Select Input Subsystem' */

/* Switch: '<S4>/Switch' incorporates:

* Inport: '<Root>/In3'

* Inport: '<Root>/In4'

*/

if(SelectorSignal) {

DataOut = DataIn1;

} else {

DataOut = DataIn2;

}

}

/* Model initialize function */

void Subsystem_initialize(void)

{

/* initialize error status */

rtmSetErrorStatus(Subsystem_M, (const char_T *)0);

/* block I/O */

27-14

Function-Call Subsystem Export Example

/* exported global signals */

DataOut = 0.0;

SelectorSignal = FALSE;

/* states (dwork) */

/* exported global states */

SelectorState = FALSE;

/* external inputs */

DataIn1 = 0.0;

DataIn2 = 0.0;

Toggle_Init();

}

/* Model terminate function */

void Subsystem_terminate(void)

{

/* (no terminate code required) */

}

27-15

27 Exporting Function-Call Subsystems

Function-Call Subsystems Export Limitations
The function-call subsystem export capabilities have the following limitations:

• Subsystem block parameters do not control the names of the files containing
the generated code. All such filenames begin with the name of the exported
subsystem. Each filename is suffixed as appropriate to the file.

• Subsystem block parameters do not control the names of top-level functions
in the generated code. Each function name reflects the name of the signal
that triggers the function, or for an unnamed signal, the block from which
the signal originates.

• The software cannot export reusable code for a function-call subsystem.
Checking Configuration Parameters > Code Generation > Interface
> Generate reusable code has no effect on the generated code for the
subsystem.

• The software supports code generation for a SIL block provided the block
does not have function-call input ports. However, the block will appear as
a noninlined S-function in the generated code.

• The software supports a SIL block in accelerator mode only if its
function-call initiator is noninlined in accelerator mode. Examples of
noninlined initiators include all Stateflow charts.

• The SIL block must be driven by a Level-2 S-function initiator block, such
as a Stateflow chart or the built-in Function-call Generator block.

• An asynchronous (sample-time) function-call system can be exported,
but the software does not support the ERT S-function wrapper for an
asynchronous system.

• The software does not support code generation for a SIL block if the block is
generated for exported function calls.

• The output from a SIL block cannot be merged using the Merge block.

• The software does not support MAT-file logging for exported function calls.
Any specification that enables MAT-file logging is ignored.

• The use of the TLC function LibIsFirstInit is deprecated for exported
function calls.

27-16

Function-Call Subsystems Export Limitations

• The model_initialize function generated in the code for an exported
function-call subsystem never includes a firstTime argument, regardless
of the value of the model configuration parameter IncludeERTFirstTime.
Thus, you cannot call model_initialize at a time greater than start time,
for example, to reset block states.

27-17

27 Exporting Function-Call Subsystems

27-18

28

Nonvirtual Subsystem
Modular Function Code
Generation

• “Overview” on page 28-2

• “Configuring Nonvirtual Subsystems for Generating Modular Function
Code” on page 28-4

• “Examples of Modular Function Code for Nonvirtual Subsystems” on page
28-9

• “Nonvirtual Subsystem Modular Function Code Limitations” on page 28-15

28 Nonvirtual Subsystem Modular Function Code Generation

Overview
The Embedded Coder software provides a subsystem option, Function
with separate data, that allows you to generate modular function code
for nonvirtual subsystems, including atomic subsystems and conditionally
executed subsystems.

By default, the generated code for a nonvirtual subsystem does not separate a
subsystem’s internal data from the data of its parent Simulink model. This
can make it difficult to trace and test the code, particularly for nonreusable
subsystems. Also, in large models containing nonvirtual subsystems, data
structures can become large and potentially difficult to compile.

The Subsystem Parameters dialog box option Function with separate data
allows you to generate subsystem function code in which the internal data for
a nonvirtual subsystem is separated from its parent model and is owned by
the subsystem. As a result, the generated code for the subsystem is easier
to trace and test. The data separation also tends to reduce the size of data
structures throughout the model.

Note Selecting the Function with separate data option for a nonvirtual
subsystem has no semantic effect on the parent Simulink model.

To be able to use this option,

• Your Simulink model must use an ERT-based system target file (requires a
Embedded Coder license).

• Your subsystem must be configured to be atomic or conditionally executed
(for more information, see “Systems and Subsystems” in the Simulink
documentation).

• Your subsystem must use the Function setting for the Code
Generation > Function packaging.

To configure your subsystem for generating modular function code, you
invoke the Subsystem Parameters dialog box and make a series of selections
to display and enable the Function with separate data option. See
“Configuring Nonvirtual Subsystems for Generating Modular Function

28-2

Overview

Code” on page 28-4 and “Examples of Modular Function Code for Nonvirtual
Subsystems” on page 28-9 for details. For limitations that apply, see
“Nonvirtual Subsystem Modular Function Code Limitations” on page 28-15.

For more information about generating code for atomic subsystems, see the
sections “Creating Subsystems” and “Generating Code and Executables from
Subsystems” in the Simulink Coder documentation.

28-3

28 Nonvirtual Subsystem Modular Function Code Generation

Configuring Nonvirtual Subsystems for Generating
Modular Function Code

This section summarizes the steps needed to configure a subsystem in a
Simulink model for modular function code generation.

1 Verify that the Simulink model containing the subsystem uses an
ERT-based system target file (see the System target file parameter on
the Code Generation pane of the Configuration Parameters dialog box).

2 In your Simulink model, select the subsystem for which you want to
generate modular function code and launch the Subsystem Parameters
dialog box (for example, right-click the subsystem and select Subsystem
Parameters). The dialog box for an atomic subsystem is shown below. (In
the dialog box for a conditionally executed subsystem, the dialog box option
Treat as atomic unit is greyed out, and you can skip Step 3.)

3 If the Subsystem Parameters dialog box option Treat as atomic unit is
available for selection but not selected, the subsystem is neither atomic nor
conditionally executed. Select the option Treat as atomic unit, which

28-4

Configuring Nonvirtual Subsystems for Generating Modular Function Code

enables Function packaging on the Code Generation tab. Select the
Code Generation tab.

4 For the Function packaging parameter, select the value Function.
After you make this selection, the Function with separate data option
is displayed.

28-5

28 Nonvirtual Subsystem Modular Function Code Generation

Note Before you generate nonvirtual subsystem function code with
the Function with separate data option selected, you might want to
generate function code with the option deselected and save the generated
function .c and .h files in a separate directory for later comparison.

28-6

Configuring Nonvirtual Subsystems for Generating Modular Function Code

5 Select the Function with separate data option. After you make this
selection, additional configuration parameters are displayed.

Note To control the naming of the subsystem function and the subsystem
files in the generated code, you can modify the subsystem parameters
Function name options and File name options.

6 To save your subsystem parameter settings and exit the dialog box, click
OK.

This completes the subsystem configuration needed to generate modular
function code. You can now generate the code for the subsystem and examine
the generated files, including the function .c and .h files named according to
your subsystem parameter specifications. For more information on generating
code for nonvirtual subsystems, see “Creating Subsystems” in the Simulink

28-7

28 Nonvirtual Subsystem Modular Function Code Generation

Coder documentation. For examples of generated subsystem function code,
see “Examples of Modular Function Code for Nonvirtual Subsystems” on
page 28-9.

28-8

Examples of Modular Function Code for Nonvirtual Subsystems

Examples of Modular Function Code for Nonvirtual
Subsystems

To illustrate the effect of selecting the Function with separate data
option for a nonvirtual subsystem, the following procedure generates atomic
subsystem function code with and without the option selected and compares
the results.

1 Open MATLAB and launch rtwdemo_atomic.mdl using the MATLAB
command rtwdemo_atomic. Examine the Simulink model.

2 Double-click the SS1 subsystem and examine the contents. (You can close
the subsystem window when you are finished.)

3 Use the Configuration Parameters dialog box to change the model’s
System target file from GRT to ERT. For example, from the Simulink
window, select Simulation > Configuration Parameters, select the

28-9

28 Nonvirtual Subsystem Modular Function Code Generation

Code Generation pane, select System target file ert.tlc, and click OK
twice to confirm the change.

4 Create a variant of rtwdemo_atomic.mdl that illustrates function code
without data separation.

a In the Simulink view of rtwdemo_atomic.mdl, right-click the SS1
subsystem and select Subsystem Parameters. In the Subsystem
Parameters dialog box, verify that

• On the Main tab, Treat as atomic unit is selected

• On the Code Generation tab, User specified is selected for
Function name options

• On the Code Generation tab, myfun is specified for Function name

b In the Subsystem Parameters dialog box, on the Code Generation tab

i Select the value Function for the Function packaging parameter.
After this selection, additional parameters and options will appear.

ii Select the value Use function name for the File name options
parameter. This selection is optional but simplifies the later task of
code comparison by causing the atomic subsystem function code to be
generated into the files myfun.c and myfun.h.

Do not select the option Function with separate data. Click Apply to
apply the changes and click OK to exit the dialog box.

c Save this model variant to a personal work directory, for example,
d:/atomic/rtwdemo_atomic1.mdl.

5 Create a variant of rtwdemo_atomic.mdl that illustrates function code
with data separation.

a In the Simulink view of rtwdemo_atomic1.mdl (or rtwdemo_atomic.mdl
with step 3 reapplied), right-click the SS1 subsystem and select
Subsystem Parameters. In the Subsystem Parameters dialog box,
verify that

• On the Main tab, Treat as atomic unit is selected

• On the Code Generation tab, Function is selected for Function
packaging

28-10

Examples of Modular Function Code for Nonvirtual Subsystems

• On the Code Generation tab, User specified is selected for
Function name options

• On the Code Generation tab, myfun is specified for Function name

• On the Code Generation tab, Use function name is specified for
File name options

b In the Subsystem Parameters dialog box, on the Code Generation tab,
select the option Function with separate data. Click Apply to apply
the change and click OK to exit the dialog box.

c Save this model variant, using a different name than the first variant, to a
personal work directory, for example, d:/atomic/rtwdemo_atomic2.mdl.

6 Generate code for each model, d:/atomic/rtwdemo_atomic1.mdl and
d:/atomic/rtwdemo_atomic2.mdl.

7 In the generated code directories, compare the model.c/.h and myfun.c/.h
files generated for the two models. (In this example, there are no significant
differences in the generated variants of ert_main.c, model_private.h,
model_types.h, or rtwtypes.h.)

H File Differences for Nonvirtual Subsystem Function
Data Separation
The differences between the H files generated for rtwdemo_atomic1.mdl and
rtwdemo_atomic2.mdl help illustrate the effect of selecting the Function
with separate data option for nonvirtual subsystems.

1 Selecting Function with separate data causes typedefs for subsystem
data to be generated in the myfun.h file for rtwdemo_atomic2:

/* Block signals for system '<Root>/SS1' */
typedef struct {

real_T Integrator; /* '<S1>/Integrator' */
} rtB_myfun;

/* Block states (auto storage) for system '<Root>/SS1' */
typedef struct {

real_T Integrator_DSTATE; /* '<S1>/Integrator' */
} rtDW_myfun;

28-11

28 Nonvirtual Subsystem Modular Function Code Generation

By contrast, for rtwdemo_atomic1, typedefs for subsystem data belong to
the model and appear in rtwdemo_atomic1.h:

/* Block signals (auto storage) */
typedef struct {
...

real_T Integrator; /* '<S1>/Integrator' */
} BlockIO_rtwdemo_atomic1;

/* Block states (auto storage) for system '<Root>' */
typedef struct {

real_T Integrator_DSTATE; /* '<S1>/Integrator' */
} D_Work_rtwdemo_atomic1;

2 Selecting Function with separate data generates the following external
declarations in the myfun.h file for rtwdemo_atomic2:

/* Extern declarations of internal data for 'system '<Root>/SS1'' */

extern rtB_myfun rtwdemo_atomic2_myfunB;

extern rtDW_myfun rtwdemo_atomic2_myfunDW;

extern void myfun_initialize(void);

By contrast, the generated code for rtwdemo_atomic1 contains model-level
external declarations for the subsystem’s BlockIO and D_Work data, in
rtwdemo_atomic1.h:

/* Block signals (auto storage) */
extern BlockIO_rtwdemo_atomic1 rtwdemo_atomic1_B;

/* Block states (auto storage) */
extern D_Work_rtwdemo_atomic1 rtwdemo_atomic1_DWork;

C File Differences for Nonvirtual Subsystem Function
Data Separation
The differences between the C files generated for rtwdemo_atomic1.mdl and
rtwdemo_atomic2.mdl illustrate the key effects of selecting the Function
with separate data option for nonvirtual subsystems.

28-12

Examples of Modular Function Code for Nonvirtual Subsystems

1 Selecting Function with separate data causes a separate subsystem
initialize function, myfun_initialize, to be generated in the myfun.c
file for rtwdemo_atomic2:

void myfun_initialize(void) {
{

((real_T*)&rtwdemo_atomic2_myfunB.Integrator)[0] = 0.0;
}
rtwdemo_atomic2_myfunDW.Integrator_DSTATE = 0.0;

}

The subsystem initialize function in myfun.c is invoked by the model
initialize function in rtwdemo_atomic2.c:

/* Model initialize function */

void rtwdemo_atomic2_initialize(void)
{
...

/* Initialize subsystem data */
myfun_initialize();

}

By contrast, for rtwdemo_atomic1, subsystem data is initialized by the
model initialize function in rtwdemo_atomic1.c:

/* Model initialize function */

void rtwdemo_atomic1_initialize(void)
{
...

/* block I/O */
{

...
((real_T*)&rtwdemo_atomic1_B.Integrator)[0] = 0.0;

}

/* states (dwork) */

rtwdemo_atomic1_DWork.Integrator_DSTATE = 0.0;

28-13

28 Nonvirtual Subsystem Modular Function Code Generation

...
}

2 Selecting Function with separate data generates the following
declarations in the myfun.c file for rtwdemo_atomic2:

/* Declare variables for internal data of system '<Root>/SS1' */
rtB_myfun rtwdemo_atomic2_myfunB;

rtDW_myfun rtwdemo_atomic2_myfunDW;

By contrast, the generated code for rtwdemo_atomic1 contains
model-level declarations for the subsystem’s BlockIO and D_Work data, in
rtwdemo_atomic1.c:

/* Block signals (auto storage) */
BlockIO_rtwdemo_atomic1 rtwdemo_atomic1_B;

/* Block states (auto storage) */
D_Work_rtwdemo_atomic1 rtwdemo_atomic1_DWork;

3 Selecting Function with separate data generates identifier naming that
reflects the subsystem orientation of data items. Notice the references to
subsystem data in subsystem functions such as myfun and myfun_update
or in the model’s model_step function. For example, compare this code
from myfun for rtwdemo_atomic2

/* DiscreteIntegrator: '<S1>/Integrator' */

rtwdemo_atomic2_myfunB.Integrator = rtwdemo_atomic2_myfunDW.Integrator_DSTATE;

to the corresponding code from myfun for rtwdemo_atomic1.

/* DiscreteIntegrator: '<S1>/Integrator' */

rtwdemo_atomic1_B.Integrator = rtwdemo_atomic1_DWork.Integrator_DSTATE;

28-14

Nonvirtual Subsystem Modular Function Code Limitations

Nonvirtual Subsystem Modular Function Code Limitations
The nonvirtual subsystem option Function with separate data has the
following limitations:

• The Function with separate data option is available only in ERT-based
Simulink models (requires a Embedded Coder license).

• The nonvirtual subsystem to which the option is applied cannot have
multiple sample times or continuous sample times; that is, the subsystem
must be single-rate with a discrete sample time.

• The nonvirtual subsystem cannot contain continuous states.

• The nonvirtual subsystem cannot output function call signals.

• The nonvirtual subsystem cannot contain noninlined S-functions.

• The generated files for the nonvirtual subsystem will reference model-wide
header files, such as model.h and model_private.h.

• The Function with separate data option is incompatible with
the GRT compatible call interface option, located on the Code
Generation > Interface pane of the Configuration Parameters dialog box.
Selecting both will generate an error.

• The Function with separate data option is incompatible with the
Generate reusable code option (Code Generation > Interface pane).
Selecting both will generate an error.

• Although the model_initialize function generated for a model containing
a nonvirtual subsystem that uses the Function with separate data
option may have a firstTime argument, the argument is not used. Thus,
you cannot call model_initialize at a time greater than start time, for
example, to reset block states. To suppress inclusion of the firstTime flag
in the model_initialize function definition, set the model configuration
parameter IncludeERTFirstTime to off.

28-15

28 Nonvirtual Subsystem Modular Function Code Generation

28-16

29

Controlling Generation of
Function Prototypes

• “Overview” on page 29-2

• “Configuring Model Function Prototypes” on page 29-4

• “Model Function Prototypes Example” on page 29-12

• “Configuring Model Function Prototypes Programmatically” on page 29-18

• “Sample Script for Configuring Model Function Prototypes” on page 29-22

• “Verifying Generated Code for Customized Functions” on page 29-23

• “Model Function Prototype Control Limitations” on page 29-24

29 Controlling Generation of Function Prototypes

Overview
The Embedded Coder software provides a Configure Model Functions
button, located on the Code Generation > Interface pane of the
Configuration Parameters dialog box, that allows you to control the model
function prototypes that are generated for ERT-based Simulink models.

By default, the function prototype of an ERT-based model’s generated
model_step function resembles the following:

void model_step(void);

The function prototype of an ERT-based model’s generated model_init
function resembles the following:

void model_init(void);

(For more detailed information about the default calling interface for the
model_step function, see the model_step reference page.)

The Configure Model Functions button on the Interface pane provides
you flexible control over the model function prototypes that are generated
for your model. Clicking Configure Model Functions launches a Model
Interface dialog box (see “Configuring Model Function Prototypes” on page
29-4). Based on the Function specification value you specify for your model
function (supported values include Default model initialize and step
functions and Model specific C prototypes), you can preview and modify
the function prototypes. Once you validate and apply your changes, you can
generate code based on your function prototype modifications.

For more information about using the Configure Model Functions
button and the Model Interface dialog box, see “Model Function Prototypes
Example” on page 29-12 and the demo model rtwdemo_fcnprotoctrl, which
is preconfigured to demonstrate function prototype control.

Alternatively, you can use function prototype control functions to
programmatically control model function prototypes. For more information,
see “Configuring Model Function Prototypes Programmatically” on page
29-18.

29-2

Overview

You can also control model function prototypes for nonvirtual subsystems, if
you generate subsystem code using right-click build. To launch the Model
Interface for subsystem dialog box, use the RTW.configSubsystemBuild
function.

Right-click building the subsystem generates the step and initialization
functions according to the customizations you make. For more information,
see “Configuring Function Prototypes for Nonvirtual Subsystems” on page
29-9.

For limitations that apply, see “Model Function Prototype Control
Limitations” on page 29-24.

29-3

29 Controlling Generation of Function Prototypes

Configuring Model Function Prototypes

In this section...

“Launching the Model Interface Dialog Boxes” on page 29-4

“Default Model Initialize and Step Functions View” on page 29-4

“Model Specific C Prototypes View” on page 29-5

“Configuring Function Prototypes for Nonvirtual Subsystems” on page 29-9

Launching the Model Interface Dialog Boxes
Clicking the Configure Model Functions button on the Interface pane of
the Configuration Parameters dialog box launches the Model Interface dialog
box. This dialog box is the starting point for configuring the model function
prototypes that are generated during code generation for ERT-based Simulink
models. Based on the Function specification value you select for your
model function (supported values include Default model initialize and
step functions and Model specific C prototypes), you can preview and
modify the function prototype. Once you validate and apply your changes, you
can generate code based on your function prototype modifications.

To configure function prototypes for a right-click build of a nonvirtual
subsystem, invoke the RTW.configSubsystemBuild function, which launches
the Model Interface for subsystem dialog box. For more information, see
“Configuring Function Prototypes for Nonvirtual Subsystems” on page 29-9

Default Model Initialize and Step Functions View
The figure below shows the Model Interface dialog box in the Default model
initialize and step functions view.

29-4

Configuring Model Function Prototypes

The Default model initialize and step functions view allows you to
validate and preview the predicted default model step and initialization
function prototypes. To validate the default function prototype configuration
against your model, click the Validate button. If the validation succeeds, the
predicted step function prototype appears in the Step function preview
subpane.

Note You cannot use the Default model initialize and step functions
view to modify the function prototype configuration.

Model Specific C Prototypes View
Selecting Model specific C prototypes for the Function specification
parameter displays the Model specific C prototypes view of your model
function prototypes. This view provides controls that you can use to customize

29-5

29 Controlling Generation of Function Prototypes

the function names, the order of arguments, and argument attributes
including name, passing mechanism, and type qualifier for each of the model’s
root-level I/O ports.

To begin configuring your function control prototype configuration, click
the Get Default Configuration button. This activates and initializes the
function names and properties in the Configure model initialize and step
functions subpane, as shown below. If you clickGet Default Configuration
again later, only the properties of the step function arguments are reset to
default values.

29-6

Configuring Model Function Prototypes

In the Configure model initialize and step functions subpane:

29-7

29 Controlling Generation of Function Prototypes

Parameter Description

Step function name Name of the model_step function.

Initialize function
name

Name of the model_init function.

Order Order of the argument. A return argument is
listed as Return.

Port Name Name of the port.

Port Type Type of the port.

Category Specifies how an argument is passed in or out
from the customized step function, either by
copying a value (Value) or by a pointer to a
memory space (Pointer).

Argument Name Name of the argument.

Qualifier (optional) Specifies a const type qualifier for a function
argument. The available values are dependent
on the Category specified. When you change
the Category, if the specified type is no longer
available, the Qualifier changes to none. The
possible values are:

• none

• const (value)

• const* (value referenced by the pointer)

• const*const (value referenced by the pointer
and the pointer itself)

29-8

Configuring Model Function Prototypes

Parameter Description

Tip When a model includes a referenced model,
the const type qualifier for the root input
argument of the referenced model’s specified
step function interface is set to none, and the
qualifier for the source signal in the referenced
model’s parent is set to a value other than none,
code generation honors the referenced model’s
interface specification by generating a type cast
that discards the const type qualifier from the
source signal. To override this behavior, add a
const type qualifier to the referenced model.

The Step function preview subpane provides a preview of how your step
function prototype is interpreted in generated code. The preview is updated
dynamically as you make modifications.

An argument foo whose Category is Pointer is previewed as * foo. If its
Category is Value, it is previewed as foo. Notice that argument types and
qualifiers are not represented in the Step function preview subpane.

Configuring Function Prototypes for Nonvirtual
Subsystems
You can control step and initialization function prototypes for nonvirtual
subsystems in ERT-based Simulink models, if you generate subsystem code
using right-click build. Function prototype control is supported for the
following types of nonvirtual blocks:

• Triggered subsystems

• Enabled subsystems

• Enabled trigger subsystems

• While subsystems

• For subsystems

29-9

29 Controlling Generation of Function Prototypes

• Stateflow blocks

• MATLAB function block

To launch the Model Interface for Subsystem dialog box, open the model
containing the subsystem and invoke the RTW.configSubsystemBuild
function.

The Model Interface dialog box for modifying the model-specific C prototypes
for the rtwdemo_counter/Amplifier subsystem appears as follows:

29-10

Configuring Model Function Prototypes

Right-click building the subsystem generates the step and initialization
functions according to the customizations you make.

29-11

29 Controlling Generation of Function Prototypes

Model Function Prototypes Example
The following procedure demonstrates how to use the Configure Model
Functions button on the Code Generation > Interface pane of the
Configuration Parameters dialog box to control the model function prototypes
when generating code for your Simulink model.

1 Open a MATLAB session and launch the rtwdemo_counter demo model.

2 In the rtwdemo_counter Model Editor, double-click the Generate Code
Using Embedded Coder (double-click) button to generate code for an
ERT-based version of rtwdemo_counter. The code generation report for
rtwdemo_counter appears.

3 In the code generation report, click the link for rtwdemo_counter.c.

4 In the rtwdemo_counter.c code display, locate and examine the generated
code for the rtwdemo_counter_step and the rtwdemo_counter_initialize
functions:

/* Model step function */
void rtwdemo_counter_step(void)
{
...

}

/* Model initialize function */
void rtwdemo_counter_initialize(void)
{
...

}

You can close the report window after you have examined the generated
code. Optionally, you can save rtwdemo_counter.c and any other
generated files of interest to a different location for later comparison.

5 From the rtwdemo_counter model, open the Configuration Parameters
dialog box.

29-12

Model Function Prototypes Example

6 Navigate to the Code Generation > Interface pane and click the
Configure Model Functions button. The Model Interface dialog box
appears.

7 In the initial (Default model initialize and step funtions) view of
the Model Interface dialog box, click the Validate button to validate and
preview the default function prototype for the rtwdemo_counter_step
function. The function prototype arguments under Step function
preview should correspond to the default prototype in step 4.

8 In the Model Interface dialog box, set Function specification field to
Model specific C prototypes. Making this selection switches the dialog
box from the Default model initialize and step functions view to
the Model specific C prototypes view.

29-13

29 Controlling Generation of Function Prototypes

9 In the Model specific C prototypes view, click the Get Default
Configuration button to activate the Configure model initialize and
step functions subpane.

29-14

Model Function Prototypes Example

10 In the Configure model initialize and step functions subpane, change
Initialize function name to rtwdemo_counter_cust_init.

11 In the Configure model initialize and step functions subpane, in the
row for the Input argument, change the value of Category from Value to

29-15

29 Controlling Generation of Function Prototypes

Pointer and change the value of Qualifier from none to const *. The
preview reflects your changes.

12 Click the Validate button to validate the modified function prototype. The
Validation subpane displays a message that the validation succeeded.

29-16

Model Function Prototypes Example

13 Click OK to exit the Model Interface dialog box.

14 Generate code for the model. When the build completes, the code generation
report for rtwdemo_counter appears.

15 In the code generation report, click the link for rtwdemo_counter.c.

16 Locate and examine the generated code for the rtwdemo_counter_custom
and rtwdemo_counter_cust_init functions:

/* Customized model step function */

void rtwdemo_counter_custom(const int32_T *arg_Input, int32_T *arg_Output)

{

...

}

/* Model initialize function */

void rtwdemo_counter_cust_init(void)

{

...

}

17 Verify that the generated code is consistent with the function prototype
modifications that you specified in the Model Interface dialog box.

29-17

29 Controlling Generation of Function Prototypes

Configuring Model Function Prototypes Programmatically
You can use the function prototype control functions (listed in Function
Prototype Control Functions on page 29-20), to programmatically control
model function prototypes. Typical uses of these functions include:

• Create and validate a new function prototype

1 Create a model-specific C function prototype with obj =
RTW.ModelSpecificCPrototype, where obj returns a handle to a newly
created, empty function prototype.

2 Add argument configuration information for your model ports using
RTW.ModelSpecificCPrototype.addArgConf.

3 Attach the function prototype to your loaded ERT-based Simulink model
using RTW.ModelSpecificCPrototype.attachToModel.

4 Validate the function prototype using
RTW.ModelSpecificCPrototype.runValidation.

5 If validation succeeds, save your model and then generate code using
the rtwbuild function.

• Modify and validate an existing function prototype

1 Get the handle to an existing model-specific C function prototype that
is attached to your loaded ERT-based Simulink model with obj =
RTW.getFunctionSpecification(modelName), where modelName is a
string specifying the name of a loaded ERT-based Simulink model, and
obj returns a handle to a function prototype attached to the specified
model.

You can use other function prototype control functions on the returned
handle only if the test isa(obj,'RTW.ModelSpecificCPrototype')
returns 1. If the model does not have a function prototype configuration,
the function returns []. If the function returns a handle to an object of
type RTW.FcnDefault, you cannot modify the existing function prototype.

2 Use the Get and Set functions listed in Function Prototype Control
Functions on page 29-20 to test and reset such items as the function
names, argument names, argument positions, argument categories, and
argument type qualifiers.

29-18

Configuring Model Function Prototypes Programmatically

3 Validate the function prototype using
RTW.ModelSpecificCPrototype.runValidation.

4 If validation succeeds, save your model and then generate code using
the rtwbuild function.

• Create and validate a new function prototype, starting with default
configuration information from your Simulink model

1 Create a model-specific C function prototype using obj =
RTW.ModelSpecificCPrototype, where obj returns a handle to a newly
created, empty function prototype.

2 Attach the function prototype to your loaded ERT-based Simulink model
using RTW.ModelSpecificCPrototype.attachToModel.

3 Get default configuration information from your model using
RTW.ModelSpecificCPrototype.getDefaultConf.

4 Use the Get and Set functions listed in Function Prototype Control
Functions on page 29-20 to test and reset such items as the function
names, argument names, argument positions, argument categories, and
argument type qualifiers.

5 Validate the function prototype using
RTW.ModelSpecificCPrototype.runValidation.

6 If validation succeeds, save your model and then generate code using
the rtwbuild function.

Note You should not use the same model-specific C function prototype
object across multiple models. If you do, changes that you make to the step
and initialization function prototypes in one model are propagated to other
models, which is usually not desirable.

29-19

29 Controlling Generation of Function Prototypes

Function Prototype Control Functions

Function Description

RTW.ModelSpecificCPrototype.addArgConf Add step function argument configuration
information for Simulink model port to
model-specific C function prototype

RTW.ModelSpecificCPrototype.attachToModel Attach model-specific C function prototype
to loaded ERT-based Simulink model

RTW.ModelSpecificCPrototype.getArgCategory Get step function argument category for
Simulink model port from model-specific
C function prototype

RTW.ModelSpecificCPrototype.getArgName Get step function argument name for
Simulink model port from model-specific
C function prototype

RTW.ModelSpecificCPrototype.getArgPosition Get step function argument position for
Simulink model port from model-specific
C function prototype

RTW.ModelSpecificCPrototype.getArgQualifier Get step function argument type qualifier
for Simulink model port frommodel-specific
C function prototype

RTW.ModelSpecificCPrototype.getDefaultConf Get default configuration information for
model-specific C function prototype from
Simulink model to which it is attached

RTW.ModelSpecificCPrototype.getFunctionName Get function names from model-specific C
function prototype

RTW.ModelSpecificCPrototype.getNumArgs Get number of step function arguments
from model-specific C function prototype

RTW.ModelSpecificCPrototype.getPreview Get model-specific C function prototype
code previews

RTW.configSubsystemBuild Launch GUI to configure C function
prototype or C++ encapsulation interface
for right-click build of specified subsystem

RTW.getFunctionSpecification Get handle to model-specific C function
prototype object

29-20

Configuring Model Function Prototypes Programmatically

Function Prototype Control Functions (Continued)

Function Description

RTW.ModelSpecificCPrototype.runValidation Validate model-specific C function
prototype against Simulink model to which
it is attached

RTW.ModelSpecificCPrototype.setArgCategory Set step function argument category for
Simulink model port in model-specific C
function prototype

RTW.ModelSpecificCPrototype.setArgName Set step function argument name for
Simulink model port in model-specific C
function prototype

RTW.ModelSpecificCPrototype.setArgPosition Set step function argument position for
Simulink model port in model-specific C
function prototype

RTW.ModelSpecificCPrototype.setArgQualifier Set step function argument type qualifier
for Simulink model port in model-specific
C function prototype

RTW.ModelSpecificCPrototype.setFunctionName Set function names in model-specific C
function prototype

29-21

29 Controlling Generation of Function Prototypes

Sample Script for Configuring Model Function Prototypes
The following sample MATLAB script configures the model function
prototypes for the rtwdemo_counter model, using the Function Prototype
Control Functions on page 29-20.

%% Open the rtwdemo_counter model

rtwdemo_counter

%% Select ert.tlc as the System Target File for the model

set_param(gcs,'SystemTargetFile','ert.tlc')

%% Create a model-specific C function prototype

a=RTW.ModelSpecificCPrototype

%% Add argument configuration information for Input and Output ports

addArgConf(a,'Input','Pointer','inputArg','const *')

addArgConf(a,'Output','Pointer','outputArg','none')

%% Attach the model-specific C function prototype to the model

attachToModel(a,gcs)

%% Rename the initialization function

setFunctionName(a,'InitFunction','init')

%% Rename the step function and change some argument attributes

setFunctionName(a,'StepFunction','step')

setArgPosition(a,'Output',1)

setArgCategory(a,'Input','Value')

setArgName(a,'Input','InputArg')

setArgQualifier(a,'Input','none')

%% Validate the function prototype against the model

[status,message]=runValidation(a)

%% if validation succeeded, generate code and build

if status

rtwbuild(gcs)

end

29-22

Verifying Generated Code for Customized Functions

Verifying Generated Code for Customized Functions
You can use software-in-the-loop (SIL) testing to verify the generated code
for your customized step and initialization functions. This involves creating
a SIL block with your generated code, which then can be integrated into a
Simulink model to verify that the generated code provides the same result
as the original model or nonvirtual subsystem. For more information, see
Chapter 26, “Generating S-Function Wrappers” and Chapter 39, “Verifying
Generated Code With SIL and PIL Simulations”.

29-23

29 Controlling Generation of Function Prototypes

Model Function Prototype Control Limitations
The following limitations apply to controlling model function prototypes:

• Function prototype control supports only step and initialization functions
generated from a Simulink model.

• Function prototype control supports only single-instance implementations.
For standalone targets, you must clear the Generate reusable code
check box (on the Interface pane of the Configuration Parameters dialog
box). For model reference targets, you must select One for the Total
number of instances allowed per top model parameter (on theModel
Referencing pane of the Configuration Parameters dialog box).

• For model reference targets, the code generator ignores the Generate
reusable code parameter (on the Interface pane of the Configuration
Parameters dialog box).

• You must select the Single output/update function parameter (on the
Interface pane of the Configuration Parameters dialog box).

• Function prototype control does not support multitasking models. Multirate
models are supported, but you must configure the models for single-tasking.

• You must configure root-level inports and outports to use Auto storage
classes.

• The generated code for a parent model does not call the function prototype
control step functions generated from referenced models.

• Do not control function prototypes with the static ert_main.c provided by
MathWorks. Specifying a function prototype control configuration other
than the default creates a mismatch between the generated code and the
default static ert_main.c.

• The code generator removes the data structure for the root inports of the
model unless a subsystem implemented by a nonreusable function uses the
value of one or more of the inports.

• The code generator removes the data structure for the root outports of the
model except when you enable MAT-file logging, or if the sample time of
one or more of the outports is not the fundamental base rate (including
a constant rate).

29-24

Model Function Prototype Control Limitations

• If you copy a subsystem block and paste it to create a new block in either
a new model or the same model, the function prototype control interface
information from the original subsystem block does not copy to the new
subsystem block.

• For a Stateflow chart that uses a model root inport value, or that calls a
subsystem that uses a model root inport value, you must do one of the
following to generate code:

- Clear the Execute (enter) Chart At Initialization check box in the
Stateflow chart.

- Make the Stateflow function a nonreusable function.

- Insert a Signal Conversion block immediately after the root inport and
select the Exclude this block from ’Block reduction’ optimization
check box in the Signal Conversion block parameters.

29-25

29 Controlling Generation of Function Prototypes

29-26

30

Controlling Generation of
Encapsulated C++ Model
Interfaces

• “Overview of C++ Encapsulation” on page 30-2

• “C++ Encapsulation Quick-Start Example” on page 30-4

• “Generating and Configuring C++ Encapsulation Interfaces to Model Code”
on page 30-11

• “Configuring C++ Encapsulation Interfaces Programmatically” on page
30-21

• “Sample Script for Configuring the Step Method for a Model Class” on
page 30-24

• “C++ Encapsulation Interface Control Limitations” on page 30-26

30 Controlling Generation of Encapsulated C++ Model Interfaces

Overview of C++ Encapsulation
Using the Language option, C++ (Encapsulated), on the Code Generation
pane of the Configuration Parameters dialog box, you can generate a C++
class interface to model code. The generated interface encapsulates all
required model data into C++ class attributes and all model entry point
functions into C++ class methods. The benefits of encapsulation include:

• Greater control over access to model data

• Ability to multiply instantiate model classes

• Easier integration of model code into C++ programming environments

C++ encapsulation also works for right-click builds of nonvirtual subsystems.
(For information on requirements that apply, see “Configuring C++
Encapsulation Interfaces for Nonvirtual Subsystems” on page 30-19.)

The general procedure for generating C++ encapsulation interfaces to model
code is as follows:

1 Configure your model to use an ert.tlc system target file provided by
MathWorks.

2 Select the language option C++ (Encapsulated) for your model.

3 Optionally, configure related C++ encapsulation interface settings for your
model code, using either a graphical user interface (GUI) or application
programming interface (API).

4 Generate model code and examine the results.

To get started with an example, see “C++ Encapsulation Quick-Start Example”
on page 30-4. For more details about configuring C++ encapsulation interfaces
for your model code, see “Generating and Configuring C++ Encapsulation
Interfaces to Model Code” on page 30-11 and “Configuring C++ Encapsulation
Interfaces Programmatically” on page 30-21. For limitations that apply, see
“C++ Encapsulation Interface Control Limitations” on page 30-26.

30-2

Overview of C++ Encapsulation

Note For a demonstration of the C++ encapsulation capability, see the demo
model rtwdemo_cppencap.

30-3

30 Controlling Generation of Encapsulated C++ Model Interfaces

C++ Encapsulation Quick-Start Example
This example illustrates a simple use of the C++ (Encapsulated) option. It
uses C++ encapsulation to generate interfaces for code from a demo model,
without extensive modifications to default settings.

Note For details about setting C++ encapsulation options, see the sections
that follow this example, beginning with “Generating and Configuring C++
Encapsulation Interfaces to Model Code” on page 30-11.

To generate C++ encapsulated interfaces for a Simulink model:

1 Open a model for which you would like to generate C++ encapsulation
interfaces. This example uses the demo model rtwdemo_counter.

2 Configure the model to use an ert.tlc system target file provided by
MathWorks. For example, open the Configuration Parameters dialog box,
go to the Code Generation pane, select an appropriate target value from
the System target file menu, and click Apply.

3 Optionally, as a baseline for later code comparison, generate code from the
model using a different Language parameter setting, C++ or C. (You can
set up the build directory naming or location to distinguish your baseline
build from later builds of the same model.)

4 On the Code Generation pane of the Configuration Parameters dialog
box, select the C++ (Encapsulated) language option.

30-4

C++ Encapsulation Quick-Start Example

Click Apply.

Note To immediately generate the default style of encapsulated C++ code,
without exploring the related model configuration options, skip steps 5–9
and go directly to step 10.

5 Go to the Interface pane of the Configuration Parameters dialog box and
examine the Code interface subpane.

When you selected the C++ (Encapsulated) language option for your
model, C++ encapsulation interface controls replaced the default options on
the Code interface subpane. See “Configuring Code Interface Options” on
page 30-12 for descriptions of these controls. Examine the default settings
and modify as appropriate.

6 Click the Configure C++ Encapsulation Interface button. This action
opens the Configure C++ encapsulation interface dialog box, which allows
you to configure the step method for your generated model class. The
dialog box initially displays a view for configuring a void-void style step
method (passing no I/O arguments) for the model class. In this view, you
can rename the model class and the step method for your model.

30-5

30 Controlling Generation of Encapsulated C++ Model Interfaces

See “Configuring the Step Method for Your Model Class” on page 30-15
for descriptions of these controls.

Note If the void-void interface style meets your needs, you can skip steps
7–9 and go directly to step 10.

7 If you want root-level model input and output to be arguments on the step
method, select the value I/O arguments step method from the Function
specification menu. The dialog box displays a view for configuring an I/O
arguments style step method for the model class.

30-6

C++ Encapsulation Quick-Start Example

See “Configuring the Step Method for Your Model Class” on page 30-15
for descriptions of these controls.

8 Click the Get Default Configuration button. This action causes a
Configure C++ encapsulation interface subpane to appear in the dialog
box. The subpane displays the initial interface configuration for your
model, which provides a starting point for further customization.

30-7

30 Controlling Generation of Encapsulated C++ Model Interfaces

See “Passing I/O Arguments” on page 30-17 for descriptions of these
controls.

9 Perform this optional step only if you want to customize the configuration
of the I/O arguments generated for your model step method.

Note If you choose to skip this step, you should click Cancel to exit the
dialog box.

If you choose to perform this step, first you must check that the required
option Remove root level I/O zero initialization is selected on the
Optimization pane, and then navigate back to the I/O arguments step
method view of the Configure C++ encapsulation interface dialog box.

Now you can use the dialog box controls to configure I/O argument
attributes. For example, in the Configure C++ encapsulation interface
subpane, in the row for the Input argument, you can change the value of
Category from Value to Pointer and change the value of Qualifier from
none to const *. The preview updates to reflect your changes. Click the
Validate button to validate the modified interface configuration.

Continue modifying and validating until you are satisfied with the step
method configuration.

30-8

C++ Encapsulation Quick-Start Example

Click Apply and OK.

10 Generate code for the model. When the build completes, the code
generation report for rtwdemo_counter appears. Examine the report
and observe that all required model data is encapsulated into C++ class
attributes and all model entry point functions are encapsulated into C++
class methods. For example, click the link for rtwdemo_counter.h to see
the class declaration for the model.

30-9

30 Controlling Generation of Encapsulated C++ Model Interfaces

Note

• If you configured custom I/O arguments for the model step method
(optional step 9), examine the generated code for the step method in
rtwdemo_counter.h and rtwdemo_counter.cpp. The arguments should
reflect your changes. For example, if you performed the Input argument
modifications in step 9, the input argument should appear as const
int32_T *arg_Input.

• If you saved a baseline model build (optional step 3), you can traverse and
compare the generated files in the corresponding build directories.

30-10

Generating and Configuring C++ Encapsulation Interfaces to Model Code

Generating and Configuring C++ Encapsulation Interfaces
to Model Code

In this section...

“Selecting the C++ (Encapsulated) Option” on page 30-11

“Configuring Code Interface Options” on page 30-12

“Configuring the Step Method for Your Model Class” on page 30-15

“Configuring C++ Encapsulation Interfaces for Nonvirtual Subsystems” on
page 30-19

Selecting the C++ (Encapsulated) Option
To select the C++ (Encapsulated) option, in the Configuration Parameters
dialog box, on the Code Generation pane, use the Language menu:

When you select this option, you see the following effects on other panes in
the Configuration Parameters dialog box:

• Disables model configuration options that C++ (Encapsulated) does
not support. For details, see “C++ Encapsulation Interface Control
Limitations” on page 30-26.

• Replaces the default options on the Interface pane, in the Code interface
subpane, with C++ encapsulation interface controls, which are described in
the next section.

30-11

30 Controlling Generation of Encapsulated C++ Model Interfaces

Configuring Code Interface Options
When you select the C++ (Encapsulated) option for your model, the C++
encapsulation interface controls shown below replace the Code interface
default options on the Interface pane.

• Block parameter visibility

Specifies whether to generate the block parameter structure as a public,
private, or protected data member of the C++ model class (private by
default).

• Internal data visibility

Specifies whether to generate internal data structures, such as Block I/O,
DWork vectors, Runtime model, Zero-crossings, and continuous states,
as public, private, or protected data members of the C++ model class
(private by default).

• Block parameter access

Specifies whether to generate access methods for block parameters for
the C++ model class (None by default). You can select noninlined access
methods (Method) or inlined access methods (Inlined method).

• Internal data access

Specifies whether to generate access methods for internal data structures,
such as Block I/O, DWork vectors, Runtime model, Zero-crossings, and
continuous states, for the C++ model class (None by default). You can select
noninlined access methods (Method) or inlined access methods (Inlined
method).

30-12

Generating and Configuring C++ Encapsulation Interfaces to Model Code

• External I/O access

Specifies whether to generate access methods for root-level I/O signals
for the C++ model class (None by default). If you want to generate access
methods, you have the following options:

- Generate either noninlined or inlined access methods.

- Generate either per-signal or structure-based access methods. That is,
you can generate a series of set and get methods on a per-signal basis,
or generate just one set method that takes the address of an external
input structure as an argument and, for external outputs (if applicable),
just one get method that returns a reference to an external output
structure. The generated code for structure-based access methods has
the following general form:

class ModelClass {

...

/* Root inports set method*/

void setExternalInputs(const ExternalInputs* pExternalInputs);

/* Root outports get method*/

const ExternalOutputs & getExternalOutputs() const;

}

Note This parameter affects generated code only if you are using the
default (void-void style) step method for your model class; not if you
are explicitly passing arguments for root-level I/O signals using an I/O
arguments style step method. For more information, see “Passing No
Arguments (void-void)” on page 30-15 and “Passing I/O Arguments” on
page 30-17.

• Terminate function

Specifies whether to generate the model_terminate function (on by
default). This function contains all model termination code and should be
called as part of system shutdown.

• Generate destructor

Specifies whether to generate a destructor for the C++ model class (on
by default).

30-13

30 Controlling Generation of Encapsulated C++ Model Interfaces

• Use operator new for referenced model object registration

For a model containing Model blocks, specifies whether generated code
should use dynamic memory allocation, during model object registration,
to instantiate objects for referenced models configured with a C++
encapsulation interface (off by default). If you select this option, during
instantiation of an object for the top model in a model reference hierarchy,
the generated code uses the operator new to instantiate objects for
referenced models.

Selecting this option frees a parent model from having to maintain
information about submodels beyond its direct children. Clearing this
option means that a parent model maintains information about all of its
submodels, including its direct and indirect children.

Note If you select this option, be aware that a bad_alloc exception might
be thrown, per the C++ standard, if an out-of-memory error occurs during
the use of new. You must provide code to catch and process the bad_alloc
exception in case an out-of-memory error occurs for a new call during
construction of a top model object.

• Generate preprocessor conditionals

For a model containing Model blocks, specifies whether to generate
preprocessor conditional directives globally for a model, locally for
each variant Model block, or conditionally based on the Generate
preprocessor conditionals setting in the Model Reference Parameter
dialog for each variant Model block (Use local settings by default).

• Suppress error status in real-time model data structure

Specifies whether to omit the error status field from the generated real-time
model data structure rtModel (off by default). Selecting this option reduces
memory usage.

Be aware that selecting this option can cause the code generator to omit
the rtModel data structure from generated code.

• Combine signal/state structures

30-14

Generating and Configuring C++ Encapsulation Interfaces to Model Code

Specifies whether to combine global block signals and global state data into
one data structure in the generated code (off by default). Selecting this
option reduces RAM and improves readability of the generated code.

• Configure C++ Encapsulation Interface

Opens the Configure C++ encapsulation interface dialog box, which
allows you to configure the step method for your model class. For more
information, see “Configuring the Step Method for Your Model Class” on
page 30-15.

Configuring the Step Method for Your Model Class
To configure the step method for your model class, on the Interface pane,
click the Configure C++ Encapsulation Interface button, which is
available when you selectC++ (Encapsulated) for your model. This action
opens the Configure C++ encapsulation interface dialog box, where you can
configure the step method for your model class in either of two styles:

• “Passing No Arguments (void-void)” on page 30-15

• “Passing I/O Arguments” on page 30-17

Note The void-void style of step method specification supports single-rate
models and multirate models, while the I/O arguments style supports
single-rate models and multirate single-tasking models.

Passing No Arguments (void-void)
The Configure C++ encapsulation interface dialog box initially displays a view
for configuring a void-void style step method for the model class.

30-15

30 Controlling Generation of Encapsulated C++ Model Interfaces

• Step method name

Allows you to specify a step method name other than the default, step.

• Class name

Allows you to specify a model class name other than the default,
modelModelClass.

• Step function preview

Displays a preview of the model step function prototype as currently
configured. The preview display is dynamically updated as you make
configuration changes.

• Validate

Validates your current model step function configuration. The Validation
pane displays success or failure status and an explanation of any failure.

30-16

Generating and Configuring C++ Encapsulation Interfaces to Model Code

Passing I/O Arguments
If you select I/O arguments step method from the Function specification
menu, the dialog box displays a view for configuring an I/O arguments style
step method for the model class.

Note To use the I/O arguments style step method, you must select the option
Remove root level I/O zero initialization on the Optimization pane of
the Configuration Parameters dialog box.

• Get Default Configuration

Click this button to get the initial interface configuration that provides a
starting point for further customization.

30-17

30 Controlling Generation of Encapsulated C++ Model Interfaces

• Step function preview

Displays a preview of the model step function prototype as currently
configured. The preview dynamically updates as you make configuration
changes.

• Validate

Validates your current model step function configuration. The Validation
pane displays success or failure status and an explanation of any failure.

When you click Get Default Configuration, the Configure C++
encapsulation interface subpane appears in the dialog box, displaying the
initial interface configuration. For example:

• Step method name

Allows you to specify a step method name other than the default, step.

• Class name

Allows you to specify a model class name other than the default,
modelModelClass.

• Order

Displays the numerical position of each argument. Use the Up and Down
buttons to change argument order.

• Port Name

Displays the port name of each argument (not configurable using this
dialog box).

• Port Type

30-18

Generating and Configuring C++ Encapsulation Interfaces to Model Code

Displays the port type, Inport or Outport, of each argument (not
configurable using this dialog box).

• Category

Displays the passing mechanism for each argument. To change the passing
mechanism for an argument, select Value, Pointer, or Reference from the
argument’s Category menu.

• Argument Name

Displays the name of each argument. To change an argument name, click
in the argument’s Argument name field, position the cursor for text
entry, and enter the new name.

• Qualifier

Displays the const type qualifier for each argument. To change the
qualifier for an argument, select an available value from the argument’s
Qualifier menu. The possible values are:

- none

- const (value)

- const* (value referenced by the pointer)

- const*const (value referenced by the pointer and the pointer itself)

- const & (value referenced by the reference)

Tip When a model includes a referenced model, the const type qualifier for
the root input argument of the referenced model’s specified step function
interface is set to none and the qualifier for the source signal in the referenced
model’s parent is set to a value other than none, code generation honors the
referenced model’s interface specification by generating a type cast that
discards the const type qualifier from the source signal. To override this
behavior, add a const type qualifier to the referenced model.

Configuring C++ Encapsulation Interfaces for
Nonvirtual Subsystems
C++ encapsulation interfaces can be configured for right-click builds of
nonvirtual subsystems in Simulink models, provided that:

30-19

30 Controlling Generation of Encapsulated C++ Model Interfaces

• You select the system target file ert.tlc for the model.

• You select the Language parameter value C++ (Encapsulated) for the
model.

• The subsystem is convertible to a Model block using the function
Simulink.SubSystem.convertToModelReference. For referenced
model conversion requirements, see the Simulink reference page
Simulink.SubSystem.convertToModelReference.

To configure C++ encapsulation interfaces for a subsystem that meets the
requirements:

1 Open the containing model and select the subsystem block.

2 Enter the following MATLAB command:

RTW.configSubsystemBuild(gcb)

where gcb is the Simulink function gcb, returning the full block path name
of the current block.

This command opens a subsystem equivalent of the Configure C++
encapsulation interface dialog sequence that is described in detail in the
preceding section, “Configuring the Step Method for Your Model Class” on
page 30-15. (For more information about using the MATLAB command,
see RTW.configSubsystemBuild.)

3 Use the Configure C++ encapsulation interface dialog boxes to configure
C++ encapsulation settings for the subsystem.

4 Right-click the subsystem and select Code Generation > Build
Subsystem.

5 When the subsystem build completes, you can examine the C++
encapsulation interfaces in the generated files and the HTML code
generation report.

30-20

Configuring C++ Encapsulation Interfaces Programmatically

Configuring C++ Encapsulation Interfaces
Programmatically

If you select the Language option C++ (Encapsulated) for your model,
you can use the C++ encapsulation interface control functions (listed
in C++ Encapsulation Interface Control Functions on page 30-22) to
programmatically configure the step method for your model class.

Typical uses of these functions include:

• Create and validate a new step method interface, starting with
default configuration information from your Simulink model

1 Create a model-specific C++ encapsulation interface with obj =
RTW.ModelCPPVoidClass or obj = RTW.ModelCPPArgsClass, where
obj returns a handle to an newly created, empty C++ encapsulation
interface.

2 Attach the C++ encapsulation interface to your loaded ERT-based
Simulink model using attachToModel.

3 Get default C++ encapsulation interface configuration information from
your model using getDefaultConf.

4 Use the Get and Set functions listed in C++ Encapsulation Interface
Control Functions on page 30-22 to test or reset the model class name
and model step method name. Additionally, if you are using the I/O
arguments style step method, you can test and reset argument names,
argument positions, argument categories, and argument type qualifiers.

5 Validate the C++ encapsulation interface using runValidation. (If
validation fails, use the error message information thatrunValidation
returns to address the issues.)

6 Save your model and then generate code using the rtwbuild function.

• Modify and validate an existing step method interface for a
Simulink model

1 Get the handle to an existing model-specific C++ encapsulation interface
that is attached to your loaded ERT-based Simulink model using obj
= RTW.getEncapsulationInterfaceSpecification(modelName), where
modelName is a string specifying the name of a loaded ERT-based

30-21

30 Controlling Generation of Encapsulated C++ Model Interfaces

Simulink model, and obj returns a handle to a C++ encapsulation
interface attached to the specified model. If the model does not have
an attached C++ encapsulation interface configuration, the function
returns [].

2 Use the Get and Set functions listed in C++ Encapsulation Interface
Control Functions on page 30-22 to test or reset the model class name
and model step method name. Additionally, if the returned interface
uses the I/O arguments style step method, you can test and reset
argument names, argument positions, argument categories, and
argument type qualifiers.

3 Validate the C++ encapsulation interface using runValidation. (If
validation fails, use the error message information that runValidation
returns to address the issues.)

4 Save your model and then generate code using the rtwbuild function.

Note You should not use the same model-specific C++ encapsulation
interface control object across multiple models. If you do, changes that you
make to the step method configuration in one model propagate to other
models, which is usually not desirable.

C++ Encapsulation Interface Control Functions

Function Description

attachToModel Attach model-specific C++ encapsulation interface to loaded
ERT-based Simulink model

getArgCategory Get argument category for Simulink model port from
model-specific C++ encapsulation interface

getArgName Get argument name for Simulink model port from
model-specific C++ encapsulation interface

getArgPosition Get argument position for Simulink model port from
model-specific C++ encapsulation interface

getArgQualifier Get argument type qualifier for Simulink model port from
model-specific C++ encapsulation interface

30-22

Configuring C++ Encapsulation Interfaces Programmatically

C++ Encapsulation Interface Control Functions (Continued)

Function Description

getClassName Get class name from model-specific C++ encapsulation
interface

getDefaultConf Get default configuration information for model-specific C++
encapsulation interface from Simulink model to which it is
attached

getNumArgs Get number of step method arguments from model-specific
C++ encapsulation interface

getStepMethodName Get step method name frommodel-specific C++ encapsulation
interface

RTW.configSubsystemBuild Open GUI to configure C function prototype or C++
encapsulation interface for right-click build of specified
subsystem

RTW.getEncapsulation-
InterfaceSpecification

Get handle to model-specific C++ encapsulation interface
control object

runValidation Validate model-specific C++ encapsulation interface against
Simulink model to which it is attached

setArgCategory Set argument category for Simulink model port in
model-specific C++ encapsulation interface

setArgName Set argument name for Simulink model port in model-specific
C++ encapsulation interface

setArgPosition Set argument position for Simulink model port in
model-specific C++ encapsulation interface

setArgQualifier Set argument type qualifier for Simulink model port in
model-specific C++ encapsulation interface

setClassName Set class name in model-specific C++ encapsulation interface

setStepMethodName Set step method name in model-specific C++ encapsulation
interface

30-23

30 Controlling Generation of Encapsulated C++ Model Interfaces

Sample Script for Configuring the Step Method for a
Model Class

The following sample MATLAB script configures the step method for the
rtwdemo_counter model class, using the C++ Encapsulation Interface Control
Functions on page 30-22.

%% Open the rtwdemo_counter model

rtwdemo_counter

%% Select ert.tlc as the System Target File for the model

set_param(gcs,'SystemTargetFile','ert.tlc')

%% Select C++ (Encapsulated) as the target language for the model

set_param(gcs,'TargetLang','C++ (Encapsulated)')

%% Set required option for I/O arguments style step method (cmd off = GUI on)

set_param(gcs,'ZeroExternalMemoryAtStartup','off')

%% Create a C++ encapsulated interface using an I/O arguments style step method

a=RTW.ModelCPPArgsClass

%% Attach the C++ encapsulated interface to the model

attachToModel(a,gcs)

%% Get the default C++ encapsulation interface configuration from the model

getDefaultConf(a)

%% Move the Output port argument from position 2 to position 1

setArgPosition(a,'Output',1)

%% Reset the model step method name from step to StepMethod

setStepMethodName(a,'StepMethod')

%% Change the Input port argument name, category, and qualifier

setArgName(a,'Input','inputArg')

setArgCategory(a,'Input','Pointer')

setArgQualifier(a,'Input','const *')

30-24

Sample Script for Configuring the Step Method for a Model Class

%% Validate the function prototype against the model

[status,message]=runValidation(a)

%% if validation succeeded, generate code and build

if status

rtwbuild(gcs)

end

30-25

30 Controlling Generation of Encapsulated C++ Model Interfaces

C++ Encapsulation Interface Control Limitations
• The C++ (Encapsulated) option does not support some Simulink model
configuration options. Selecting C++ (Encapsulated) disables the
following items in the Configuration Parameters dialog box:

- Identifier format control subpane on the Symbols pane

- Templates pane

• The Templates pane parameter File customization template is
not supported for C++ (Encapsulated) code generation.

• Selecting C++ (Encapsulated) turns on the Templates pane option
Generate an example main program but removes it from the
Configuration Parameters dialog box. If desired, you can disable it
using the command line parameter GenerateSampleERTMain.

- Code Placement pane

- Memory Sections pane

Note Selecting C++ (Encapsulated) forces on the Code Generation
pane model option Ignore custom storage classes. By design, C++
(Encapsulated) code generation treats data objects with custom storage
classes as if their storage class attribute is set to Auto.

• Among the data exchange interfaces available on the Interface pane of the
Configuration Parameters dialog box, only the C API interface is supported
for C++ (Encapsulated) code generation. If you select External mode or
ASAP2, code generation fails with a validation error.

• The I/O arguments style of step method specification supports single-rate
models and multirate single-tasking models, but not multirate multitasking
models.

• The C++ (Encapsulated) option does not support use of the
IncludeERTFirstTime model option to include the firstTime argument in
the model_initialize function generated for an ERT-based models. (The
IncludeERTFirstTime option is off by default except for models created
with R2006a.) Also, the C++ (Encapsulated) option requires that the
target selected for the model support firstTime argument control by setting

30-26

C++ Encapsulation Interface Control Limitations

the ERTFirstTimeCompliant target option, which all targets provided by
MathWorks do by default. In other words, the C++ (Encapsulated) option
requires that the target option ERTFirstTimeCompliant is on and the
model option IncludeERTFirstTime is off.

• The Code Generation > Export Functions capability does not support
C++ (Encapsulated) as the target language.

• For a Stateflow chart that resides in a root model configured to use the I/O
arguments step method function specification, and that uses a model root
inport value or calls a subsystem that uses a model root inport value, you
must do one of the following to generate code:

- Clear the Execute (enter) Chart At Initialization check box in the
Stateflow chart.

- Insert a Signal Conversion block immediately after the root inport and
select the Exclude this block from ’Block reduction’ optimization
check box in the Signal Conversion block parameters.

• When building a referenced model that is configured to generate a C++
encapsulation interface:

- You must use the I/O arguments step method style of the C++
encapsulated interface. The void-void step method style is not
supported for referenced models.

- You cannot use a C++ encapsulation interface in cases when a referenced
model cannot have a combined output/update function. Cases include a
model that

• Has multiple sample times

• Has a continuous sample time

• Saves states

30-27

30 Controlling Generation of Encapsulated C++ Model Interfaces

30-28

31

Replacing Math Functions
and Operators Using Target
Function Libraries

• “Introduction to Target Function Libraries” on page 31-2

• “Creating Function Replacement Tables” on page 31-16

• “Examining and Validating Function Replacement Tables” on page 31-139

• “Registering Target Function Libraries” on page 31-148

• “Target Function Library Limitations” on page 31-156

31 Replacing Math Functions and Operators Using Target Function Libraries

Introduction to Target Function Libraries

In this section...

“Overview of Target Function Libraries” on page 31-2

“Target Function Libraries General Workflow” on page 31-7

“Target Function Libraries Quick-Start Example” on page 31-9

Overview of Target Function Libraries
The Embedded Coder software provides the target function library (TFL) API,
which allows you to create and register function replacement tables. When
selected for a model, these TFL tables provide the basis for replacing default
math functions and operators in your model code with target-specific code.
The ability to control function and operator replacements potentially allows
you to optimize target performance (speed and memory) and better integrate
model code with external and legacy code.

A target function library (TFL) is a set of one or more function replacement
tables that define the target-specific implementations of math functions and
operators to be used in generating code for your Simulink model. The code
generation software provides default TFLs, described in the following table.
You select these TFLs from the Target function library drop-down list on
the Interface pane of the Configuration Parameters dialog box.

TFL Description Contains Tables...

C89/C90
(ANSI)

Generates calls to the ISO®/IEC
9899:1990 C standard math library for
floating-point functions.

ansi_tfl_table_tmw.mat

C99 (ISO) Generates calls to the ISO/IEC
9899:1999 C standard math library.

iso_tfl_table_tmw.mat
ansi_tfl_table_tmw.mat

GNU99 (GNU) Generates calls to the GNU®7 gcc
math library, which provides C99
extensions as defined by compiler option
-std=gnu99.

gnu_tfl_table_tmw.mat
iso_tfl_table_tmw.mat
ansi_tfl_table_tmw.mat

7. GNU® is a registered trademark of the Free Software Foundation.

31-2

Introduction to Target Function Libraries

TFL Description Contains Tables...

C++ (ISO) Generates calls to the ISO/IEC
14882:2003 C++ standard math library.

iso_cpp_tfl_table_tmw.mat
private_iso_cpp_tfl_table_tmw.mat
iso_tfl_table_tmw.mat
ansi_tfl_table_tmw.mat

When a TFL contains multiple tables, the order in which they are listed
reflects the order in which they are searched. The TFL API allows you to
create your own TFLs, made up of your own function tables in combination
with one of the default TFLs. For example, you could create a TFL for
an embedded processor that combines some special-purpose function
customizations with a processor-specific library of function and operator
implementations:

MyProcessor
(ANSI)

Generates calls to my custom function
implementations or a processor-specific
library.

tfl_table_sinfcns.m
tfl_table_myprocessor.m
ansi_tfl_table_tmw.mat

Each TFL function replacement table contains one or more table entries,
with each table entry representing a potential replacement for a single math
function or an operator. Each table entry provides a mapping between a
conceptual view of the function or operator (similar to the Simulink block
view of the function or operator) and a target-specific implementation of that
function or operator.

The conceptual view of a function or operator is represented in a TFL table
entry by the following elements, which identify the function or operator entry
to the code generation process:

• A function or operator key (a function name such as 'cos' or an operator
ID string such as 'RTW_OP_ADD')

• A set of conceptual arguments that observe a Simulink naming scheme
('y1', 'u1', 'u2', ...), along with their I/O types (output or input) and
data types

• Other attributes, such as fixed-point saturation and rounding
characteristics for operators, as needed to identify the function or operator

31-3

31 Replacing Math Functions and Operators Using Target Function Libraries

to the code generation process as exactly as you require for matching
purposes

The target-specific implementation of a function or operator is represented in
a TFL table entry by the following elements:

• The name of your implementation function (such as 'cos_dbl' or
'u8_add_u8_u8')

• A set of implementation arguments that you define (the order of which
must correspond to the conceptual arguments), along with their I/O types
(output or input) and data types

• Parameters providing the build information for your implementation
function, including header file and source file names and paths

Additionally, a TFL table entry includes a priority value (0–100, with 0 as the
highest priority), which defines the entry’s priority relative to other entries
in the table.

During code generation for your model, when the code generation process
encounters a call site for a math function or operator, it creates and partially
populates a TFL entry object, for the purpose of querying the TFL for a
replacement function. The information provided for the TFL query includes
the function or operator key and the conceptual argument list. The TFL entry
object is then passed to the TFL. If there is a matching table entry in the
TFL, a fully-populated TFL entry, including the implementation function
name, argument list, and build information, is returned to the call site and
used to generate code.

Within the TFL that is selected for your model, the tables that comprise the
TFL are searched in the order in which they are listed (by RTW.viewTFL or by
the TFL’s Target function library tool tip). Within each table, if multiple
matches are found for a TFL entry object, priority level determines the match
that is returned. A higher-priority (lower-numbered) entry is used over a
similar entry with a lower priority (higher number).

The TFL API supports the following functions for replacement with custom
library functions using TFL tables:

31-4

Introduction to Target Function Libraries

Math Functions

Note For detailed support information, see “Example: Mapping Math
Functions to Target-Specific Implementations” on page 31-27.

abs cos log saturate

acos cosh log10 sign

acosh exactrSqrt max sin

asin exp min sinh

asinh fix mod/fmod sqrt

atan floor pow tan

atan2 hypot rem tanh

atanh ldexp round

ceil ln rSqrt

Memory Utility Functions

memcmp memcpy memset memset2zero8

Nonfinite Support Utility Functions

getInf getMinusInf getNaN

The TFL API also supports the following operations for replacement with
custom library functions using TFL tables:

8. Some target processors provide optimized memset functions for use when performing a
memory set to zero. The TFL API supports replacing memset to zero functions with more
efficient target-specific functions.

31-5

31 Replacing Math Functions and Operators Using Target Function Libraries

Note Unless otherwise stated, the listed operators are supported for the
following input data types:

• single, double, and their complex equivalents

• int8, int16, int32, and their complex equivalents

• uint8, uint16, uint32, and their complex equivalents

• Fixed-point data types

• Mixed data types (different types for different inputs)

Operator Key Scalar Inputs Nonscalar Inputs

Addition (+) RTW_OP_ADD Yes Yes

Subtraction (-) RTW_OP_MINUS Yes Yes

Multiplication
(*, .*)

RTW_OP_MUL Yes Yes, including
the ability to
map to Basic
Linear Algebra
Subroutine (BLAS)
multiplication
functions

Division (/) RTW_OP_DIV Yes —

Data type
conversion
(cast)

RTW_OP_CAST Yes —

Shift left (<<) RTW_OP_SL Yes, for
integer and
fixed-point
data types

—

31-6

Introduction to Target Function Libraries

Operator Key Scalar Inputs Nonscalar Inputs

Shift right (>>) RTW_OP_SRA
(arithmetic) 9

RTW_OP_SRL
(logical)

Yes, for
integer and
fixed-point
data types

—

Complex
conjugation

RTW_OP_CONJUGATE Yes Yes

Transposition
(.')

RTW_OP_TRANS — Yes

Hermitian
(complex
conjugate)
transposition
(')

RTW_OP_HERMITIAN — Yes

Multiplication
with
transposition

RTW_OP_TRMUL — Yes, including
the ability to
map to BLAS
multiplication
functions

Multiplication
with Hermitian
transposition

RTW_OP_HMMUL — Yes, including
the ability to
map to BLAS
multiplication
functions

Target Function Libraries General Workflow
The general steps for creating and using a target function library are as
follows:

1 Create one or more TFL tables containing replacement entries for math
operators (+, –, *, /) and functions using an API based on the MATLAB API.

9. TFLs that provide arithmetic shift right implementations should also provide logical shift
right implementations, because some arithmetic shift rights are converted to logical
shift rights during code generation.

31-7

31 Replacing Math Functions and Operators Using Target Function Libraries

(The demo rtwdemo_tfl_script provides example tables that can be used
as a starting point for customization.)

2 Register a target function library, consisting of one or more replacement
tables, for use with Simulink or MATLAB Coder software. The MATLAB
APIs sl_customization and rtwTargetInfo are provided for this purpose.

3 Open your Simulink model and select the desired target function library
from the Target function library drop-down list located on the Interface
pane of the Configuration Parameters dialog box. For MATLAB Coder
applications, instantiate a Simulink Coder configuration object, set the
Target Function Library, and provide the configuration object in a call
to the codegen function, as follows:

cfg = coder.config('lib','ecoder',true);
cgv.TargetFunctionLibrary = 'Addition & Subtraction Examples';
codegen -config cfg addsub_tow_int16 -args {t,t};

31-8

Introduction to Target Function Libraries

4 Build your Simulink model or MATLAB Coder application.

See the demo rtwdemo_tfl_script, which illustrates how to use TFLs to
replace operators and functions in generated code. With each example model
included in this demo, a separate TFL is provided to illustrate the creation
of operator and function replacements and how to register the replacements
with Simulink software.

Target Function Libraries Quick-Start Example
This section steps you through a simple example of the complete TFL
workflow. (The materials for this example can easily be created based on the
file and model displays in this section.)

1 Create and save a TFL table definition file that instantiates and populates
a TFL table entry, such as the file tfl_table_sinfcn.m shown below.
This file creates function table entries for the sin function. For detailed
information on creating table definition files for math functions and
operators, see “Creating Function Replacement Tables” on page 31-16.

function hTable = tfl_table_sinfcn()

%TFL_TABLE_SINFCN - Describe function entries for a Target Function Library table.

hTable = RTW.TflTable;

31-9

31 Replacing Math Functions and Operators Using Target Function Libraries

% Create entry for double data type sine function replacement

hTable.registerCFunctionEntry(100, 1, 'sin', 'double', 'sin_dbl', ...

'double', '<sin_dbl.h>','','');

% Create entry for single data type sine function replacement

hTable.registerCFunctionEntry(100, 1, 'sin', 'single', 'sin_sgl', ...

'double', '<sin_sgl.h>','','');

Note See “Example: Mapping Math Functions to Target-Specific
Implementations” on page 31-27 for another example of sin function
replacement, in which function arguments are created individually.

2 As a first check of the validity of your table entries, invoke the TFL table
definition file as follows:

>> tbl = tfl_table_sinfcn

tbl =

RTW.TflTable

Version: '1.0'

AllEntries: [2x1 RTW.TflCFunctionEntry]

ReservedSymbols: []

StringResolutionMap: []

>>

Any errors found during the invocation are displayed.

3 As a further check of your table entries, invoke the TFL Viewer using the
following MATLAB command:

>> RTW.viewTfl(tfl_table_sinfcn)

31-10

Introduction to Target Function Libraries

Select entries in your table and verify that the graphical display of the
contents of your table meets your expectations. (The TFL Viewer can also
help you debug issues with the order of entries in a table, the order of tables
in a TFL, and function signature mismatches. For more information, see
“Examining and Validating Function Replacement Tables” on page 31-139.)

4 Create and save a TFL registration file that includes the tfl_table_sinfcn
table, such as the sl_customization.m file shown below. The file specifies
that the TFL to be registered is named 'Sine Function Example' and
consists of tfl_table_sinfcn, with the default ANSI10 math library as
the base TFL table.

function sl_customization(cm)

% sl_customization function to register a target function library (TFL)

% Register the TFL defined in local function locTflRegFcn

cm.registerTargetInfo(@locTflRegFcn);

end % End of SL_CUSTOMIZATION

10. ANSI® is a registered trademark of the American National Standards Institute, Inc.

31-11

31 Replacing Math Functions and Operators Using Target Function Libraries

% Local function to define a TFL containing tfl_table_sinfcn

function thisTfl = locTflRegFcn

% Instantiate a TFL registry entry

thisTfl = RTW.TflRegistry;

% Define the TFL properties

thisTfl.Name = 'Sine Function Example';

thisTfl.Description = 'Demonstration of sine function replacement';

thisTfl.TableList = {'tfl_table_sinfcn'};

thisTfl.BaseTfl = 'C89/C90 (ANSI)';

thisTfl.TargetHWDeviceType = {'*'};

end % End of LOCTFLREGFCN

If you place this sl_customization.m file in the MATLAB search path or in
the current working folder, the TFL is registered at each Simulink startup.

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. (To refresh
MATLAB Coder TFL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.)

For more information about registering TFLs with Simulink or MATLAB
Coder software, see “Registering Target Function Libraries” on page 31-148.

5 With your sl_customization.m file in the MATLAB search path or in the
current working folder, open an ERT-based Simulink model and navigate
to the Interface pane of the Configuration Parameters dialog box. Verify
that the Target function library option lists the TFL name you specified
and select it.

Note If you hover over the selected library with the cursor, a tool tip
appears. This tip contains information derived from your TFL registration
file, such as the TFL description and the list of tables it contains.

31-12

Introduction to Target Function Libraries

Optionally, you can relaunch the TFL Viewer, using the command
RTW.viewTFL with no argument, to examine all registered TFLs, including
Sine Function Example.

6 Create an ERT-based model with a Trigonometric Function block set to the
sine function, such as the following:

Make sure that the TFL you registered, Sine Function Example, is
selected for this model.

7 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the options Create code generation
report andModel-to-code. Then go to the Code Generation pane, select
the Generate code only option, and generate code for the model.

8 Go to the model window and use model-to-code highlighting to trace
the code generated using your TFL entry. For example, right-click the
Trigonometric Function block and select Code Generation > Navigate to
Code. This selection highlights the sin function code within the model step
function in sinefcn.c. In this case, sin has been replaced with sin_dbl in
the generated code.

31-13

31 Replacing Math Functions and Operators Using Target Function Libraries

9 If functions were not replaced as you intended, you can use the techniques
described in “Examining and Validating Function Replacement Tables” on
page 31-139 to help you determine why the code generation process was
unable to match a function signature with the TFL table entry you created
for it.

For example, you can view the TFL cache hits and misses logged during the
most recent build. For the code generation step in this example, there was
one cache hit and zero cache misses, as shown in the following HitCache
and MissCache entries:

>> a=get_param(sinefcn , TargetFcnLibHandle)

a =

RTW.TflControl

Version: '1.0'

HitCache: [1x1 RTW.TflCFunctionEntry]

MissCache: [0x1 handle]

TLCCallList: [0x1 handle]

TflTables: [2x1 RTW.TflTable]

>> a.HitCache(1)

ans =

31-14

Introduction to Target Function Libraries

RTW.TflCFunctionEntry

Key: 'sin'

Priority: 100

ConceptualArgs: [2x1 RTW.TflArgNumeric]

Implementation: [1x1 RTW.CImplementation]

.

.

.

>>

31-15

31 Replacing Math Functions and Operators Using Target Function Libraries

Creating Function Replacement Tables

In this section...

“Overview of Function Replacement Table Creation” on page 31-16

“Creating Table Entries” on page 31-20

“Example: Mapping Math Functions to Target-Specific Implementations”
on page 31-27

“Example: Mapping the memcpy Function to a Target-Specific
Implementation” on page 31-34

“Example: Mapping Nonfinite Support Utility Functions to Target-Specific
Implementations” on page 31-38

“Example: Mapping Scalar Operators to Target-Specific Implementations”
on page 31-43

“Mapping Nonscalar Operators to Target-Specific Implementations” on
page 31-49

“Mapping Fixed-Point Operators to Target-Specific Implementations” on
page 31-78

“Remapping Operator Outputs to Implementation Function Input
Positions” on page 31-113

“Refining TFL Matching and Replacement Using Custom TFL Table
Entries” on page 31-115

“Replacing Math Functions Based on Computation Method” on page 31-132

“Specifying Build Information for Function Replacements” on page 31-134

“Adding Target Function Library Reserved Identifiers” on page 31-137

Overview of Function Replacement Table Creation
To create a TFL table containing replacement information for supported
functions and operators, you perform the following steps:

1 Create a table definition file containing a function definition in the
following general form:

function hTable = tfl_table_name()

31-16

Creating Function Replacement Tables

%TFL_TABLE_NAME - Describe entries for a Target Function Library table.

.

.

.

For example, the following sample function definition is from the “Target
Function Libraries Quick-Start Example” on page 31-9:

function hTable = tfl_table_sinfcn()

%TFL_TABLE_SINFCN - Describe function entries for a Target Function Library table.

.

.

.

2 Within the function body, instantiate a TFL table with a command such
as the following:

hTable = RTW.TflTable;

3 Use the TFL table creation functions (listed in the table below) to add
table entries representing your replacements for supported functions and
operators. For each individual function or operator entry, you issue one or
more function calls to

a Instantiate a table entry.

b Add conceptual arguments, implementation arguments, and other
attributes to the entry.

c Add the entry to the table.

“Creating Table Entries” on page 31-20 describes this procedure in detail,
including two methods for creating function entries. The following sample
function entry is from the “Target Function Libraries Quick-Start Example”
on page 31-9:

% Create entry for double data type sine function replacement

hTable.registerCFunctionEntry(100, 1, 'sin', 'double', 'sin_dbl', ...

'double', '<sin_dbl.h>','','');

4 Save the table definition file using the name of the table definition function,
for example, tfl_table_sinfcn.m.

31-17

31 Replacing Math Functions and Operators Using Target Function Libraries

After you have created a table definition file, you can do the following:

• Examine and validate the table, as described in “Examining and Validating
Function Replacement Tables” on page 31-139.

• Register a TFL containing the table with the Simulink software, as
described in “Registering Target Function Libraries” on page 31-148.

After you register a TFL with the Simulink software, it appears in the
Simulink GUI and can be selected for use in building models.

The following table provides a functional grouping of the TFL table creation
functions.

Function Description

Table entry creation

addEntry Add table entry to collection of table entries registered
in TFL table

copyConceptualArgsToImplementation Copy conceptual argument specifications to matching
implementation arguments for TFL table entry

createAndAddConceptualArg Create conceptual argument from specified properties
and add to conceptual arguments for TFL table entry

createAndAddImplementationArg Create implementation argument from specified
properties and add to implementation arguments for
TFL table entry

createAndSetCImplementationReturn Create implementation return argument from
specified properties and add to implementation for
TFL table entry

enableCPP Enable C++ support for function entry in TFL table

setNameSpace Set name space for C++ function entry in TFL table

setTflCFunctionEntryParameters Set specified parameters for function entry in TFL
table

setTflCOperationEntryParameters Set specified parameters for operator entry in TFL
table

Alternative method for conceptual argument creation

31-18

Creating Function Replacement Tables

Function Description

addConceptualArg Add conceptual argument to array of conceptual
arguments for TFL table entry

getTflArgFromString Create TFL argument based on specified name and
built-in data type

Alternative method for function entry creation

registerCFunctionEntry Create TFL function entry based on specified
parameters and register in TFL table

registerCPPFunctionEntry Create TFL C++ function entry based on specified
parameters and register in TFL table

registerCPromotableMacroEntry Create TFL promotable macro entry based on specified
parameters and register in TFL table (for abs function
replacement only)

Build information

addAdditionalHeaderFile Add additional header file to array of additional
header files for TFL table entry

addAdditionalIncludePath Add additional include path to array of additional
include paths for TFL table entry

addAdditionalLinkObj Add additional link object to array of additional link
objects for TFL table entry

addAdditionalLinkObjPath Add additional link object path to array of additional
link object paths for TFL table entry

addAdditionalSourceFile Add additional source file to array of additional source
files for TFL table entry

addAdditionalSourcePath Add additional source path to array of additional
source paths for TFL table entry

Reserved identifiers

setReservedIdentifiers Register specified reserved identifiers to be associated
with TFL table

31-19

31 Replacing Math Functions and Operators Using Target Function Libraries

Creating Table Entries

• “Overview of Table Entry Creation” on page 31-20

• “General Method for Creating Function and Operator Entries” on page
31-22

• “Alternative Method for Creating Function Entries” on page 31-26

Overview of Table Entry Creation
You define TFL table entries by issuing TFL table creation function calls
inside a table definition file. The function calls must follow a function
declaration and a TFL table instantiation, such as the following:

function hTable = tfl_table_sinfcn()

%TFL_TABLE_SINFCN - Describe function entries for a Target Function Library table.

hTable = RTW.TflTable;

Within the function body, you use the TFL table creation functions to add
table entries representing your replacements for supported functions and
operators. For each individual function or operator entry, you issue one or
more function calls to

1 Instantiate a table entry.

2 Add conceptual arguments, implementation arguments, and other
attributes to the entry.

3 Add the entry to the table.

The general method for creating function and operator entries, described in
“General Method for Creating Function and Operator Entries” on page 31-22,
uses the functions shown in the following table.

Function Description

Table entry creation

addEntry Add table entry to collection of table entries registered
in TFL table

31-20

Creating Function Replacement Tables

Function Description

copyConceptualArgsToImplementation Copy conceptual argument specifications to matching
implementation arguments for TFL table entry

createAndAddConceptualArg Create conceptual argument from specified properties
and add to conceptual arguments for TFL table entry

createAndAddImplementationArg Create implementation argument from specified
properties and add to implementation arguments for
TFL table entry

createAndSetCImplementationReturn Create implementation return argument from
specified properties and add to implementation for
TFL table entry

enableCPP Enable C++ support for function entry in TFL table

setNameSpace Set name space for C++ function entry in TFL table

setTflCFunctionEntryParameters Set specified parameters for function entry in TFL
table

setTflCOperationEntryParameters Set specified parameters for operator entry in TFL
table

Alternative method for conceptual argument creation

addConceptualArg Add conceptual argument to array of conceptual
arguments for TFL table entry

getTflArgFromString Create TFL argument based on specified name and
built-in data type

A simpler alternative creation method is available for function entries,
with the constraints that input types must be uniform and implementation
arguments must use default Simulink naming. The alternative method uses
the following functions and is described in “Alternative Method for Creating
Function Entries” on page 31-26.

Function Description

Alternative method for function entry creation

registerCFunctionEntry Create TFL function entry based on specified
parameters and register in TFL table

31-21

31 Replacing Math Functions and Operators Using Target Function Libraries

Function Description

registerCPPFunctionEntry Create TFL C++ function entry based on specified
parameters and register in TFL table

registerCPromotableMacroEntry Create TFL promotable macro entry based on specified
parameters and register in TFL table (for abs function
replacement only)

General Method for Creating Function and Operator Entries
The general workflow for creating TFL table entries applies equally to
function and operator replacements, and involves the following steps.

Note

• You can remap operator outputs to implementation function inputs
for operator replacement entries (see “Remapping Operator Outputs to
Implementation Function Input Positions” on page 31-113). However,
for function replacement entries, implementation argument order must
match the conceptual argument order. Remapping the argument order in a
function implementation is not supported.

• For function entries, if your implementations additionally meet the
requirements that all input arguments are of the same type and your
implementation arguments use default Simulink naming (return argument
y1 and input arguments un), you can use a simpler alternative method
for creating the entries, as described in “Alternative Method for Creating
Function Entries” on page 31-26.

1 Within the function body of your table definition file, instantiate a TFL
table entry for a function or operator, using one of the following lines
of code:

31-22

Creating Function Replacement Tables

fcn_entry =
RTW.TflCFunctionEntry;

Supports function replacement

fcn_entry =
MyCustomFunctionEntry;
(where
MyCustomFunctionEntry
is a class derived from
RTW.TflCFunctionEntry)

Supports function replacement using
custom TFL table entries, described
in “Refining TFL Matching and
Replacement Using Custom TFL Table
Entries” on page 31-115

op_entry =
RTW.TflCOperationEntry;

Supports operator replacement

op_entry =
RTW.TflCOperationEntry-
Generator;

Provides relative scaling factor (RSF)
fixed-point parameters, described in
“Mapping Fixed-Point Operators to
Target-Specific Implementations” on
page 31-78, that are not available in
RTW.TflCOperationEntry

op_entry =
RTW.TflCOperationEntry-
Generator_NetSlope;

Provides net slope parameters,
described in “Mapping Fixed-Point
Operators to Target-Specific
Implementations” on page
31-78, that are not available in
RTW.TflCOperationEntry

op_entry =
RTW.TflBlasEntry-
Generator;

Supports replacement of nonscalar
operators with MathWorks BLAS
functions, described in “Mapping
Nonscalar Operators to Target-Specific
Implementations” on page 31-49

31-23

31 Replacing Math Functions and Operators Using Target Function Libraries

op_entry =
RTW.TflCBlasEntry-
Generator;

Supports replacement of nonscalar
operators with ANSI/ISO C BLAS
functions, described in “Mapping
Nonscalar Operators to Target-Specific
Implementations” on page 31-49

op_entry =
MyCustomOperationEntry;
(where
MyCustomOperationEntry
is a class derived from
RTW.TflCOperationEntry)

Supports operator replacement using
custom TFL table entries, described
in “Refining TFL Matching and
Replacement Using Custom TFL Table
Entries” on page 31-115

2 Set the table entry parameters, which are passed in parameter/value pairs
to one of the following functions:

• setTflCFunctionEntryParameters

• setTflCOperationEntryParameters

For example:

setTflCFunctionEntryParameters(fcn_entry, ...

'Key', 'sin', ...

'Priority', 30, ...

'ImplementationName', 'mySin', ...

'ImplementationHeaderFile', 'basicMath.h',...

'ImplementationSourceFile', 'basicMath.c');

For detailed descriptions of the settable function and operator
attributes, see the setTflCFunctionEntryParameters and
setTflCOperationEntryParameters reference pages.

3 Create and add conceptual arguments to the function or operator entry.
Output arguments must precede input arguments, and the function
signature (including argument naming, order, and attributes) must fulfill
the signature match sought by function or operator callers. Conceptual
argument names follow the default Simulink naming convention:

• For return argument, y1

• For input argument names, u1, u2, ..., un

31-24

Creating Function Replacement Tables

You can create and add conceptual arguments in either of two ways:

• Call the createAndAddConceptualArg function to create the argument
and add it to the table entry. For example:

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1',...

'IOType', 'RTW_IO_OUTPUT',...

'DataTypeMode', 'double');

• Call the getTflArgFromString function to create an argument based on
a built-in data type, and then call the addConceptualArg function to add
the argument to the table entry.

Note If you use getTflArgFromString, the IOType property of the
created argument defaults to 'RTW_IO_INPUT', indicating an input
argument. For an output argument, you must change the IOType value
to 'RTW_IO_OUTPUT' by directly assigning the argument property, as
shown in the following example.

arg = getTflArgFromString(hTable, 'y1', 'int16');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

4 Create and add implementation arguments, representing the signature
of your implementation function, to the function or operator entry. The
implementation argument order must match the conceptual argument
order. You can create and add implementation arguments in either of two
ways:

• Call the copyConceptualArgsToImplementation function to populate
all of the implementation arguments as copies of the previously created
conceptual arguments. For example:

copyConceptualArgsToImplementation(fcn_entry);

• Call the createAndSetCImplementationReturn function to create the
implementation return argument and add it to the table entry, and
then call the createAndAddImplementationArg function to individually
create and add each of your implementation arguments. This method

31-25

31 Replacing Math Functions and Operators Using Target Function Libraries

allows you to vary argument attributes, including argument naming, as
long as conceptual argument order is maintained. For example:

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'IsSigned', true, ...

'WordLength', 32, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT',...

'IsSigned', true,...

'WordLength', 32, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT',...

'IsSigned', true,...

'WordLength', 32, ...

'FractionLength', 0);

5 Add the function or operator entry to the TFL table using the addEntry
function. For example:

addEntry(hTable, fcn_entry);

For complete examples of function entries and operator entries created
using the general method, see “Example: Mapping Math Functions to
Target-Specific Implementations” on page 31-27 and “Example: Mapping
Scalar Operators to Target-Specific Implementations” on page 31-43. For
syntax examples, see the examples in the TFL table creation function
reference pages.

Alternative Method for Creating Function Entries
You can use a simpler alternative method for creating TFL function entries if
your function implementation meets the following criteria:

31-26

Creating Function Replacement Tables

• The implementation argument order matches the conceptual argument
order.

• All input arguments are of the same type.

• The return argument name and all input argument names follow the
default Simulink naming convention:

- For the return argument, y1

- For input argument names, u1, u2, ..., un

The alternative method for creating function entries involves a single
step. Call one of the following functions to create and add conceptual and
implementation arguments and register the function entry:

• registerCFunctionEntry

• registerCPPFunctionEntry

• registerCPromotableMacroEntry (use only for the abs function)

For example:

hTable = RTW.TflTable;

registerCFunctionEntry(hTable, 100, 1, 'sqrt', 'double', ...

'sqrt', 'double', '<math.h>', '', '');

For detailed descriptions of the function arguments, see the
registerCFunctionEntry, registerCPPFunctionEntry, and
registerCPromotableMacroEntry reference pages.

Example: Mapping Math Functions to Target-Specific
Implementations
The Embedded Coder software supports the following math functions for
replacement with custom library functions using target function library
(TFL) tables.

31-27

31 Replacing Math Functions and Operators Using Target Function Libraries

Math Function Simulink Support Stateflow Support MATLAB functions and
MATLAB Coder Support

abs • Floating-point

• Integer

• Floating-point

• Integer

Floating-point

acos Floating-point Floating-point Floating-point

acosh Floating-point Not available (NA) Not replaceable (NR)

asin Floating-point Floating-point Floating-point

asinh Floating-point NA NR

atan Floating-point Floating-point Floating-point

atan2 Floating-point Floating-point Floating-point

atanh Floating-point NA NR

ceil Floating-point Floating-point Floating-point

cos Floating-point Floating-point Floating-point

cosh Floating-point Floating-point Floating-point

exactrSqrt • Floating-point

• Integer

NA NA

exp Floating-point Floating-point Floating-point

fix Floating-point NA NR

floor Floating-point Floating-point Floating-point

hypot Floating-point NA NR

ldexp Floating-point Floating-point Floating-point

ln Floating-point NA NA

log Floating-point Floating-point Floating-point

log10 Floating-point Floating-point Floating-point

max • Floating-point

• Integer

• Floating-point

• Integer

• Floating-point

• Integer

31-28

Creating Function Replacement Tables

Math Function Simulink Support Stateflow Support MATLAB functions and
MATLAB Coder Support

min • Floating-point

• Integer

• Floating-point

• Integer

• Floating-point

• Integer

mod/fmod • Floating-point (mod)

• Integer (mod)

Floating-point (fmod) NR

pow Floating-point Floating-point Floating-point

rem Floating-point NA Floating-point

round Floating-point NA NR

rSqrt • Floating-point

• Integer

NA NA

saturate • Floating-point

• Integer

NA NA

sign • Floating-point

• Integer

NA NR

sin Floating-point Floating-point Floating-point

sinh Floating-point Floating-point Floating-point

sqrt Floating-point Floating-point Floating-point

tan Floating-point Floating-point Floating-point

tanh Floating-point Floating-point Floating-point

The following example uses the method described in “General Method for
Creating Function and Operator Entries” on page 31-22 to create a TFL table
entry for the sin function.

Note See “Target Function Libraries Quick-Start Example” on page 31-9 for
another example of sin function replacement, in which function arguments
are created using the simpler method described in “Alternative Method for
Creating Function Entries” on page 31-26.

31-29

31 Replacing Math Functions and Operators Using Target Function Libraries

1 Create and save the following TFL table definition file,
tfl_table_sinfcn2.m. This file defines a TFL table containing a function
replacement entry for the sin function.

The function body sets selected sine function entry parameters, creates
the y1 and u1 conceptual arguments individually, and then copies the
conceptual arguments to the implementation arguments. Finally the
function entry is added to the table.

function hTable = tfl_table_sinfcn2()

%TFL_TABLE_SINFCN2 - Describe function entry for a Target Function Library table.

hTable = RTW.TflTable;

% Create entry for sine function replacement

fcn_entry = RTW.TflCFunctionEntry;

setTflCFunctionEntryParameters(fcn_entry, ...

'Key', 'sin', ...

'Priority', 30, ...

'ImplementationName', 'mySin', ...

'ImplementationHeaderFile', 'basicMath.h',...

'ImplementationSourceFile', 'basicMath.c');

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1',...

'IOType', 'RTW_IO_OUTPUT',...

'DataTypeMode', 'double');

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT',...

'DataTypeMode', 'double');

copyConceptualArgsToImplementation(fcn_entry);

addEntry(hTable, fcn_entry);

2 Optionally, perform a quick check of the validity of the function entry
by invoking the table definition file at the MATLAB command line
(>> tbl = tfl_table_sinfcn2) and by viewing it in the TFL Viewer

31-30

Creating Function Replacement Tables

(>> RTW.viewTfl(tfl_table_sinfcn2)). For more information about
validating TFL tables, see “Examining and Validating Function
Replacement Tables” on page 31-139.

3 Create and save the following TFL registration file, which references the
tfl_table_sinfcn2 table.

The file specifies that the TFL to be registered is named 'Sine Function
Example 2' and consists of tfl_table_sinfcn2, with the default ANSI11

math library as the base TFL table.

function sl_customization(cm)

% sl_customization function to register a target function library (TFL)

% Register the TFL defined in local function locTflRegFcn

cm.registerTargetInfo(@locTflRegFcn);

end % End of SL_CUSTOMIZATION

% Local function to define a TFL containing tfl_table_sinfcn2

function thisTfl = locTflRegFcn

% Instantiate a TFL registry entry

thisTfl = RTW.TflRegistry;

% Define the TFL properties

thisTfl.Name = 'Sine Function Example 2';

thisTfl.Description = 'Demonstration of sine function replacement';

thisTfl.TableList = {'tfl_table_sinfcn2'};

thisTfl.BaseTfl = 'C89/C90 (ANSI)';

thisTfl.TargetHWDeviceType = {'*'};

end % End of LOCTFLREGFCN

Place this sl_customization.m file in the MATLAB search path or in the
current working folder, so that the TFL is registered at each Simulink
startup.

11. ANSI® is a registered trademark of the American National Standards Institute, Inc.

31-31

31 Replacing Math Functions and Operators Using Target Function Libraries

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. (To refresh
MATLAB Coder TFL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.)

For more information about registering TFLs with Simulink or MATLAB
Coder software, see “Registering Target Function Libraries” on page 31-148.

4 With your sl_customization.m file in the MATLAB search path or in the
current working folder, open an ERT-based Simulink model and navigate
to the Interface pane of the Configuration Parameters dialog box. Verify
that the Target function library option lists the TFL name you specified
and select it.

Note If you hover over the selected library with the cursor, a tool tip
appears. This tip provides information derived from your TFL registration
file, such as the TFL description and the list of tables it contains.

Optionally, you can relaunch the TFL Viewer, using the MATLAB
command RTW.viewTFL with no argument, to examine all registered TFLs,
including Sine Function Example 2.

5 Create an ERT-based model with a Trigonometric Function block set to the
sine function, such as the following:

31-32

Creating Function Replacement Tables

Make sure that the TFL you registered, Sine Function Example 2, is
selected for this model.

6 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the options Create code generation
report andModel-to-code. Then go to the Code Generation pane, select
the Generate code only option, and generate code for the model.

7 Go to the model window and use model-to-code highlighting to trace
the code generated using your TFL entry. For example, right-click the
Trigonometric Function block and select Code Generation > Navigate
to Code. This selection highlights the sin function code within the model
step function in sinefcn.c. In this case, sin has been replaced with mySin
in the generated code.

31-33

31 Replacing Math Functions and Operators Using Target Function Libraries

Example: Mapping the memcpy Function to a
Target-Specific Implementation
The Embedded Coder software supports the following memory utility
functions for replacement with custom library functions using target function
library (TFL) tables.

memcmp
memcpy
memset
memset2zero

The following example uses the method described in “General Method for
Creating Function and Operator Entries” on page 31-22 to create a TFL table
entry for the memcpy function.

1 Create and save the following TFL table definition file,
tfl_table_memcpy.m. This file defines a TFL table containing a function
replacement entry for the memcpy function.

The function body sets selected memcpy function entry parameters, creates
the y1, u1, u2, and u3 conceptual arguments individually, adds each
argument to the conceptual arguments array for the function, and then
copies the conceptual arguments to the implementation arguments. Finally
the function entry is added to the table.

function hTable = tfl_table_memcpy()

%TFL_TABLE_MEMCPY - Describe memcpy function entry for a TFL table.

hTable = RTW.TflTable;

% Create function replacement entry for void* memcpy(void*, void*, size_t)

fcn_entry = RTW.TflCFunctionEntry;

setTflCFunctionEntryParameters(fcn_entry, ...

'Key', 'memcpy', ...

'Priority', 90, ...

'ImplementationName', 'memcpy_int', ...

'ImplementationHeaderFile', 'memcpy_int.h',...

'SideEffects', true);

% Set SideEffects to 'true' for function returning void to prevent it being

% optimized away

31-34

Creating Function Replacement Tables

arg = getTflArgFromString(hTable, 'y1', 'void*');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(fcn_entry, arg);

arg = getTflArgFromString(hTable, 'u1', 'void*');

addConceptualArg(fcn_entry, arg);

arg = getTflArgFromString(hTable, 'u2', 'void*');

addConceptualArg(fcn_entry, arg);

arg = getTflArgFromString(hTable, 'u3', 'size_t');

addConceptualArg(fcn_entry, arg);

copyConceptualArgsToImplementation(fcn_entry);

addEntry(hTable, fcn_entry);

2 Optionally, perform a quick check of the validity of the memcpy entry
by invoking the table definition file at the MATLAB command line (>>
tbl = tfl_table_memcpy) and by viewing it in the TFL Viewer (>>
RTW.viewTfl(tfl_table_memcpy)). For more information about validating
TFL tables, see “Examining and Validating Function Replacement Tables”
on page 31-139.

3 Create and save the following TFL registration file, which references the
tfl_table_memcpy table.

The file specifies that the TFL to be registered is named 'Memcpy Function
Example' and consists of tfl_table_memcpy, with the default ANSI12 math
library as the base TFL table.

function sl_customization(cm)

% sl_customization function to register a target function library (TFL)

% Register the TFL defined in local function locTflRegFcn

cm.registerTargetInfo(@locTflRegFcn);

end % End of SL_CUSTOMIZATION

12. ANSI® is a registered trademark of the American National Standards Institute, Inc.

31-35

31 Replacing Math Functions and Operators Using Target Function Libraries

% Local function to define a TFL containing tfl_table_memcpy

function thisTfl = locTflRegFcn

% Instantiate a TFL registry entry

thisTfl = RTW.TflRegistry;

% Define the TFL properties

thisTfl.Name = 'Memcpy Function Example';

thisTfl.Description = 'Demonstration of memcpy function replacement';

thisTfl.TableList = {'tfl_table_memcpy'};

thisTfl.BaseTfl = 'C89/C90 (ANSI)';

thisTfl.TargetHWDeviceType = {'*'};

end % End of LOCTFLREGFCN

Place this sl_customization.m file in the MATLAB search path or in the
current working folder, so that the TFL is registered at each Simulink
startup.

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. (To refresh
MATLAB Coder TFL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.)

For more information about registering TFLs with Simulink or MATLAB
Coder software, see “Registering Target Function Libraries” on page 31-148.

4 With your sl_customization.m file in the MATLAB search path or in the
current working folder, open an ERT-based Simulink model and navigate
to the Interface pane of the Configuration Parameters dialog box. Verify
that the Target function library option lists the TFL name you specified
and select it.

31-36

Creating Function Replacement Tables

Note If you hover over the selected library with the cursor, a tool tip
appears. This tip provides information derived from your TFL registration
file, such as the TFL description and the list of tables it contains.

Optionally, you can relaunch the TFL Viewer, using the MATLAB
command RTW.viewTFL with no argument, to examine all registered TFLs,
including Memcpy Function Example.

5 Create an ERT-based model that uses memcpy for vector assignments. For
example,

a Use In, Out, and Mux blocks to create the following model.
(Alternatively, you can open rtwdemo_tflmath/Subsystem1 and copy
the subsystem contents to a new model.)

b Select the diagram and use Edit > Subsystem to make it a subsystem.

c Select an ERT-based system target file on the Code Generation pane
of the Configuration Parameters dialog box, and select the TFL you
registered, Memcpy Function Example, on the Interface pane. You

31-37

31 Replacing Math Functions and Operators Using Target Function Libraries

should also select a fixed-step solver on the Solver pane. Leave the
memcpy options on the Optimization > Signals and Parameters pane
at their default settings, that is, Use memcpy for vector assignment
is selected, andMemcpy threshold (bytes) at 64. Apply the changes.

d Open Model Explorer and configure the Signal Attributes for the In1,
In2, and In3 source blocks. For each, set Port dimensions to [1,100],
and set Data type to int32. Apply the changes. Save the model. In this
example, the model is saved to the name memcpyfcn.mdl.

6 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the Create code generation report.
Then go to the Code Generation pane, select the Generate code only
option, and generate code for the model. When code generation completes,
the HTML code generation report is displayed.

7 In the HTML code generation report, click on the model.c section (for
example, memcpyfcn.c) and inspect the model step function to confirm that
memcpy has been replaced with memcpy_int in the generated code.

Example: Mapping Nonfinite Support Utility
Functions to Target-Specific Implementations
The Embedded Coder software supports the following nonfinite support
utility functions for replacement with custom library functions using target
function library (TFL) tables.

GetInf
GetMinusInf

31-38

Creating Function Replacement Tables

GetNaN

The following example uses the method described in “General Method for
Creating Function and Operator Entries” on page 31-22 to create TFL table
entries for the nonfinite functions.

1 Create and save the following TFL table definition file,
tfl_table_nonfinite.m. This file defines a TFL table containing function
replacement entries for the nonfinite functions.

For each nonfinite function, the function body uses the local function
locAddFcnEnt to create entries for single and double replacement. For
each entry, the local function sets selected function entry parameters,
creates the y1 and u1 conceptual arguments individually, and then copies
the conceptual arguments to the implementation arguments. Finally the
function entry is added to the table.

function hTable = tfl_table_nonfinite()

%TFL_TABLE_NONFINITE - Describe function entries for a TFL table.

hTable = RTW.TflTable;

%% Create entries for nonfinite support utility functions

%locAddFcnEnt(hTable, key, implName, out, in1, hdr)

locAddFcnEnt(hTable, 'getNaN', 'getNaN', 'double', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getNaN', 'getNaNF', 'single', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getInf', 'getInf', 'double', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getInf', 'getInfF', 'single', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getMinusInf', 'getMinusInf', 'double', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getMinusInf', 'getMinusInfF', 'single', 'void', 'nonfin.h');

%% Local Function

function locAddFcnEnt(hTable, key, implName, out, in1, hdr)

if isempty(hTable)

return;

end

fcn_entry = RTW.TflCFunctionEntry;

setTflCFunctionEntryParameters(fcn_entry, ...

'Key', key, ...

31-39

31 Replacing Math Functions and Operators Using Target Function Libraries

'Priority', 90, ...

'ImplementationName', implName, ...

'ImplementationHeaderFile', hdr);

arg = getTflArgFromString(hTable, 'y1', out);

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(fcn_entry, arg);

arg = getTflArgFromString(hTable, 'u1', in1);

addConceptualArg(fcn_entry, arg);

copyConceptualArgsToImplementation(fcn_entry);

addEntry(hTable, fcn_entry);

%EOF

2 Optionally, perform a quick check of the validity of the nonfinite function
entries by invoking the table definition file at the MATLAB command
line (>> tbl = tfl_table_nonfinite) and by viewing it in the TFL
Viewer (>> RTW.viewTfl(tfl_table_nonfinite)). For more information
about validating TFL tables, see “Examining and Validating Function
Replacement Tables” on page 31-139.

3 Create and save the following TFL registration file, which references the
tfl_table_nonfinite table.

The file specifies that the TFL to be registered is named 'Nonfinite
Functions Example' and consists of tfl_table_nonfinite, with the
default ANSI13 math library as the base TFL table.

function sl_customization(cm)

% sl_customization function to register a target function library (TFL)

% Register the TFL defined in local function locTflRegFcn

cm.registerTargetInfo(@locTflRegFcn);

end % End of SL_CUSTOMIZATION

13. ANSI® is a registered trademark of the American National Standards Institute, Inc.

31-40

Creating Function Replacement Tables

% Local function to define a TFL containing tfl_table_nonfinite

function thisTfl = locTflRegFcn

% Instantiate a TFL registry entry

thisTfl = RTW.TflRegistry;

% Define the TFL properties

thisTfl.Name = 'Nonfinite Functions Example';

thisTfl.Description = 'Demonstration of nonfinite functions replacement';

thisTfl.TableList = {'tfl_table_nonfinite'};

thisTfl.BaseTfl = 'C89/C90 (ANSI)';

thisTfl.TargetHWDeviceType = {'*'};

end % End of LOCTFLREGFCN

Place this sl_customization.m file in the MATLAB search path or in the
current working folder, so that the TFL is registered at each Simulink
startup.

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. (To refresh
MATLAB Coder TFL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.)

For more information about registering TFLs with Simulink or MATLAB
Coder software, see “Registering Target Function Libraries” on page 31-148.

4 With your sl_customization.m file in the MATLAB search path or in the
current working folder, open an ERT-based Simulink model and navigate
to the Interface pane of the Configuration Parameters dialog box. Verify
that the Target function library option lists the TFL name you specified
and select it.

31-41

31 Replacing Math Functions and Operators Using Target Function Libraries

Note If you hover over the selected library with the cursor, a tool tip
appears. This tip provides information derived from your TFL registration
file, such as the TFL description and the list of tables it contains.

Optionally, you can relaunch the TFL Viewer, using the MATLAB
command RTW.viewTFL with no argument, to examine all registered TFLs,
including Nonfinite Functions Example.

5 Create an ERT-based model with a Math Function block set to the rem
function, such as the following:

Open Model Explorer. Select the Support: non-finite numbers
parameter on the Code Generation > Interface pane of the Configuration
Parameters dialog box and configure the Signal Attributes for the In1
and Constant source blocks. For each source block, set Data type to
double. Apply the changes. Save the model. In this example, the model is
saved to the name nonfinitefcns.mdl.

Make sure that the TFL you registered, Nonfinite Functions Example, is
selected for this model.

6 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the option Create code generation
report. Then go to the Code Generation pane, select the Generate code
only option, and generate code for the model.

31-42

Creating Function Replacement Tables

7 In the HTML code generation report, click on the rtnonfinite.c link and
inspect the rt_InitInfAndNaN function to confirm that your replacements
for nonfinite support functions are present in the generated code.

Example: Mapping Scalar Operators to
Target-Specific Implementations
The Embedded Coder software supports the following scalar operators for
replacement with custom library functions using target function library
(TFL) tables:

Operator Key

Addition (+) RTW_OP_ADD

Subtraction (-) RTW_OP_MINUS

Multiplication (*) RTW_OP_MUL

Division (/) RTW_OP_DIV

31-43

31 Replacing Math Functions and Operators Using Target Function Libraries

Operator Key

Data type conversion (cast) RTW_OP_CAST

Shift left (<<)
[integer and fixed-point data
types]

RTW_OP_SL

Shift right (>>)
[integer and fixed-point data
types]

RTW_OP_SRA (arithmetic) 14

RTW_OP_SRL (logical)

Complex conjugation RTW_OP_CONJUGATE

Unless otherwise stated, the listed operators are supported for the following
input data types:

• single, double, and their complex equivalents

• int8, int16, int32, and their complex equivalents

• uint8, uint16, uint32, and their complex equivalents

• Fixed-point data types

• Mixed data types (different types for different inputs)

The following example uses the method described in “General Method for
Creating Function and Operator Entries” on page 31-22 to create a TFL table
entry for the + (addition) operator.

1 Create and save the following TFL table definition file,
tfl_table_add_uint8.m. This file defines a TFL table containing an
operator replacement entry for the + (addition) operator.

The function body sets selected addition operator entry parameters, creates
the y1, u1, and u2 conceptual arguments individually, and then copies
the conceptual arguments to the implementation arguments. Finally, the
operator entry is added to the table.

14. TFLs that provide arithmetic shift right implementations should also provide logical
shift right implementations, because some arithmetic shift rights are converted to logical
shift rights during code generation.

31-44

Creating Function Replacement Tables

function hTable = tfl_table_add_uint8

%TFL_TABLE_ADD_UINT8 - Describe operator entry for a Target Function Library table.

hTable = RTW.TflTable;

% Create entry for addition of built-in uint8 data type

% Saturation on, Rounding no preference

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_ADD', ...

'Priority', 90, ...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingMode', 'RTW_ROUND_UNSPECIFIED', ...

'ImplementationName', 'u8_add_u8_u8', ...

'ImplementationHeaderFile', 'u8_add_u8_u8.h', ...

'ImplementationSourceFile', 'u8_add_u8_u8.c');

arg = getTflArgFromString(hTable, 'y1', 'uint8');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u1', 'uint8');

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u2', 'uint8');

addConceptualArg(op_entry, arg);

copyConceptualArgsToImplementation(op_entry);

addEntry(hTable, op_entry);

2 Optionally, perform a quick check of the validity of the operator entry
by invoking the table definition file at the MATLAB command line (>>
tbl = tfl_table_add_uint8) and by viewing it in the TFL Viewer (>>
RTW.viewTfl(tfl_table_add_uint8)).

For more information about validating TFL tables, see “Examining and
Validating Function Replacement Tables” on page 31-139.

31-45

31 Replacing Math Functions and Operators Using Target Function Libraries

3 Create and save the following TFL registration file, which references the
tfl_table_add_uint8 table.

The file specifies that the TFL to be registered is named 'Addition
Operator Example' and consists of tfl_table_add_uint8, with the
default ANSI math library as the base TFL table.

function sl_customization(cm)

% sl_customization function to register a target function library (TFL)

% Register the TFL defined in local function locTflRegFcn

cm.registerTargetInfo(@locTflRegFcn);

end % End of SL_CUSTOMIZATION

% Local function to define a TFL containing tfl_table_add_uint8

function thisTfl = locTflRegFcn

% Instantiate a TFL registry entry

thisTfl = RTW.TflRegistry;

% Define the TFL properties

thisTfl.Name = 'Addition Operator Example';

thisTfl.Description = 'Demonstration of addition operator replacement';

thisTfl.TableList = {'tfl_table_add_uint8'};

thisTfl.BaseTfl = 'C89/C90 (ANSI)';

thisTfl.TargetHWDeviceType = {'*'};

end % End of LOCTFLREGFCN

Place this sl_customization.m file in the MATLAB search path or in the
current working folder, so that the TFL is registered at each Simulink
startup.

31-46

Creating Function Replacement Tables

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. (To refresh
MATLAB Coder TFL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.)

For more information about registering TFLs with Simulink or MATLAB
Coder software, see “Registering Target Function Libraries” on page 31-148.

4 With your sl_customization.m file in the MATLAB search path or in the
current working folder, open an ERT-based Simulink model and navigate
to the Interface pane of the Configuration Parameters dialog box. Verify
that the Target function library option lists the TFL name you specified
and select it.

Note If you hover over the selected library with the cursor, a tool tip
appears. This tip provides information derived from your TFL registration
file, such as the TFL description and the list of tables it contains.

Optionally, you can relaunch the TFL Viewer, using the MATLAB
command RTW.viewTFL with no argument, to examine all registered TFLs,
including Addition Operator Example.

5 Create an ERT-based model with an Add block, such as the following:

31-47

31 Replacing Math Functions and Operators Using Target Function Libraries

Make sure that the TFL you registered, Addition Operator Example, is
selected for this model.

6 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the options Create code generation
report andModel-to-code. Then go to the Code Generation pane, select
the Generate code only option, and generate code for the model.

7 Go to the model window and use model-to-code highlighting to trace the
code generated using your TFL entry. For example, right-click the Add
block and select Code Generation > Navigate to Code. This selection
highlights the Sum block code within the model step function in add8.c.
In this case, code containing the + operator has been replaced with
u8_add_u8_u8 in the generated code.

31-48

Creating Function Replacement Tables

Mapping Nonscalar Operators to Target-Specific
Implementations

• “Example: Mapping Small Matrix Operations to Processor-Specific
Intrinsic Functions” on page 31-50

• “Example: Mapping Matrix Multiplication to MathWorks BLAS Functions”
on page 31-57

• “Example: Mapping Matrix Multiplication to ANSI/ISO C BLAS Functions”
on page 31-67

The Embedded Coder software supports the following nonscalar operators
for replacement with custom library functions using target function library
(TFL) tables:

Operator Key

Addition (+) RTW_OP_ADD

Subtraction (-) RTW_OP_MINUS

Multiplication (*, .*) RTW_OP_MUL

Complex conjugation RTW_OP_CONJUGATE

Transposition (.') RTW_OP_TRANS

Hermitian (complex conjugate)
transposition (')

RTW_OP_HERMITIAN

Multiplication with
transposition

RTW_OP_TRMUL

Multiplication with Hermitian
transposition

RTW_OP_HMMUL

These operators are supported for the following input data types:

• single, double, and their complex equivalents

• int8, int16, int32, and their complex equivalents

• uint8, uint16, uint32, and their complex equivalents

• Fixed-point data types

31-49

31 Replacing Math Functions and Operators Using Target Function Libraries

• Mixed data types (different types for different inputs)

Note Saturation and rounding modes are ignored for floating-point
nonscalar addition and subtraction. In TFL table entries for nonscalar
addition and subtraction, if the argument data types are all floating-point,
the setTflCOperationEntryParameters function call should register
'RTW_SATURATE_UNSPECIFIED' for the SaturationMode parameter and
'RTW_ROUND_UNSPECIFIED' for the RoundingMode parameter.

Example: Mapping Small Matrix Operations to
Processor-Specific Intrinsic Functions
You can efficiently implement small matrix operations by invoking
processor-specific intrinsic functions. The following example uses the method
described in “General Method for Creating Function and Operator Entries” on
page 31-22 to create a TFL table entry mapping small matrix sum operations
to implementation functions that could invoke processor-specific intrinsic
functions.

Note For examples of replacing other matrix operations and handling other
data types, see the Matrix Operator Replacement section of the TFL demos
page rtwdemo_tfl_script, including the demo model rtwdemo_tflmatops
and its associated files.

1 Create and save the following TFL table definition file,
tfl_table_matrix_add_double.m. This file defines a TFL table containing
two matrix operator replacement entries for the + (addition) operator and
the double data type.

The function body sets selected addition operator entry parameters, creates
the y1, u1, and u2 conceptual arguments individually, and then configures
the implementation arguments. Finally, the operator entry is added to
the table.

To specify a matrix argument to createAndAddConceptualArg, use the
TFL argument class RTW.TflArgMatrix and specify the base type and the

31-50

Creating Function Replacement Tables

dimensions for which the argument is valid. In this example, the first table
entry specifies [2 2] and the second table entry specifies [3 3].

function hTable = tfl_table_matrix_add_double

%TFL_TABLE_MATRIX_ADD_DOUBLE - Describe two matrix operator entries for a TFL table.

hTable = RTW.TflTable;

LibPath = fullfile(matlabroot, 'toolbox', 'rtw', 'rtwdemos', 'tfl_demo');

% Create table entry for matrix_sum_2x2_double

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_ADD', ...

'Priority', 30, ...

'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

'ImplementationName', 'matrix_sum_2x2_double', ...

'ImplementationHeaderFile', 'MatrixMath.h', ...

'ImplementationSourceFile', 'MatrixMath.c', ...

'ImplementationHeaderPath', LibPath, ...

'ImplementationSourcePath', LibPath, ...

'AdditionalIncludePaths', {LibPath}, ...

'GenCallback', 'RTW.copyFileToBuildDir', ...

'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'BaseType', 'double', ...

'DimRange', [2 2]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

'Name', 'u1', ...

'BaseType', 'double', ...

'DimRange', [2 2]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

'Name', 'u2', ...

'BaseType', 'double', ...

'DimRange', [2 2]);

31-51

31 Replacing Math Functions and Operators Using Target Function Libraries

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

% Create table entry for matrix_sum_3x3_double

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_ADD', ...

'Priority', 30, ...

'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

'ImplementationName', 'matrix_sum_3x3_double', ...

'ImplementationHeaderFile', 'MatrixMath.h', ...

'ImplementationSourceFile', 'MatrixMath.c', ...

'ImplementationHeaderPath', LibPath, ...

'ImplementationSourcePath', LibPath, ...

'AdditionalIncludePaths', {LibPath}, ...

'GenCallback', 'RTW.copyFileToBuildDir', ...

'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'BaseType', 'double', ...

'DimRange', [3 3]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

'Name', 'u1', ...

'BaseType', 'double', ...

'DimRange', [3 3]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

31-52

Creating Function Replacement Tables

'Name', 'u2', ...

'BaseType', 'double', ...

'DimRange', [3 3]);

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

2 Optionally, perform a quick check of the validity of the operator entries by
invoking the table definition file at the MATLAB command line (>> tbl =
tfl_table_matrix_add_double) and by viewing it in the TFL Viewer (>>
RTW.viewTfl(tfl_table_matrix_add_double)).

For more information about validating TFL tables, see “Examining and
Validating Function Replacement Tables” on page 31-139.

3 Create and save the following TFL registration file, which references the
tfl_table_matrix_add_double table.

The file specifies that the TFL to be registered is named 'Matrix Addition
Operator Example' and consists of tfl_table_matrix_add_double, with
the default ANSI math library as the base TFL table.

function sl_customization(cm)

% sl_customization function to register a target function library (TFL)

% Register the TFL defined in local function locTflRegFcn

cm.registerTargetInfo(@locTflRegFcn);

end % End of SL_CUSTOMIZATION

31-53

31 Replacing Math Functions and Operators Using Target Function Libraries

% Local function to define a TFL containing tfl_table_matrix_add_double

function thisTfl = locTflRegFcn

% Instantiate a TFL registry entry

thisTfl = RTW.TflRegistry;

% Define the TFL properties

thisTfl.Name = 'Matrix Addition Operator Example';

thisTfl.Description = 'Demonstration of matrix addition operator replacement';

thisTfl.TableList = {'tfl_table_matrix_add_double'};

thisTfl.BaseTfl = 'C89/C90 (ANSI)';

thisTfl.TargetHWDeviceType = {'*'};

end % End of LOCTFLREGFCN

Place this sl_customization.m file in the MATLAB search path or in the
current working folder, so that the TFL is registered at each Simulink
startup.

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. (To refresh
MATLAB Coder TFL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.)

For more information about registering TFLs with Simulink or MATLAB
Coder software, see “Registering Target Function Libraries” on page 31-148.

4 With your sl_customization.m file in the MATLAB search path or in the
current working folder, open an ERT-based Simulink model and navigate
to the Interface pane of the Configuration Parameters dialog box. Verify
that the Target function library option lists the TFL name you specified
and select it.

31-54

Creating Function Replacement Tables

Note If you hover over the selected library with the cursor, a tool tip
appears. This tip provides information derived from your TFL registration
file, such as the TFL description and the list of tables it contains.

Optionally, you can relaunch the TFL Viewer, using the MATLAB
command RTW.viewTFL with no argument, to examine all registered TFLs,
including Matrix Addition Operator Example.

5 Create an ERT-based model with an Add block, such as the following:

Configure the Signal Attributes for the In1 and In2 source blocks. For
each source block, set Port dimensions to [3 3] and set the Data type
to double. Also, go to the Solver pane of the Configuration Parameters
dialog box and select a fixed-step, discrete solver with a fixed-step size such
as 0.1. Apply the changes. Save the model. In this example, the model is
saved to the name matrixadd.mdl.

31-55

31 Replacing Math Functions and Operators Using Target Function Libraries

Make sure that the TFL you registered, Matrix Addition Operator
Example, is selected for this model.

6 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the options Create code generation
report andModel-to-code. Then go to the Code Generation pane, select
the Generate code only option, and generate code for the model.

7 Go to the model window and use model-to-code highlighting to trace
the code generated using your TFL entry. For example, right-click the
Add block and select Code Generation > Navigate to Code. This
selection highlights the Sum block code within the model step function
in matrixadd.c. In this case, code containing the + operator has been
replaced with matrix_sum_3x3_double in the generated code.

Note Optionally, you can reconfigure the In1 and In2 block Port
dimensions to [2 2], regenerate code, and observe that code containing
the + operator is replaced with matrix_sum_2x2_double.

31-56

Creating Function Replacement Tables

Example: Mapping Matrix Multiplication to MathWorks BLAS
Functions
You can use TFL tables to map nonscalar multiplication operations to the
Basic Linear Algebra Subroutine (BLAS) multiplication functions xgemm
and xgemv. The following example uses the method described in “General
Method for Creating Function and Operator Entries” on page 31-22 to create
a TFL table entry mapping floating-point matrix/matrix and matrix/vector
multiplication operations to MathWorks BLAS library multiplication
functions.

Note For examples of handling other data types, see the BLAS Support
section of the TFL demos page rtwdemo_tfl_script, including the demo
model rtwdemo_tflblas and its associated files.

BLAS libraries support matrix/matrix multiplication in the form of

C = a(op(A) * op(B)) + bC , where op(X) means X, transposition of X, or
Hermitian transposition of X. However, TFLs support only the limited case of

C = op(A) * op(B) (a = 1.0, b = 0.0) . Correspondingly, although BLAS libraries

support matrix/vector multiplication in the form of y = a(op(A) * x) + by ,

TFLs support only the limited case of y = op(A) * x (a = 1.0, b = 0.0) .

1 Create and save the following TFL table definition file,
tfl_table_tmwblas_mmult_double.m. This file defines a TFL table
containing dgemm and dgemv replacement entries for the matrix
multiplication operator and the double data type.

For each entry, the function body sets selected matrix multiplication
operator entry parameters, creates the y1, u1, and u2 conceptual arguments
individually, and then configures special implementation arguments that
are required for dgemm and dgemv replacements. Finally, each operator
entry is added to the table.

To specify a matrix argument to createAndAddConceptualArg, use the
TFL argument class RTW.TflArgMatrix and specify the base type and
the dimensions for which the argument is valid. This type of table entry
supports a range of dimensions specified in the format [Dim1Min Dim2Min

31-57

31 Replacing Math Functions and Operators Using Target Function Libraries

... DimNMin; Dim1Max Dim2Max ... DimNMax]. For example, [2 2;
inf inf] means any two-dimensional matrix of size 2x2 or larger. In
this example, the conceptual output argument for the dgemm32 entry for
matrix/matrix multiplication replacement specifies dimensions [2 2;
inf inf], while the conceptual output argument for the dgemv32 entry
for matrix/vector multiplication replacement specifies dimensions [2 1;
inf 1].

function hTable = tfl_table_tmwblas_mmult_double

%TFL_TABLE_TMWBLAS_MMULT_DOUBLE - Describe two mmult operator entries for TFL table.

hTable = RTW.TflTable;

% Define library path for Windows or UNIX

arch = computer('arch');

if ~ispc

LibPath = fullfile('$(MATLAB_ROOT)', 'bin', arch);

else

% Use Stateflow to get the compiler info

compilerInfo = sf('Private','compilerman','get_compiler_info');

compilerName = compilerInfo.compilerName;

if strcmp(compilerName, 'msvc90') || ...

strcmp(compilerName, 'msvc80') || ...

strcmp(compilerName, 'msvc71') || ...

strcmp(compilerName, 'msvc60'), ...

compilerName = 'microsoft';

end

LibPath = fullfile('$(MATLAB_ROOT)', 'extern', 'lib', arch, compilerName);

end

% Create table entry for dgemm32

op_entry = RTW.TflBlasEntryGenerator;

if ispc

libExt = 'lib';

elseif ismac

libExt = 'dylib';

else

libExt = 'so';

end

setTflCOperationEntryParameters(op_entry, ...

31-58

Creating Function Replacement Tables

'Key', 'RTW_OP_MUL', ...

'Priority', 100, ...

'ImplementationName', 'dgemm32', ...

'ImplementationHeaderFile', 'blascompat32.h', ...

'ImplementationHeaderPath', fullfile('$(MATLAB_ROOT)','extern','include'), ...

'AdditionalLinkObjs', {['libmwblascompat32.' libExt]}, ...

'AdditionalLinkObjsPaths', {LibPath}, ...

'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'BaseType', 'double', ...

'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'u1', ...

'BaseType', 'double', ...

'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'u2', ...

'BaseType', 'double', ...

'DimRange', [1 1; inf inf]);

% Using RTW.TflBlasEntryGenerator for xgemm requires the following

% implementation signature:

%

% void f(char* TRANSA, char* TRANSB, int* M, int* N, int* K,

% type* ALPHA, type* u1, int* LDA, type* u2, int* LDB,

% type* BETA, type* y, int* LDC)

%

% Upon a successful match, the TFL entry will compute the correct

% values for M, N, K, LDA, LDB, and LDC and insert them into the

% generated code. TRANSA and TRANSB both will be set to 'N'.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

31-59

31 Replacing Math Functions and Operators Using Target Function Libraries

arg = RTW.TflArgCharConstant('TRANSA');

% Possible values for PassByType property are

% RTW_PASSBY_AUTO, RTW_PASSBY_POINTER,

% RTW_PASSBY_VOID_POINTER, RTW_PASSBY_BASE_POINTER

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = RTW.TflArgCharConstant('TRANSB');

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'M', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'K', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

31-60

Creating Function Replacement Tables

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDB', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDC', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

% Create table entry for dgemv32

op_entry = RTW.TflBlasEntryGenerator;

if ispc

libExt = 'lib';

elseif ismac

libExt = 'dylib';

else

libExt = 'so';

end

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_MUL', ...

31-61

31 Replacing Math Functions and Operators Using Target Function Libraries

'Priority', 100, ...

'ImplementationName', 'dgemv32', ...

'ImplementationHeaderFile', 'blascompat32.h', ...

'ImplementationHeaderPath', fullfile('$(MATLAB_ROOT)','extern','include'), ...

'AdditionalLinkObjs', {['libmwblascompat32.' libExt]}, ...

'AdditionalLinkObjsPaths', {LibPath},...

'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'BaseType', 'double', ...

'DimRange', [2 1; inf 1]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'u1', ...

'BaseType', 'double', ...

'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

'Name', 'u2', ...

'BaseType', 'double', ...

'DimRange', [1 1; inf 1]);

% Using RTW.TflBlasEntryGenerator for xgemv requires the following

% implementation signature:

%

% void f(char* TRANS, int* M, int* N,

% type* ALPHA, type* u1, int* LDA, type* u2, int* INCX,

% type* BETA, type* y, int* INCY)

%

% Upon a successful match, the TFL entry will compute the correct

% values for M, N, LDA, INCX, and INCY, and insert them into the

% generated code. TRANS will be set to 'N'.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

31-62

Creating Function Replacement Tables

arg = RTW.TflArgCharConstant('TRANS');

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'M', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCX','integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

31-63

31 Replacing Math Functions and Operators Using Target Function Libraries

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCY', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

2 Optionally, perform a quick check of the validity of the operator entries by
invoking the table definition file at the MATLAB command line (>> tbl =
tfl_table_tmwblas_mmult_double) and by viewing it in the TFL Viewer
(>> RTW.viewTfl(tfl_table_tmwblas_mmult_double)).

For more information about validating TFL tables, see “Examining and
Validating Function Replacement Tables” on page 31-139.

3 Create and save the following TFL registration file, which references the
tfl_table_tmwblas_mmult_double table.

The file specifies that the TFL to be registered is named 'MathWorks
BLAS Matrix Multiplication Operator Example' and consists of
tfl_table_tmwblas_mmult_double, with the default ANSI math library
as the base TFL table.

function sl_customization(cm)

% sl_customization function to register a target function library (TFL)

% Register the TFL defined in local function locTflRegFcn

cm.registerTargetInfo(@locTflRegFcn);

end % End of SL_CUSTOMIZATION

31-64

Creating Function Replacement Tables

% Local function to define a TFL containing tfl_table_tmwblas_mmult_double

function thisTfl = locTflRegFcn

% Instantiate a TFL registry entry

thisTfl = RTW.TflRegistry;

% Define the TFL properties

thisTfl.Name = 'MathWorks BLAS Matrix Multiplication Operator Example';

thisTfl.Description = 'Demonstration of MathWorks BLAS mmult operator replacement';

thisTfl.TableList = {'tfl_table_tmwblas_mmult_double'};

thisTfl.BaseTfl = 'C89/C90 (ANSI)';

thisTfl.TargetHWDeviceType = {'*'};

end % End of LOCTFLREGFCN

Place this sl_customization.m file in the MATLAB search path or in the
current working folder, so that the TFL is registered at each Simulink
startup.

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. (To refresh
MATLAB Coder TFL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.)

For more information about registering TFLs with Simulink or MATLAB
Coder software, see “Registering Target Function Libraries” on page 31-148.

4 With your sl_customization.m file in the MATLAB search path or in the
current working folder, open an ERT-based Simulink model and navigate
to the Interface pane of the Configuration Parameters dialog box. Verify
that the Target function library option lists the TFL name you specified
and select it.

Note If you hover over the selected library with the cursor, a tool tip
appears. This tip provides information derived from your TFL registration
file, such as the TFL description and the list of tables it contains.

31-65

31 Replacing Math Functions and Operators Using Target Function Libraries

Optionally, you can relaunch the TFL Viewer, using the MATLAB
command RTW.viewTFL with no argument, to examine all registered TFLs,
including MathWorks BLAS Matrix Multiplication Operator Example.

5 Create an ERT-based model with two Product blocks, such as the following:

a For each Product block, set the block parameter Multiplication to the
value Matrix(*).

b Configure the Signal Attributes for the In1, In2, and In3 source
blocks. For In1 and In2, set Port dimensions to [3 3] and set the
Data type to double. For In3, set Port dimensions to [3 1] and set
the Data type to double.

c Also, go to the Solver pane of the Configuration Parameters dialog box
and select a fixed-step, discrete solver with a fixed-step size such as 0.1.
Apply the changes.

31-66

Creating Function Replacement Tables

d Save the model. In this example, the model is saved to the name
tmwblas_mmult.mdl.

e Make sure that the TFL you registered, MathWorks BLAS Matrix
Multiplication Operator Example, is selected for this model.

6 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the options Create code generation
report andModel-to-code. Then go to the Code Generation pane, select
the Generate code only option, and generate code for the model.

7 Go to the model window and use model-to-code highlighting to trace the
code generated using your TFL entry. For example, right-click the top
Product block and select Code Generation > Navigate to Code. This
selection highlights the Product block code within the model step function in
tmwblas_mmult.c. In this case, code containing the matrix multiplication
operator has been replaced with a call to dgemm32 in the generated code.

Example: Mapping Matrix Multiplication to ANSI/ISO C BLAS
Functions
You can use TFL tables to map nonscalar multiplication operations to the
ANSI/ISO C BLAS multiplication functions xgemm and xgemv. The following

31-67

31 Replacing Math Functions and Operators Using Target Function Libraries

example uses the method described in “General Method for Creating Function
and Operator Entries” on page 31-22 to create a TFL table entry mapping
floating-point matrix/matrix and matrix/vector multiplication operations to
ANSI/ISO C BLAS library multiplication functions.

Note For examples of handling other data types, see the BLAS Support
section of the TFL demos page rtwdemo_tfl_script, including the demo
model rtwdemo_tflblas and its associated files.

BLAS libraries support matrix/matrix multiplication in the form of

C = a(op(A) * op(B)) + bC , where op(X) means X, transposition of X, or
Hermitian transposition of X. However, TFLs support only the limited case of

C = op(A) * op(B) (a = 1.0, b = 0.0) . Correspondingly, although BLAS libraries

support matrix/vector multiplication in the form of y = a(op(A) * x) + by ,

TFLs support only the limited case of y = op(A) * x (a = 1.0, b = 0.0) .

1 Create and save the following TFL table definition file,
tfl_table_cblas_mmult_double.m. This file defines a TFL table
containing dgemm and dgemv replacement entries for the matrix
multiplication operator and the double data type.

For each entry, the function body sets selected matrix multiplication
operator entry parameters, creates the y1, u1, and u2 conceptual arguments
individually, and then configures special implementation arguments that
are required for dgemm and dgemv replacements. Finally, each operator
entry is added to the table.

To specify a matrix argument to createAndAddConceptualArg, use the
TFL argument class RTW.TflArgMatrix and specify the base type and
the dimensions for which the argument is valid. This type of table entry
supports a range of dimensions specified in the format [Dim1Min Dim2Min
... DimNMin; Dim1Max Dim2Max ... DimNMax]. For example, [2 2;
inf inf] means any two-dimensional matrix of size 2x2 or larger. In this
example, the conceptual output argument for the cblas_dgemm entry for
matrix/matrix multiplication replacement specifies dimensions [2 2; inf
inf], while the conceptual output argument for the cblas_dgemv entry

31-68

Creating Function Replacement Tables

for matrix/vector multiplication replacement specifies dimensions [2 1;
inf 1].

function hTable = tfl_table_cblas_mmult_double

%TFL_TABLE_CBLAS_MMULT_DOUBLE - Describe two mmult operator entries for TFL table.

hTable = RTW.TflTable;

LibPath = fullfile(matlabroot, 'toolbox', 'rtw', 'rtwdemos', 'tfl_demo');

% Create table entry for cblas_dgemm

op_entry = RTW.TflCBlasEntryGenerator;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_MUL', ...

'Priority', 100, ...

'ImplementationName', 'cblas_dgemm', ...

'ImplementationHeaderFile', 'cblas.h', ...

'ImplementationHeaderPath', LibPath, ...

'AdditionalIncludePaths', {LibPath}, ...

'GenCallback', 'RTW.copyFileToBuildDir', ...

'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'BaseType', 'double', ...

'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'u1', ...

'BaseType', 'double', ...

'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'u2', ...

'BaseType', 'double', ...

'DimRange', [1 1; inf inf]);

% Using RTW.TflCBlasEntryGenerator for xgemm requires the following

% implementation signature:

%

31-69

31 Replacing Math Functions and Operators Using Target Function Libraries

% void f(enum ORDER, enum TRANSA, enum TRANSB, int M, int N, int K,

% type ALPHA, type* u1, int LDA, type* u2, int LDB,

% type BETA, type* y, int LDC)

%

% Since TFLs do not have the ability to specify enums, you must

% use integer. (This will cause problems with C++ code generation,

% so for C++, use a wrapper function to cast each int to the

% appropriate enumeration type.)

%

% Upon a successful match, the TFL entry will compute the correct

% values for M, N, K, LDA, LDB, and LDC and insert them into the

% generated code.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'ORDER', 'integer', 102);

%arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'TRANSA', 'integer', 111);

%arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'TRANSB', 'integer', 111);

%arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'M', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'K', 'integer', 0);

op_entry.Implementation.addArgument(arg);

31-70

Creating Function Replacement Tables

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 1);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDB', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDC', 'integer', 0);

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

% Create table entry for cblas_dgemv

op_entry = RTW.TflCBlasEntryGenerator;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_MUL', ...

'Priority', 100, ...

'ImplementationName', 'cblas_dgemv', ...

'ImplementationHeaderFile', 'cblas.h', ...

'ImplementationHeaderPath', LibPath, ...

'AdditionalIncludePaths', {LibPath}, ...

'GenCallback', 'RTW.copyFileToBuildDir', ...

'SideEffects', true);

% Specify operands and result

31-71

31 Replacing Math Functions and Operators Using Target Function Libraries

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'BaseType', 'double', ...

'DimRange', [2 1; inf 1]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'u1', ...

'BaseType', 'double', ...

'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

'Name', 'u2', ...

'BaseType', 'double', ...

'DimRange', [1 1; inf 1]);

% Using RTW.TflCBlasEntryGenerator for xgemv requires the following

% implementation signature:

%

% void f(enum ORDER, enum TRANSA, int M, int N,

% type ALPHA, type* u1, int LDA, type* u2, int INCX,

% type BETA, type* y, int INCY)

%

% Since TFLs do not have the ability to specify enums, you must

% use integer. (This will cause problems with C++ code generation,

% so for C++, use a wrapper function to cast each int to the

% appropriate enumeration type.)

%

% Upon a successful match, the TFL entry will compute the correct

% values for M, N, LDA, INCX, and INCY and insert them into the

% generated code.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'ORDER', 'integer', 102);

%arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

31-72

Creating Function Replacement Tables

arg = getTflArgFromString(hTable, 'TRANSA', 'integer', 111);

%arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'M','integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 1);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCX', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCY', 'integer', 0);

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

2 Optionally, perform a quick check of the validity of the operator entries by
invoking the table definition file at the MATLAB command line (>> tbl =

31-73

31 Replacing Math Functions and Operators Using Target Function Libraries

tfl_table_cblas_mmult_double) and by viewing it in the TFL Viewer (>>
RTW.viewTFL(tfl_table_cblas_mmult_double)).

For more information about validating TFL tables, see “Examining and
Validating Function Replacement Tables” on page 31-139.

3 Create and save the following TFL registration file, which references the
tfl_table_cblas_mmult_double table.

The file specifies that the TFL to be registered is named 'ANSI/ISO
C BLAS Matrix Multiplication Operator Example' and consists of
tfl_table_cblas_mmult_double, with the default ANSI math library as
the base TFL table.

function sl_customization(cm)

% sl_customization function to register a target function library (TFL)

% Register the TFL defined in local function locTflRegFcn

cm.registerTargetInfo(@locTflRegFcn);

end % End of SL_CUSTOMIZATION

% Local function to define a TFL containing tfl_table_cblas_mmult_double

function thisTfl = locTflRegFcn

% Instantiate a TFL registry entry

thisTfl = RTW.TflRegistry;

% Define the TFL properties

thisTfl.Name = 'ANSI/ISO C BLAS Matrix Multiplication Operator Example';

thisTfl.Description = 'Demonstration of C BLAS mmult operator replacement';

thisTfl.TableList = {'tfl_table_cblas_mmult_double'};

thisTfl.BaseTfl = 'C89/C90 (ANSI)';

thisTfl.TargetHWDeviceType = {'*'};

end % End of LOCTFLREGFCN

Place this sl_customization.m file in the MATLAB search path or in the
current working folder, so that the TFL is registered at each Simulink
startup.

31-74

Creating Function Replacement Tables

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. (To refresh
MATLAB Coder TFL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.)

For more information about registering TFLs with Simulink or MATLAB
Coder software, see “Registering Target Function Libraries” on page 31-148.

4 With your sl_customization.m file in the MATLAB search path or in the
current working folder, open an ERT-based Simulink model and navigate
to the Interface pane of the Configuration Parameters dialog box. Verify
that the Target function library option lists the TFL name you specified
and select it.

Note If you hover over the selected library with the cursor, a tool tip
appears. This tip provides information derived from your TFL registration
file, such as the TFL description and the list of tables it contains.

Optionally, you can relaunch the TFL Viewer, using the MATLAB
command RTW.viewTFL with no argument, to examine all registered TFLs,
including ANSI/ISO C BLAS Matrix Multiplication Operator Example.

5 Create an ERT-based model with two Product blocks, such as the following:

31-75

31 Replacing Math Functions and Operators Using Target Function Libraries

a For each Product block, set the block parameter Multiplication to the
value Matrix(*).

b Configure the Signal Attributes for the In1, In2, and In3 source
blocks. For In1 and In2, set Port dimensions to [3 3] and set the
Data type to double. For In3, set Port dimensions to [3 1] and set
the Data type to double.

c Also, go to the Solver pane of the Configuration Parameters dialog box
and select a fixed-step, discrete solver with a fixed-step size such as 0.1.
Apply the changes.

d Save the model. In this example, the model is saved to the name
cblas_mmult.mdl.

e Make sure that the TFL you registered, ANSI/ISO C BLAS Matrix
Multiplication Operator Example, is selected for this model.

6 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the options Create code generation
report andModel-to-code. Then go to the Code Generation pane, select
the Generate code only option, and generate code for the model.

7 Go to the model window and use model-to-code highlighting to trace the
code generated using your TFL entry. For example, right-click the top
Product block and select Code Generation > Navigate to Code. This
selection highlights the Product block code within the model step function
in cblas_mmult.c. In this case, code containing the matrix multiplication

31-76

Creating Function Replacement Tables

operator has been replaced with a call to cblas_dgemm in the generated
code.

31-77

31 Replacing Math Functions and Operators Using Target Function Libraries

Mapping Fixed-Point Operators to Target-Specific
Implementations

• “Overview of Fixed-Point Operator Replacement” on page 31-78

• “Fixed-Point Numbers and Arithmetic” on page 31-80

• “Creating Fixed-Point Operator Entries” on page 31-86

• “Example: Creating Fixed-Point Operator Entries for Binary-Point-Only
Scaling” on page 31-89

• “Example: Creating Fixed-Point Operator Entries for [Slope Bias] Scaling”
on page 31-92

• “Example: Creating Fixed-Point Operator Entries for Relative Scaling
(Multiplication and Division)” on page 31-95

• “Example: Creating Fixed-Point Operator Entries for Net Slope
(Multiplication and Division)” on page 31-98

• “Example: Creating Fixed-Point Operator Entries for Equal Slope and Zero
Net Bias (Addition and Subtraction)” on page 31-102

• “Mapping Data Type Conversion (Cast) Operations to Target-Specific
Implementations” on page 31-105

• “Mapping Fixed-Point Shift Left Operations to Target-Specific
Implementations” on page 31-109

Overview of Fixed-Point Operator Replacement
The Embedded Coder software supports TFL-based function replacement for
the following scalar operations on fixed-point data types:

Operator Key

Addition (+) RTW_OP_ADD

Subtraction (-) RTW_OP_MINUS

Multiplication (*) RTW_OP_MUL

Division (/) RTW_OP_DIV

Data type conversion (cast) RTW_OP_CAST

31-78

Creating Function Replacement Tables

Operator Key

Shift left (<<) RTW_OP_SL

Shift right (>>) RTW_OP_SRA (arithmetic) 15

RTW_OP_SRL (logical)

Fixed-point operator table entries can be defined as matching:

• A specific binary-point-only scaling combination on the operator inputs
and output.

• A specific [slope bias] scaling combination on the operator inputs and
output.

• Relative scaling or net slope between multiplication or division operator
inputs and output.

Use these methods to map a range of slope and bias values to a replacement
function for multiplication or division.

• Equal slope and zero net bias across addition or subtraction operator inputs
and output.

Use this method to disregard specific slope and bias values and map relative
slope and bias values to a replacement function for addition or subtraction.

15. TFLs that provide arithmetic shift right implementations should also provide logical
shift right implementations, because some arithmetic shift rights are converted to logical
shift rights during code generation.

31-79

31 Replacing Math Functions and Operators Using Target Function Libraries

Note

• The demo rtwdemo_tflfixpt demonstrates these replacements and
provides example tables that can be used as a starting point for
customization.

• Using fixed-point data types in a model requires a Simulink Fixed Point
license.

• The fixed-point terminology used in this section is defined and explained
in the Simulink Fixed Point User’s Guide. See especially “Fixed-Point
Numbers” and “Arithmetic Operations”.

Fixed-Point Numbers and Arithmetic
Fixed-point numbers use integers and integer arithmetic to represent real
numbers and arithmetic with the following encoding scheme:

V V SQ B= = +

where

• V is an arbitrarily precise real-world value.

• V is the approximate real-world value that results from fixed-point
representation.

• Q is an integer that encodes V , referred to as the quantized integer.

• S is a coefficient of Q , referred to as the slope.

• B is an additive correction, referred to as the bias.

The general equation for an operation between fixed-point operands is as
follows:

S Q B S Q B op S Q BO O O+() = +() < > +1 1 1 2 2 2()

31-80

Creating Function Replacement Tables

The objective of TFL fixed-point operator replacement is to replace an
operator that accepts and returns fixed-point or integer inputs and output
with a function that accepts and returns built-in C numeric data types
(not fixed-point data types). The following sections provide additional
programming information for each supported operator.

Addition

The operation V0 = V1 + V2 implies that

Q
S

S
Q

S

S
Q

B B B

S0
1

0
1

2

0
2

1 2 0

0

=
⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟ + + −⎛

⎝
⎜

⎞

⎠
⎟

If an addition replacement function is defined such that the scaling on the
operands and sum are equal and the net bias

B B B

S
1 2 0

0

+ −⎛

⎝
⎜

⎞

⎠
⎟

is zero (for example, a function s8_add_s8_s8 that adds two signed
8-bit values and produces a signed 8-bit result), then the TFL operator
entry must set the operator entry parameters SlopesMustBeTheSame and
MustHaveZeroNetBias to true. (For parameter descriptions, see the reference
page for the function setTflCOperationEntryParameters.)

Subtraction

The operation V0 = V1 − V2 implies that

Q
S

S
Q

S

S
Q

B B B

S0
1

0
1

2

0
2

1 2 0

0

=
⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟ + − −⎛

⎝
⎜

⎞

⎠
⎟

If a subtraction replacement function is defined such that the scaling on the
operands and difference are equal and the net bias

31-81

31 Replacing Math Functions and Operators Using Target Function Libraries

B B B

S
1 2 0

0

− −⎛

⎝
⎜

⎞

⎠
⎟

is zero (for example, a function s8_sub_s8_s8 that subtracts two signed
8-bit values and produces a signed 8-bit result), then the TFL operator
entry must set the operator entry parameters SlopesMustBeTheSame and
MustHaveZeroNetBias to true. (For parameter descriptions, see the reference
page for the function setTflCOperationEntryParameters.)

Multiplication

There are different ways to specify multiplication replacements. The most
direct way is to specify an exact match of the input and output types. This is
feasible if a model contains only a few (known) slope and bias combinations.
For this, use the TflCOperationEntry class and specify the exact values of
slope and bias on each argument. For scenarios where there are numerous
slope/bias combinations, it is not feasible to specify each value with a different
TFL entry. For this, use a relative scaling factor (RSF) entry or a net slope
entry:

• Relative scaling factor (RSF) entry:

The operation V0 = V1 * V2 implies, for binary-point-only scaling, that

S Q S Q S Q

Q
S S

S
Q Q

Q S Q Qn

0 0 1 1 2 2

0
1 2

0
1 1

0 1

= ()()

=
⎛

⎝
⎜

⎞

⎠
⎟

=

where Sn is the net slope.

Multiplication replacement functions may be defined such that all scaling
is contained by a single operand. For example, a replacement function
s8_mul_s8_u8_rsf0p125 can multiply a signed 8-bit value by a factor of [0
... 0.1245] and produce a signed 8-bit result. The following discussion
describes how to convert the slope on each operand into a net factor.

31-82

Creating Function Replacement Tables

To match a multiplication operation to the s8_mul_s8_u8_rsf0p125
replacement function, 0 <= SnQ2 <= 2

− 3. Substituting the maximum
integer value for Q2 results in the following match criteria: When Sn2

8 =
2 − 3, or Sn = 2

− 11, TFL replacement processing maps the multiplication
operation to the s8_mul_s8_u8_rsf0p125 function.

To accomplish this mapping, the TFL operator entry must define a
relative scaling factor, F2E, where the values for F and E are provided
using operator entry parameters RelativeScalingFactorF and
RelativeScalingFactorE. (For parameter descriptions, see the reference
page for the function setTflCOperationEntryParameters.) For the
s8_mul_s8_u8_rsf0p125 function, the RelativeScalingFactorF would be
set to 1 and the RelativeScalingFactorE would be set to -3.

Note When an operator entry specifies RelativeScalingFactorF and
RelativeScalingFactorE, zero bias is implied for the inputs and output.

• Net slope entry:

Net slope entries are similar to the relative scaling factor entry described
above. The difference is the match criteria. For a net slope entry,
the net slope of the call-site operation, Sn, must match the specified
net slope, Sn = F2

E, without regard to the maximum integer value.
Specify the desired net slope F and E values using operator entry
parameters NetSlopeAdjustmentFactor and NetFixedExponent.
(For parameter descriptions, see the reference page for the function
setTflCOperationEntryParameters.)

Note When an operator entry specifies NetSlopeAdjustmentFactor and
NetFixedExponent, matching entries must have arguments with zero bias.

Division

There are different ways to specify division replacements. The most direct
way is to specify an exact match of the input and output types. This is feasible
if a model contains only a few (known) slope and bias combinations. For this,

31-83

31 Replacing Math Functions and Operators Using Target Function Libraries

use the TflCOperationEntry class and specify the exact values of slope and
bias on each argument. For scenarios where there are numerous slope/bias
combinations, it is not feasible to specify each value with a different TFL
entry. For this, use a relative scaling factor (RSF) entry or a net slope entry:

• Relative scaling factor (RSF) entry:

The operation V0 = (V1 / V2) implies, for binary-point-only scaling, that

S Q
S Q

S Q

Q S
Q

Qn

0 0
1 1

2 2

0
1

2

=
⎛

⎝
⎜

⎞

⎠
⎟

=
⎛

⎝
⎜

⎞

⎠
⎟

where Sn is the net slope.

As with multiplication, division replacement functions may be defined
such that all scaling is contained by a single operand. For example,
a replacement function s16_rsf0p5_div_s16_s16 can divide a signed
16<<16 value by a signed 16-bit value and produce a signed 16-bit result.
The following discussion describes how to convert the slope on each operand
into a net factor.

To match a division operation to the s16_rsf0p5_div_s16_s16 replacement
function, 0 <= SnQ1 <= 2

− 1. Substituting the maximum integer value
for Q1 results in the following match criteria: When Sn2

15 = 2 − 1, or Sn
= 2 − 16, TFL replacement processing maps the division operation to the
s8_mul_s8_u8_rsf0p125 function.

To accomplish this mapping, the TFL operator entry must define a
relative scaling factor, F2E, where the values for F and E are provided
using operator entry parameters RelativeScalingFactorF and
RelativeScalingFactorE. (For parameter descriptions, see the reference
page for the function setTflCOperationEntryParameters.) For the
s16_rsf0p5_div_s16_s16 function, the RelativeScalingFactorF would
be set to 1 and the RelativeScalingFactorE would be set to -1.

31-84

Creating Function Replacement Tables

Note When an operator entry specifies RelativeScalingFactorF and
RelativeScalingFactorE, zero bias is implied for the inputs and output.

• Net slope entry:

Net slope entries are similar to the relative scaling factor entry described
above. The difference is the match criteria. For a net slope entry,
the net slope of the call-site operation, Sn, must match the specified
net slope, Sn = F2

E, without regard to the maximum integer value.
Specify the desired net slope F and E values using operator entry
parameters NetSlopeAdjustmentFactor and NetFixedExponent.
(For parameter descriptions, see the reference page for the function
setTflCOperationEntryParameters.)

Note When an operator entry specifies NetSlopeAdjustmentFactor and
NetFixedExponent, matching entries must have arguments with zero bias.

Data Type Conversion (Cast)

The data type conversion operation V0 = V1 implies, for binary-point-only
scaling, that

Q
S

S
Q

Q S Qn

0
1

0
1

0 1

=
⎛

⎝
⎜

⎞

⎠
⎟

=

where Sn is the net slope.

Shift

The shift left or shift right operation V0 = (V1 / 2
n) implies, for

binary-point-only scaling, that

31-85

31 Replacing Math Functions and Operators Using Target Function Libraries

S Q
S Q

Q
S

S

Q

Q S
Q

n

n

n n

0 0
1 1

0
1

0

1

0
1

2

2

2

= ⎛
⎝⎜

⎞
⎠⎟

=
⎛

⎝
⎜

⎞

⎠
⎟ + ⎛

⎝⎜
⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

where Sn is the net slope.

Creating Fixed-Point Operator Entries
To create TFL table entries for fixed-point operators, you use the “General
Method for Creating Function and Operator Entries” on page 31-22 and
specify fixed-point parameter/value pairs to the functions shown in the
following table.

Function Description

createAndAddConceptualArg Create conceptual argument from specified properties
and add to conceptual arguments for TFL table entry

createAndAddImplementationArg Create implementation argument from specified
properties and add to implementation arguments for
TFL table entry

createAndSetCImplementationReturn Create implementation return argument from
specified properties and add to implementation for
TFL table entry

setTflCOperationEntryParameters Set specified parameters for operator entry in TFL
table

The following table maps some common methods of matching TFL fixed-point
operator table entries to the associated fixed-point parameters that you need
to specify in your TFL table definition file.

31-86

Creating Function Replacement Tables

To match... Instantiate class... Minimally specify parameters...

A specific
binary-point-only scaling
combination on the
operator inputs and
output

See “Example:
Creating Fixed-Point
Operator Entries for
Binary-Point-Only
Scaling” on page 31-89.

RTW.TflCOperationEntry createAndAddConceptualArg function:

• CheckSlope: Specify the value true.

• CheckBias: Specify the value true.

• DataTypeMode (or DataType/Scaling
equivalent): Specify fixed-point
binary-point-only scaling.

• FractionLength: Specify a fraction
length (for example, 3).

A specific [slope bias]
scaling combination on
the operator inputs and
output

See “Example: Creating
Fixed-Point Operator
Entries for [Slope Bias]
Scaling” on page 31-92.

RTW.TflCOperationEntry createAndAddConceptualArg function:

• CheckSlope: Specify the value true.

• CheckBias: Specify the value true.

• DataTypeMode (or DataType/Scaling
equivalent): Specify fixed-point
[slope bias] scaling.

• Slope (or SlopeAdjustmentFactor/-
FixedExponent equivalent): Specify
a slope value (for example, 15).

• Bias: Specify a bias value (for
example, 2).

31-87

31 Replacing Math Functions and Operators Using Target Function Libraries

To match... Instantiate class... Minimally specify parameters...

Relative scaling between
operator inputs and
output (multiplication
and division)

See “Example: Creating
Fixed-Point Operator
Entries for Relative
Scaling (Multiplication
and Division)” on page
31-95.

RTW.TflCOperationEntry-
Generator

setTflCOperationEntryParameters
function:

• RelativeScalingFactorF: Specify
the slope adjustment factor (F) part
of the relative scaling factor, F2E (for
example, 1.0).

• RelativeScalingFactorE: Specify
the fixed exponent (E) part of the
relative scaling factor, F2E (for
example, -3.0).

createAndAddConceptualArg function:

• CheckSlope: Specify the value false.

• CheckBias: Specify the value false.

• DataType: Specify the value 'Fixed'.

Net slope between
operator inputs and
output (multiplication
and division)

See “Example: Creating
Fixed-Point Operator
Entries for Net Slope
(Multiplication and
Division)” on page 31-98.

RTW.TflCOperationEntry-
Generator_NetSlope

setTflCOperationEntryParameters
function:

• NetSlopeAdjustmentFactor: Specify
the slope adjustment factor (F) part of
the net slope, F2E (for example, 1.0).

• NetFixedExponent: Specify the fixed
exponent (E) part of the net slope, F2E

(for example, -3.0).

createAndAddConceptualArg function:

• CheckSlope: Specify the value false.

• CheckBias: Specify the value false.

• DataType: Specify the value 'Fixed'.

31-88

Creating Function Replacement Tables

To match... Instantiate class... Minimally specify parameters...

Equal slope and
zero net bias across
operator inputs and
output (addition and
subtraction)

See “Example: Creating
Fixed-Point Operator
Entries for Equal
Slope and Zero Net
Bias (Addition and
Subtraction)” on page
31-102.

RTW.TflCOperationEntry-
Generator

setTflCOperationEntryParameters
function:

• SlopesMustBeTheSame: Specify the
value true.

• MustHaveZeroNetBias: Specify the
value true.

createAndAddConceptualArg function:

• CheckSlope: Specify the value false.

• CheckBias: Specify the value false.

Example: Creating Fixed-Point Operator Entries for
Binary-Point-Only Scaling
TFL table entries for operations on fixed-point data types can be defined as
matching a specific binary-point-only scaling combination on the operator
inputs and output. These binary-point-only scaling entries can map the
specified binary-point-scaling combination to a replacement function for
addition, subtraction, multiplication, or division.

The following example uses the method described in “General Method for
Creating Function and Operator Entries” on page 31-22 to create a TFL
table entry for multiplication of fixed-point data types where arguments are
specified with binary-point-only scaling. In this example:

• The TFL operator entry is instantiated using the RTW.TflCOperationEntry
class.

• The function setTflCOperationEntryParameters is called to set
operator entry parameters. These parameters include the type of
operation (multiplication), the saturation mode (saturate on overflow), the
rounding mode (unspecified), and the name of the replacement function
(s32_mul_s16_s16_binarypoint).

31-89

31 Replacing Math Functions and Operators Using Target Function Libraries

• The function createAndAddConceptualArg is called to create and
add conceptual output and input arguments to the operator entry.
Each argument specifies that the data type is fixed-point, the mode is
binary-point-only scaling, and its derived slope and bias values must
exactly match the call-site slope and bias values. The output argument is
32 bits, signed, with a fraction length of 28, while the input arguments are
16 bits, signed, with fraction lengths of 15 and 13.

• The functions createAndSetCImplementationReturn and
createAndAddImplementationArg are called to create and add
implementation output and input arguments to the operator entry.
Implementation arguments must describe fundamental numeric data types
(not fixed-point data types). In this case, the output argument is 32 bits
and signed (int32) and the input arguments are 16 bits and signed (int16).

hTable = RTW.TflTable;

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_MUL', ...

'Priority', 90, ...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingMode', 'RTW_ROUND_UNSPECIFIED', ...

'ImplementationName', 's32_mul_s16_s16_binarypoint', ...

'ImplementationHeaderFile', 's32_mul_s16_s16_binarypoint.h', ...

'ImplementationSourceFile', 's32_mul_s16_s16_binarypoint.c');

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'CheckSlope', true, ...

'CheckBias', true, ...

'DataTypeMode', 'Fixed-point: binary point scaling', ...

'IsSigned', true, ...

'WordLength', 32, ...

'FractionLength', 28);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

31-90

Creating Function Replacement Tables

'CheckSlope', true, ...

'CheckBias', true, ...

'DataTypeMode', 'Fixed-point: binary point scaling', ...

'IsSigned', true, ...

'WordLength', 16, ...

'FractionLength', 15);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', true, ...

'CheckBias', true, ...

'DataTypeMode', 'Fixed-point: binary point scaling', ...

'IsSigned', true, ...

'WordLength', 16, ...

'FractionLength', 13);

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'IsSigned', true, ...

'WordLength', 32, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', true, ...

'WordLength', 16, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', true, ...

'WordLength', 16, ...

'FractionLength', 0);

addEntry(hTable, op_entry);

31-91

31 Replacing Math Functions and Operators Using Target Function Libraries

To generate code using this table entry, you can follow the general procedure
in “Example: Mapping Scalar Operators to Target-Specific Implementations”
on page 31-43, substituting in the code above and an ERT-based model such
as the following:

For this model,

• Set the Inport 1 Data type to fixdt(1,16,15)

• Set the Inport 2 Data type to fixdt(1,16,13)

• In the Product block:

- Set Output data type to fixdt(1,32,28)

- Select the option Saturate on integer overflow

Example: Creating Fixed-Point Operator Entries for [Slope
Bias] Scaling
TFL table entries for operations on fixed-point data types can be defined
as matching a specific [slope bias] scaling combination on the operator
inputs and output. These [slope bias] scaling entries can map the specified
[slope bias] combination to a replacement function for addition, subtraction,
multiplication, or division.

The following example uses the method described in “General Method for
Creating Function and Operator Entries” on page 31-22 to create a TFL table
entry for division of fixed-point data types where arguments are specified
using [slope bias] scaling. In this example:

• The TFL operator entry is instantiated using the RTW.TflCOperationEntry
class.

• The function setTflCOperationEntryParameters is called to set operator
entry parameters. These parameters include the type of operation

31-92

Creating Function Replacement Tables

(division), the saturation mode (saturate on overflow), the rounding
mode (round to ceiling), and the name of the replacement function
(s16_div_s16_s16_slopebias).

• The function createAndAddConceptualArg is called to create and add
conceptual output and input arguments to the operator entry. Each
argument specifies that the data type is fixed-point, the mode is [slope bias]
scaling, and its specified slope and bias values must exactly match the
call-site slope and bias values. The output argument and input arguments
are 16 bits, signed, each with specific [slope bias] specifications.

• The functions createAndSetCImplementationReturn and
createAndAddImplementationArg are called to create and add
implementation output and input arguments to the operator entry.
Implementation arguments must describe fundamental numeric data types
(not fixed-point data types). In this case, the output and input arguments
are 16 bits and signed (int16).

hTable = RTW.TflTable;

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_DIV', ...

'Priority', 90, ...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingMode', 'RTW_ROUND_CEILING', ...

'ImplementationName', 's16_div_s16_s16_slopebias', ...

'ImplementationHeaderFile', 's16_div_s16_s16_slopebias.h', ...

'ImplementationSourceFile', 's16_div_s16_s16_slopebias.c');

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'CheckSlope', true, ...

'CheckBias', true, ...

'DataTypeMode', 'Fixed-point: slope and bias scaling', ...

'IsSigned', true, ...

'WordLength', 16, ...

'Slope', 15, ...

'Bias', 2);

31-93

31 Replacing Math Functions and Operators Using Target Function Libraries

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', true, ...

'CheckBias', true, ...

'DataTypeMode', 'Fixed-point: slope and bias scaling', ...

'IsSigned', true, ...

'WordLength', 16, ...

'Slope', 15, ...

'Bias', 2);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', true, ...

'CheckBias', true, ...

'DataTypeMode', 'Fixed-point: slope and bias scaling', ...

'IsSigned', true, ...

'WordLength', 16, ...

'Slope', 13, ...

'Bias', 5);

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'IsSigned', true, ...

'WordLength', 16, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', true, ...

'WordLength', 16, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', true, ...

31-94

Creating Function Replacement Tables

'WordLength', 16, ...

'FractionLength', 0);

addEntry(hTable, op_entry);

To generate code using this table entry, you can follow the general procedure
in “Example: Mapping Scalar Operators to Target-Specific Implementations”
on page 31-43, substituting in the code above and an ERT-based model such
as the following:

For this model,

• Set the Inport 1 Data type to fixdt(1,16,15,2)

• Set the Inport 2 Data type to fixdt(1,16,13,5)

• In the Divide block:

- Set Output data type to Inherit: Inherit via back propagation

- Set Integer rounding mode to Ceiling

- Select the option Saturate on integer overflow

Example: Creating Fixed-Point Operator Entries for Relative
Scaling (Multiplication and Division)
TFL table entries for multiplication or division of fixed-point data types can
be defined as matching relative scaling between operator inputs and output.
These relative scaling entries can map a range of slope and bias values to a
replacement function for multiplication or division.

The following example uses the method described in “General Method for
Creating Function and Operator Entries” on page 31-22 to create a TFL table
entry for division of fixed-point data types using a relative scaling factor.
In this example:

31-95

31 Replacing Math Functions and Operators Using Target Function Libraries

• The TFL operator entry is instantiated using the
RTW.TflCOperationEntryGenerator class, which provides access
to the fixed-point parameters RelativeScalingFactorF and
RelativeScalingFactorE.

• The function setTflCOperationEntryParameters is called to set
operator entry parameters. These parameters include the type of
operation (division), the saturation mode (saturation off), the rounding
mode (round to ceiling), and the name of the replacement function
(s16_div_s16_s16_rsf0p125). Additionally, RelativeScalingFactorF
and RelativeScalingFactorE are used to specify the F and E parts of the
relative scaling factor F2E.

• The function createAndAddConceptualArg is called to create and add
conceptual output and input arguments to the operator entry. Each
argument is specified as fixed-point, 16 bits, and signed. Also, each
argument specifies that TFL replacement request processing should not
check for an exact match to the call-site slope and bias values.

• The functions createAndSetCImplementationReturn and
createAndAddImplementationArg are called to create and add
implementation output and input arguments to the operator entry.
Implementation arguments must describe fundamental numeric data types
(not fixed-point data types). In this case, the output and input arguments
are 16 bits and signed (int16).

hTable = RTW.TflTable;

op_entry = RTW.TflCOperationEntryGenerator;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_DIV', ...

'Priority', 90, ...

'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

'RoundingMode', 'RTW_ROUND_CEILING', ...

'RelativeScalingFactorF', 1.0, ...

'RelativeScalingFactorE', -3.0, ...

'ImplementationName', 's16_div_s16_s16_rsf0p125', ...

'ImplementationHeaderFile', 's16_div_s16_s16_rsf0p125.h', ...

'ImplementationSourceFile', 's16_div_s16_s16_rsf0p125.c');

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

31-96

Creating Function Replacement Tables

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'DataType', 'Fixed', ...

'IsSigned', true, ...

'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'DataType', 'Fixed', ...

'IsSigned', true, ...

'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'DataType', 'Fixed', ...

'IsSigned', true, ...

'WordLength', 16);

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'IsSigned', true, ...

'WordLength', 16, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', true, ...

'WordLength', 16, ...

'FractionLength', 0);

31-97

31 Replacing Math Functions and Operators Using Target Function Libraries

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', true, ...

'WordLength', 16, ...

'FractionLength', 0);

addEntry(hTable, op_entry);

To generate code using this table entry, you can follow the general procedure
in “Example: Mapping Scalar Operators to Target-Specific Implementations”
on page 31-43, substituting in the code above and an ERT-based model such
as the following:

For this model,

• Set the Inport 1 Data type to int16

• Set the Inport 2 Data type to fixdt(1,16,-5)

• In the Divide block:

- Set Output data type to fixdt(1,16,-13)

- Set Integer rounding mode to Ceiling

Example: Creating Fixed-Point Operator Entries for Net Slope
(Multiplication and Division)
TFL table entries for multiplication or division of fixed-point data types can
be defined as matching net slope between operator inputs and output. These
net slope entries can map a range of slope and bias values to a replacement
function for multiplication or division.

31-98

Creating Function Replacement Tables

The following example uses the method described in “General Method for
Creating Function and Operator Entries” on page 31-22 to create a TFL table
entry for division of fixed-point data types using a net slope. In this example:

• The TFL operator entry is instantiated using the
RTW.TflCOperationEntryGenerator_NetSlope class, which provides
access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent.

• The function setTflCOperationEntryParameters is called to set operator
entry parameters. These parameters include the type of operation
(division), the saturation mode (wrap on overflow), the rounding mode
(unspecified), and the name of the replacement function (user_div_*).
Additionally, NetSlopeAdjustmentFactor and NetFixedExponent are
used to specify the F and E parts of the net slope F2E.

• The function createAndAddConceptualArg is called to create and add
conceptual output and input arguments to the operator entry. Each
argument is specified as fixed-point and signed. Also, each argument
specifies that TFL replacement request processing should not check for an
exact match to the call-site slope and bias values.

• The function getTflArgFromString is called to create implementation
output and input arguments that are added to the operator entry.
Implementation arguments must describe fundamental numeric data types
(not fixed-point data types).

hTable = RTW.TflTable;

wv = [16,32];

for iy = 1:2

for inum = 1:2

for iden = 1:2

hTable = getDivOpEntry(hTable, ...

fixdt(1,wv(iy)),fixdt(1,wv(inum)),fixdt(1,wv(iden)));

end

end

end

%---

31-99

31 Replacing Math Functions and Operators Using Target Function Libraries

function hTable = getDivOpEntry(hTable,dty,dtnum,dtden)

%---

% Create an entry for division of fixed-point data types where

% arguments are specified using Slope and Bias scaling

% Saturation on, Rounding unspecified

funcStr = sprintf('user_div_%s_%s_%s',...

typeStrFunc(dty),...

typeStrFunc(dtnum),...

typeStrFunc(dtden));

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_DIV', ...

'Priority', 90, ...

'SaturationMode', 'RTW_WRAP_ON_OVERFLOW',...

'RoundingMode', 'RTW_ROUND_UNSPECIFIED',...

'NetSlopeAdjustmentFactor', 1.0, ...

'NetFixedExponent', 0.0, ...

'ImplementationName', funcStr, ...

'ImplementationHeaderFile', [funcStr,'.h'], ...

'ImplementationSourceFile', [funcStr,'.c']);

createAndAddConceptualArg(op_entry, ...

'RTW.TflArgNumeric', ...

'Name', 'y1',...

'IOType', 'RTW_IO_OUTPUT',...

'CheckSlope', false,...

'CheckBias', false,...

'DataTypeMode', 'Fixed-point: slope and bias scaling',...

'IsSigned', dty.Signed,...

'WordLength', dty.WordLength,...

'Bias', 0);

createAndAddConceptualArg(op_entry, ...

'RTW.TflArgNumeric',...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT',...

'CheckSlope', false,...

'CheckBias', false,...

31-100

Creating Function Replacement Tables

'DataTypeMode', 'Fixed-point: slope and bias scaling',...

'IsSigned', dtnum.Signed,...

'WordLength', dtnum.WordLength,...

'Bias', 0);

createAndAddConceptualArg(op_entry, ...

'RTW.TflArgNumeric', ...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT',...

'CheckSlope', false,...

'CheckBias', false,...

'DataTypeMode', 'Fixed-point: slope and bias scaling',...

'IsSigned', dtden.Signed,...

'WordLength', dtden.WordLength,...

'Bias', 0);

arg = getTflArgFromString(hTable, 'y1', typeStrBase(dty));

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'u1', typeStrBase(dtnum));

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2',typeStrBase(dtden));

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

%---

function str = typeStrFunc(dt)

%---

if dt.Signed

sstr = 's';

else

sstr = 'u';

end

str = sprintf('%s%d',sstr,dt.WordLength);

%---

function str = typeStrBase(dt)

31-101

31 Replacing Math Functions and Operators Using Target Function Libraries

%---

if dt.Signed

sstr = ;

else

sstr = 'u';

end

str = sprintf('%sint%d',sstr,dt.WordLength);

Example: Creating Fixed-Point Operator Entries for Equal
Slope and Zero Net Bias (Addition and Subtraction)
TFL table entries for addition or subtraction of fixed-point data types can be
defined as matching relative slope and bias values (equal slope and zero net
bias) across operator inputs and output. These entries allow you to disregard
specific slope and bias values and map relative slope and bias values to a
replacement function for addition or subtraction.

The following example uses the method described in “General Method for
Creating Function and Operator Entries” on page 31-22 to create a TFL table
entry for addition of fixed-point data types where slopes must be equal and
net bias must be zero across the operator inputs and output. In this example:

• The TFL operator entry is instantiated using the
RTW.TflCOperationEntryGenerator class, which provides access to the
fixed-point parameters SlopesMustBeTheSame and MustHaveZeroNetBias.

• The function setTflCOperationEntryParameters is called to set
operator entry parameters. These parameters include the type
of operation (addition), the saturation mode (saturation off), the
rounding mode (unspecified), and the name of the replacement function
(u16_add_SameSlopeZeroBias). Additionally, SlopesMustBeTheSame and
MustHaveZeroNetBias are set to true to indicate that slopes must be equal
and net bias must be zero across the addition inputs and output.

• The function createAndAddConceptualArg is called to create and add
conceptual output and input arguments to the operator entry. Each
argument is specified as 16 bits and unsigned. Also, each argument
specifies that TFL replacement request processing should not check for an
exact match to the call-site slope and bias values.

31-102

Creating Function Replacement Tables

• The functions createAndSetCImplementationReturn and
createAndAddImplementationArg are called to create and add
implementation output and input arguments to the operator entry.
Implementation arguments must describe fundamental numeric data types
(not fixed-point data types). In this case, the output and input arguments
are 16 bits and unsigned (uint16).

hTable = RTW.TflTable;

op_entry = RTW.TflCOperationEntryGenerator;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_ADD', ...

'Priority', 90, ...

'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

'RoundingMode', 'RTW_ROUND_UNSPECIFIED', ...

'SlopesMustBeTheSame', true, ...

'MustHaveZeroNetBias', true, ...

'ImplementationName', 'u16_add_SameSlopeZeroBias', ...

'ImplementationHeaderFile', 'u16_add_SameSlopeZeroBias.h', ...

'ImplementationSourceFile', 'u16_add_SameSlopeZeroBias.c');

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'IsSigned', false, ...

'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'IsSigned', false, ...

'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

31-103

31 Replacing Math Functions and Operators Using Target Function Libraries

'CheckSlope', false, ...

'CheckBias', false, ...

'IsSigned', false, ...

'WordLength', 16);

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'IsSigned', false, ...

'WordLength', 16, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', false, ...

'WordLength', 16, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', false, ...

'WordLength', 16, ...

'FractionLength', 0);

addEntry(hTable, op_entry);

To generate code using this table entry, you can follow the general procedure
in “Example: Mapping Scalar Operators to Target-Specific Implementations”
on page 31-43, substituting in the code above and an ERT-based model such
as the following:

For this model,

31-104

Creating Function Replacement Tables

• Set the Inport 1 Data type to fixdt(0,16,13)

• Set the Inport 2 Data type to fixdt(0,16,13)

• In the Add block:

- Verify that Output data type is set to its default, Inherit via
internal rule

- Set Integer rounding mode to Zero

Mapping Data Type Conversion (Cast) Operations to
Target-Specific Implementations

• “Example: Creating a TFL Entry to Replace Casts From int32 To int16”
on page 31-105

• “Example: Creating a TFL Entry to Replace Fixed-Point Casts Using Net
Slope” on page 31-106

You can use TFL table entries to replace the default generated code for data
type conversion (cast) operations with calls to optimized functions.

For details of the arithmetic supported for replacement of data type
conversion, see the data type conversion (cast) subsection of “Fixed-Point
Numbers and Arithmetic” on page 31-80.

Example: Creating a TFL Entry to Replace Casts From int32 To int16.
The following example uses the method described in “General Method for
Creating Function and Operator Entries” on page 31-22 to create a TFL
table entry to replace int32 to int16 data type conversion (cast) operations.
In this example:

• The TFL operator entry is instantiated using the RTW.TflCOperationEntry
class.

• The function setTflCOperationEntryParameters is called to set operator
entry parameters. These parameters include the type of operation (cast),
the saturation mode (saturate on overflow), the rounding mode (toward
negative infinity), and the name of the replacement function (my_sat_cast).

31-105

31 Replacing Math Functions and Operators Using Target Function Libraries

• The function getTflArgFromString is called to create an int16 output
argument, which is then added to the operator entry both as the first
conceptual argument and the implementation return argument.

• The function getTflArgFromString is called to create an int32 input
argument, which is then added to the operator entry both as the second
conceptual argument and the sole implementation input argument.

hTable = RTW.TflTable;

% Create an int16 to int32 cast replacement

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_CAST', ...

'Priority', 50, ...

'ImplementationName', 'my_sat_cast', ...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingMode', 'RTW_ROUND_FLOOR', ...

'ImplementationHeaderFile', 'some_hdr.h', ...

'ImplementationSourceFile', 'some_hdr.c');

% Create int16 arg as conceptual arg 1 and implementation return

arg = getTflArgFromString(hTable, 'y1', 'int16');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

op_entry.Implementation.setReturn(arg);

% Create int32 arg as conceptual arg 2 and implementation input arg 1

arg = getTflArgFromString(hTable, 'u1', 'int32');

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

Example: Creating a TFL Entry to Replace Fixed-Point Casts Using Net
Slope. The following example uses the method described in “General Method
for Creating Function and Operator Entries” on page 31-22 to create a TFL
table entry to replace data type conversions (casts) of fixed-point data types
using a net slope. In this example:

31-106

Creating Function Replacement Tables

• The TFL operator entry is instantiated using the
RTW.TflCOperationEntryGenerator_NetSlope class, which provides
access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent.

• The function setTflCOperationEntryParameters is called to set operator
entry parameters. These parameters include the type of operation (cast),
the saturation mode (saturate on overflow), the rounding mode (toward
negative infinity), and the name of the replacement function (my_fxp_cast).
Additionally, NetSlopeAdjustmentFactor and NetFixedExponent are
used to specify the F and E parts of the net slope F2E.

• The function createAndAddConceptualArg is called to create conceptual
output and input arguments that are added to the operator entry. Each
argument is specified as fixed-point and signed. Also, each argument
specifies that TFL replacement request processing should not check for an
exact match to the call-site slope and bias values.

• The functions createAndSetCImplementationReturn and
createAndAddImplementationArg are called to create implementation
return and input arguments that are added to the operator entry.
Implementation arguments must describe fundamental numeric data types
(not fixed-point data types).

hTable = RTW.TflTable;

% Create a fixed-point cast replacement using a NetSlope entry

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

InFL = 2;

InWL = 16;

InSgn = true;

OutFL = 4;

OutWL = 32;

OutSgn = true;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_CAST', ...

'Priority', 50, ...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingMode', 'RTW_ROUND_FLOOR', ...

'NetSlopeAdjustmentFactor', 1.0, ...

'NetFixedExponent', (OutFL - InFL), ...

31-107

31 Replacing Math Functions and Operators Using Target Function Libraries

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingMode', 'RTW_ROUND_FLOOR', ...

'ImplementationName', 'my_fxp_cast', ...

'ImplementationHeaderFile', 'some_hdr.h', ...

'ImplementationSourceFile', 'some_hdr.c');

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'DataTypeMode', 'Fixed-point: binary point scaling', ...

'IsSigned', OutSgn, ...

'WordLength', OutWL, ...

'FractionLength',OutFL);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'DataTypeMode', 'Fixed-point: binary point scaling', ...

'IsSigned', InSgn, ...

'WordLength', InWL, ...

'FractionLength',InFL);

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'IsSigned', OutSgn, ...

'WordLength', OutWL, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', InSgn, ...

'WordLength', InWL, ...

'FractionLength', 0);

31-108

Creating Function Replacement Tables

addEntry(hTable, op_entry);

Mapping Fixed-Point Shift Left Operations to Target-Specific
Implementations

• “Example: Creating a TFL Entry to Replace Shift Lefts for int16 Data”
on page 31-109

• “Example: Creating a TFL Entry to Replace Fixed-Point Shift Lefts Using
Net Slope” on page 31-110

You can use TFL table entries to replace the default generated code for <<
(shift left) operations with calls to optimized functions.

For details of the arithmetic supported for replacement of shift-left operations,
see the shift left subsection of “Fixed-Point Numbers and Arithmetic” on
page 31-80.

Example: Creating a TFL Entry to Replace Shift Lefts for int16 Data.
The following example uses the method described in “General Method for
Creating Function and Operator Entries” on page 31-22 to create a TFL table
entry to replace << (shift left) operations for int16 data. In this example:

• The TFL operator entry is instantiated using the RTW.TflCOperationEntry
class.

• The function setTflCOperationEntryParameters is called to set operator
entry parameters. These parameters include the type of operation (shift
left) and the name of the replacement function (my_shift_left).

• The function getTflArgFromString is called to create an int16 output
argument, which is then added to the operator entry both as the first
conceptual argument and the implementation return argument.

• The function getTflArgFromString is called to create an int16 input
argument, which is then added to the operator entry both as the second
conceptual argument and the first implementation input argument.

• The function getTflArgFromString is called to create an int8 input
argument, which is then added to the operator entry both as the third
conceptual argument and the second implementation input argument. This
argument specifies the number of bits to shift the previous input argument.

31-109

31 Replacing Math Functions and Operators Using Target Function Libraries

Since the argument type is not relevant, type checking is disabled by
setting the CheckType property to false.

hTable = RTW.TflTable;

% Create a shift left replacement for int16 data

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_SL', ...

'Priority', 50, ...

'ImplementationName', 'my_shift_left', ...

'ImplementationHeaderFile', 'some_hdr.h', ...

'ImplementationSourceFile', 'some_hdr.c');

% Create int16 arg as conceptual arg 1 and implementation return

arg = getTflArgFromString(hTable, 'y1', 'int16');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

op_entry.Implementation.setReturn(arg);

% Create int16 arg as conceptual arg 2 and implementation input arg 1

arg = getTflArgFromString(hTable, 'u1', 'int16');

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

% Create int8 arg as conceptual arg 3 and implementation input arg 2

% Turn off type checking for number of bits to shift argument

arg = getTflArgFromString(hTable, 'u2', 'int8');

arg.CheckType = false;

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

Example: Creating a TFL Entry to Replace Fixed-Point Shift Lefts
Using Net Slope. The following example uses the method described in
“General Method for Creating Function and Operator Entries” on page 31-22
to create a TFL table entry to replace << (shift left) operations for fixed-point
data using a net slope. In this example:

31-110

Creating Function Replacement Tables

• The TFL operator entry is instantiated using the
RTW.TflCOperationEntryGenerator_NetSlope class, which provides
access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent.

• The function setTflCOperationEntryParameters is called to set operator
entry parameters. These parameters include the type of operation (shift
left), the saturation mode (saturate on overflow), the rounding mode
(toward negative infinity), and the name of the replacement function
(my_fxp_shift_left). Additionally, NetSlopeAdjustmentFactor and
NetFixedExponent are used to specify the F and E parts of the net slope F2E.

• The function createAndAddConceptualArg is called to create conceptual
output and input arguments that are added to the operator entry. Each
argument is specified as fixed-point and signed. Also, each argument
specifies that TFL replacement request processing should not check for an
exact match to the call-site slope and bias values.

• The functions createAndSetCImplementationReturn and
createAndAddImplementationArg are called to create implementation
return and input arguments that are added to the operator entry.
Implementation arguments must describe fundamental numeric data types
(not fixed-point data types).

• The function getTflArgFromString is called to create a uint8 input
argument, which is then added to the operator entry both as the third
conceptual argument and the second implementation input argument. This
argument specifies the number of bits to shift the previous input argument.
Since the argument type is not relevant, type checking is disabled by
setting the CheckType property to false.

hTable = RTW.TflTable;

% Create a fixed-point shift left replacement using a NetSlope entry

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

InFL = 2;

InWL = 16;

InSgn = true;

OutFL = 4;

OutWL = 32;

OutSgn = true;

setTflCOperationEntryParameters(op_entry, ...

31-111

31 Replacing Math Functions and Operators Using Target Function Libraries

'Key', 'RTW_OP_SL', ...

'Priority', 50, ...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingMode', 'RTW_ROUND_FLOOR', ...

'NetSlopeAdjustmentFactor', 1.0, ...

'NetFixedExponent', (OutFL - InFL),...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingMode', 'RTW_ROUND_FLOOR', ...

'ImplementationName', 'my_fxp_shift_left', ...

'ImplementationHeaderFile', 'some_hdr.h', ...

'ImplementationSourceFile', 'some_hdr.c');

% Create fixed-point arg as conceptual arg 1

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'DataTypeMode', 'Fixed-point: binary point scaling', ...

'IsSigned', OutSgn, ...

'WordLength', OutWL, ...

'FractionLength',OutFL);

% Create fixed-point arg as conceptual arg 2

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'DataTypeMode', 'Fixed-point: binary point scaling', ...

'IsSigned', InSgn, ...

'WordLength', InWL, ...

'FractionLength',InFL);

% Create implementation return arg

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'IsSigned', OutSgn, ...

'WordLength', OutWL, ...

31-112

Creating Function Replacement Tables

'FractionLength', 0);

% Create implementation input arg 1

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', InSgn, ...

'WordLength', InWL, ...

'FractionLength', 0);

% Create uint8 arg as conceptual arg 3 and implementation input arg 2

% Turn off type checking for number of bits to shift argument

arg = getTflArgFromString(hTable, 'u2', 'uint8');

arg.CheckType = false;

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

Remapping Operator Outputs to Implementation
Function Input Positions
If you need your generated code to meet a specific coding pattern or you want
more flexibility, for example, to further improve performance, you have the
option of remapping operator outputs to input positions in an implementation
function argument list.

Note Remapping outputs to implementation function inputs is supported
only for operator replacement.

For example, for a sum operation, the build process might generate code
similar to the following:

rtY.Out1 = u8_add_u8_u8(rtU.In1, rtU.In2);

If you remap the output to the first input, the build process generates code
similar to the following:

uint8_T rtb_Add8;

31-113

31 Replacing Math Functions and Operators Using Target Function Libraries

u8_add_u8_u8(&rtb_Add8, rtU.In1, rtU.In2);
rtY.Out1 = rtb_Add8;

To remap an operator output to an implementation function input for an
existing TFL operator replacement entry, you modify the TFL table definition
file as follows:

1 In the setTflCOperationEntryParameters function call for the operator
replacement, specify the SideEffects parameter as true.

2 When defining the implementation function return, create a new void
output argument, for example, y2.

3 When defining the implementation function arguments, set the operator
output argument (for example, y1) as an additional input argument,
marking its IOType as output, and make its type a pointer type.

For example, the following TFL table definition file for a sum operation
has been modified to remap operator output y1 as the first function input
argument. The modified lines of code are shown in bold type. (This definition
file generated the example remap code shown above.)

function hTable = tfl_table_add_uint8

%TFL_TABLE_ADD_UINT8 - Describe operator entry for a Target Function Library table.

hTable = RTW.TflTable;

% Create entry for addition of built-in uint8 data type

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_ADD', ...

'Priority', 90, ...

'ImplementationName', 'u8_add_u8_u8', ...

'ImplementationHeaderFile', 'u8_add_u8_u8.h', ...

'ImplementationSourceFile', 'u8_add_u8_u8.c', ...

SideEffects , true);

arg = getTflArgFromString(hTable, 'y1', 'uint8');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

31-114

Creating Function Replacement Tables

arg = getTflArgFromString(hTable, 'u1', 'uint8');

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u2', 'uint8');

addConceptualArg(op_entry, arg);

% Create new void output y2

arg = getTflArgFromString(hTable, y2 , void);

arg.IOType = RTW_IO_OUTPUT ;

op_entry.Implementation.setReturn(arg);

% Set y1 as first input arg, mark IOType as output, and use pointer type

arg=getTflArgFromString(hTable, y1 , uint8*);

arg.IOType = RTW_IO_OUTPUT ;

op_entry.Implementation.addArgument(arg);

arg=getTflArgFromString(hTable, 'u1', 'uint8');

op_entry.Implementation.addArgument(arg);

arg=getTflArgFromString(hTable, 'u2', 'uint8');

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

Refining TFL Matching and Replacement Using
Custom TFL Table Entries

• “Example: Customizing TFL Matching and Replacement for Operators”
on page 31-117

• “Example: Customizing TFL Matching and Replacement for Functions”
on page 31-126

During code generation for your model, the TFL replacement capability uses

• Preset match criteria to identify math functions and operators for which
target-specific implementations should replace default implementations

• Preset replacement function signatures

31-115

31 Replacing Math Functions and Operators Using Target Function Libraries

However, preset match criteria and preset replacement function signatures
might not be sufficient for all function and operator replacement needs. For
example,

• You might want to replace an operator with a particular fixed-point
implementation function only when fraction lengths are within a particular
range.

• When a match is made, you might want to modify your replacement
function signature based on compile-time information, such as passing
fraction-length values into the function.

When you need to add extra logic into the TFL matching and replacement
process, you can create custom TFL table entries. Custom entries allow you
to specify additional match criteria and/or modify the replacement function
signature to meet your application needs.

To create a custom TFL table entry, you perform the following steps:

1 Create a custom TFL entry class, derived from either
RTW.TflCOperationEntryML (for operator replacement) or
RTW.TflCFunctionEntryML (for function replacement).

2 In your derived class, implement a do_match method with a fixed preset
signature as a MATLAB function. In your do_match method, you can
provide either or both of the following customizations for use by TFL table
entries that instantiate the class:

a Add any additional match criteria not provided by the base class. The
base class provides a match based on argument number, argument name,
signedness, word size, slope (if not wildcarded), bias (if not wildcarded),
math modes such as saturation and rounding, and operator or function
key. For example, you can accept a match only when additional size or
range conditions are met.

b Modify the implementation signature by adding additional arguments
or setting constant input argument values. For example, you can inject
a constant value, such as an input’s scaling value, as an additional
argument to the replacement function.

3 Create TFL table entries that instantiate your custom TFL entry class.

31-116

Creating Function Replacement Tables

4 Register a TFL containing the TFL table entries. The registered TFL
is then available for selection in the Interface pane of the Simulink
Configuration Parameters dialog box.

During code generation, the TFL matching process first tries to match function
or operator call sites with the base class of your derived entry class. If a match
is found, the software calls your do_match method to execute your additional
match logic (if any) and your replacement function customizations (if any).

The following sections provide examples of creating custom TFL table
entries to refine matching and replacement for operators and functions.
For more examples, see the TFL demos page, including the demo model
rtwdemo_tflcustomentry.

Example: Customizing TFL Matching and Replacement for
Operators
This example demonstrates how to use custom TFL table entries to refine the
matching and replacement logic for operators. In this example, a fixed-point
addition replacement needs to be modified such that the implementation
function passes in the fraction lengths of the input and output data types as
arguments.

1 To exercise the custom TFL table entries created in this example, create an
ERT-based model with one or more unsigned 32-bit fixed-point addition
operations, such as the following:

31-117

31 Replacing Math Functions and Operators Using Target Function Libraries

For the purposes of this example, in the block parameters for both Add
blocks, set Integer rounding mode to Floor and select the option
Saturate on integer overflow.

2 Create a class folder using the name of your derived class, such as
@TflCustomOperationEntry. Make sure the class folder is in the MATLAB
search path or in the current working folder.

3 In the class folder, create and save the following class definition
file, TflCustomOperationEntry.m. This file defines the class
TflCustomOperationEntry, which is derived from the base class
RTW.TflCOperationEntryML

The derived class defines a do_match method . In the do_match method
signature,

• ent is the return handle, which is returned either as empty (indicating
that the match failed) or as a TflCOperationEntry handle.

• hThis is the handle to this object.

• hCSO is a handle to an object created by the code generator for the
purpose of querying the TFL for a replacement.

• The remaining arguments are the number of bits for various data types
of the current target.

The purpose of the do_matchmethod is to add any additional match criteria
not provided by the base class and make any desired modifications to the
implementation signature. In this case, the do_match method can rely on
the base class for checking word size and signedness, and additionally only
needs to match the number of conceptual arguments to the value 3 (two
inputs and one output) and the bias for each argument to the value 0. If a
match is made, the method sets the return handle, removes slope and bias
wildcarding from the conceptual arguments (since the match is for specific
slope and bias values), and writes fraction-length values for the inputs and
output into replacement function arguments 3, 4, and 5.

31-118

Creating Function Replacement Tables

Note The three additional implementation function arguments for passing
fraction lengths can be created and added either here in the class definition
or in each TFL table entry definition that instantiates this class. In this
example, the arguments are created and added in a TFL table definition
file and set to specific values in the class definition code. For an example
of creating and adding additional implementation function arguments
in a class definition, see “Example: Customizing TFL Matching and
Replacement for Functions” on page 31-126.

classdef TflCustomOperationEntry < RTW.TflCOperationEntryML

methods

function ent = do_match(hThis, ...

hCSO, ... %#ok

targetBitPerChar, ... %#ok

targetBitPerShort, ... %#ok

targetBitPerInt, ... %#ok

targetBitPerLong) %#ok

% DO_MATCH - Create a custom match function. The base class

% checks the types of the arguments prior to calling this

% method. This will check additional data and perhaps modify

% the implementation function.

% The base class checks word size and signedness. Slopes and biases

% have been wildcarded, so the only additional checking needed is

% to make sure the biases are zero and that there are only three

% conceptual arguments (one output, two inputs)

ent = []; % default the return to empty, indicating the match failed.

if length(hCSO.ConceptualArgs) == 3 && ...

hCSO.ConceptualArgs(1).Type.Bias == 0 && ...

hCSO.ConceptualArgs(2).Type.Bias == 0 && ...

hCSO.ConceptualArgs(3).Type.Bias == 0

% Need to modify the default implementation. Since this is a

% generator entry, a concrete entry is created using this entry

% as a template. The type of entry being created is a standard

% TflCOperationEntry. Using the standard operation entry is

31-119

31 Replacing Math Functions and Operators Using Target Function Libraries

% sufficient, since it provides the necessary information, and

% a custom match function will no longer be needed.

ent = RTW.TflCOperationEntry(hThis);

% Since this entry is modifying the implementation for specific

% fraction-length values (arguments 3, 4, and 5), the conceptual argument

% wildcards must be removed (the wildcards were inherited from the

% generator when it was used as a template for the concrete entry).

% This concrete entry is now for a specific slope and bias

% (not for any slope and bias). The hCSO holds the correct

% slope and bias values (created by the code generator).

for idx=1:3

ent.ConceptualArgs(idx).CheckSlope = true;

ent.ConceptualArgs(idx).CheckBias = true;

% Set the specific Slope and Biases

ent.ConceptualArgs(idx).Type.Slope = hCSO.ConceptualArgs(idx).Type.Slope;

ent.ConceptualArgs(idx).Type.Bias = 0;

end

% Set the fraction-length values in the implementation function.

ent.Implementation.Arguments(3).Value = ...

-1.0*hCSO.ConceptualArgs(2).Type.FixedExponent;

ent.Implementation.Arguments(4).Value = ...

-1.0*hCSO.ConceptualArgs(3).Type.FixedExponent;

ent.Implementation.Arguments(5).Value = ...

-1.0*hCSO.ConceptualArgs(1).Type.FixedExponent;

end

end

end

end

Exit the class folder and return to the previous working folder.

4 Create and save the following TFL table definition file,
tfl_table_custom_add_ufix32.m. This file defines a TFL table containing
a single operator entry, a TFL entry generator for unsigned 32-bit
fixed-point addition operations, with arbitrary fraction-length values on
the inputs and the output. This entry instantiates the derived class from
the previous step, TflCustomOperationEntry.

31-120

Creating Function Replacement Tables

Note

• If you want to replace all word sizes and signedness attributes (not just
32-bit and unsigned), you can use the same derived class, but not the
same TFL entry, because the WordLength and IsSigned arguments
cannot be wildcarded. For example, to support uint8, int8, uint16,
int16, and int32, you would need to add five other distinct TFL entries.
Similarly, if you wanted to use different implementation functions for
saturation and rounding modes other than overflow and round to floor,
you would need to add TFL entries for those match permutations.

• This table entry creates and adds three implementation arguments to
hold the fraction-length values for the inputs and output. Alternatively,
this table entry could omit those argument definitions and instead the
do_match method of the derived class TflCustomOperationEntry could
create and add the three implementation arguments. In particular, you
should use the alternative approach when the number of additional
implementation arguments required might vary based on compile-time
information.

function hTable = tfl_table_custom_add_ufix32

hTable = RTW.TflTable;

%% Add TflCustomOperationEntry

op_entry = TflCustomOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_ADD', ...

'Priority', 30, ...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingMode', 'RTW_ROUND_FLOOR', ...

'ImplementationName', 'myFixptAdd', ...

'ImplementationHeaderFile', 'myFixptAdd.h', ...

'ImplementationSourceFile', 'myFixptAdd.c');

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'CheckSlope', false, ...

31-121

31 Replacing Math Functions and Operators Using Target Function Libraries

'CheckBias', false, ...

'DataType', 'Fixed', ...

'Scaling', 'BinaryPoint', ...

'IsSigned', false, ...

'WordLength', 32);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'DataType', 'Fixed', ...

'Scaling', 'BinaryPoint', ...

'IsSigned', false, ...

'WordLength', 32);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'DataType', 'Fixed', ...

'Scaling', 'BinaryPoint', ...

'IsSigned', false, ...

'WordLength', 32);

% Specify replacement function signature

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'IsSigned', false, ...

'WordLength', 32, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', false, ...

'WordLength', 32, ...

'FractionLength', 0);

31-122

Creating Function Replacement Tables

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', false, ...

'WordLength', 32, ...

'FractionLength', 0);

% Add 3 fraction-length args. Actual values will be set during code generation.

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ...

'Name', 'fl_in1', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', false, ...

'WordLength', 32, ...

'FractionLength', 0, ...

'Value', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ...

'Name', 'fl_in2', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', false, ...

'WordLength', 32, ...

'FractionLength', 0, ...

'Value', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ...

'Name', 'fl_out', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', false, ...

'WordLength', 32, ...

'FractionLength', 0, ...

'Value', 0);

addEntry(hTable, op_entry);

5 Optionally, perform a quick check of the validity of the function entry by
invoking the table definition file at the MATLAB command line (>> tbl =
tfl_table_custom_add_ufix32) and by viewing it in the TFL Viewer (>>
RTW.viewTfl(tfl_table_custom_add_ufix32)). For more information

31-123

31 Replacing Math Functions and Operators Using Target Function Libraries

about validating TFL tables, see “Examining and Validating Function
Replacement Tables” on page 31-139.

6 Create and save the following TFL registration file, which references the
tfl_table_custom_add_ufix32 table.

The file specifies that the TFL to be registered is named
'Custom TFL Operator Entry Example' and consists of
tfl_table_custom_add_ufix32, with the default ANSI math library as
the base TFL table.

function sl_customization(cm)

% sl_customization function to register a target function library (TFL)

% Register the TFL defined in local function locTflRegFcn

cm.registerTargetInfo(@locTflRegFcn);

end % End of SL_CUSTOMIZATION

% Local function to define a TFL containing tfl_table_custom_add_ufix32

function thisTfl = locTflRegFcn

% Instantiate a TFL registry entry

thisTfl = RTW.TflRegistry;

% Define the TFL properties

thisTfl.Name = 'Custom TFL Operator Entry Example';

thisTfl.Description = 'Demonstration of custom match for operator replacement';

thisTfl.TableList = {'tfl_table_custom_add_ufix32'};

thisTfl.BaseTfl = 'C89/C90 (ANSI)';

thisTfl.TargetHWDeviceType = {'*'};

end % End of LOCTFLREGFCN

Place this sl_customization.m file in the MATLAB search path or in the
current working folder, so that the TFL is registered at each Simulink
startup.

31-124

Creating Function Replacement Tables

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. (To refresh
MATLAB Coder TFL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.)

For more information about registering TFLs with Simulink or MATLAB
Coder software, see “Registering Target Function Libraries” on page 31-148.

7 With your sl_customization.m file in the MATLAB search path or in
the current working folder, open the model you created in step 1 and
navigate to the Code Generation > Interface pane of the Configuration
Parameters dialog box. Verify that the Target function library option
lists the TFL name you specified and select it.

Optionally, you can relaunch the TFL Viewer, using the MATLAB
command RTW.viewTFL with no argument, to examine all registered TFLs,
including Custom TFL Operator Entry Example.

8 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the options Create code generation
report andModel-to-code. Then go to the Code Generation pane, select
the Generate code only option, and generate code for the model.

9 Go to the model window and use model-to-code highlighting to trace the
code generated using your TFL entry. For example, right-click either
Add block and select Code Generation > Navigate to Code. This
selection highlights the Sum block code within the model step function
in the model.c file. As shown below, the default implementation code
for the unsigned 32-bit fixed-point addition operation has been replaced
with myFixptAdd, and the three additional fraction-length arguments are
present.

/* Model step function */

void ufix32_add_step(void)

{

/* Outport: '<Root>/Out1' incorporates:

* Inport: '<Root>/In1'

* Inport: '<Root>/In2'

* Sum: '<Root>/Add'

31-125

31 Replacing Math Functions and Operators Using Target Function Libraries

*/

ufix32_add_Y.Out1 = myFixptAdd(ufix32_add_U.In1, ufix32_add_U.In2, 9U, 7U, 6U);

/* Outport: '<Root>/Out2' incorporates:

* Inport: '<Root>/In3'

* Inport: '<Root>/In4'

* Sum: '<Root>/Add1'

*/

ufix32_add_Y.Out2 = myFixptAdd(ufix32_add_U.In3, ufix32_add_U.In4, 10U, 9U, 7U);

}

Example: Customizing TFL Matching and Replacement for
Functions
This example demonstrates how to use custom TFL table entries to refine the
matching and replacement logic for functions. In this example, a sine function
replacement needs to be modified, only if the integer size on the current
target platform is 32 bits, such that the implementation function passes in a
degrees-versus-radians flag as an input argument.

1 To exercise the custom TFL table entries created in this example, create an
ERT-based model with a sine function block, such as the following:

For the purposes of this example, in the import block parameters, set the
signal Data type to double. Also, if the target platform selected for your
model on the Hardware Implementation pane of the Configuration
Parameters dialog box supports an integer size other than 32, you should
either temporarily select a target platform with a 32-bit integer size, or
modify the code in this example to match the integer size of your target
platform.

31-126

Creating Function Replacement Tables

2 Create a class folder using the name of your derived class, such as
@TflCustomFunctionEntry. Make sure the class folder is in the MATLAB
search path or in the current working folder.

3 In the class folder, create and save the following class definition
file, TflCustomFunctionEntry.m. This file defines the class
TflCustomFunctionEntry, which is derived from the base class
RTW.TflCFunctionEntryML

The derived class defines a do_match method . In the do_match method
signature,

• ent is the return handle, which is returned either as empty (indicating
that the match failed) or as a TflCFunctionEntry handle.

• hThis is the handle to this object.

• hCSO is a handle to an object created by the code generator for the
purpose of querying the TFL for a replacement.

• The remaining arguments are the number of bits for various data types
of the current target.

The purpose of the do_matchmethod is to add any additional match criteria
not provided by the base class and make any desired modifications to the
implementation signature. In this case, the do_match method only needs
to match targetBitPerInt, representing the number of bits in the C int
data type for the current target, to the value 32. If a match is made, the
method sets the return handle and creates and adds an input argument,
representing whether units are expressed as degrees or radians, to the
replacement function signature.

Note Alternatively, the additional implementation function argument
for passing a units flag could be created and added in each TFL table
definition file that instantiates this class. In that case, this class definition
code would not create the argument and would only set its value. For
an example of creating and adding additional implementation function
arguments in a table definition file, see “Example: Customizing TFL
Matching and Replacement for Operators” on page 31-117.

31-127

31 Replacing Math Functions and Operators Using Target Function Libraries

classdef TflCustomFunctionEntry < RTW.TflCFunctionEntryML

methods

function ent = do_match(hThis, ...

hCSO, ... %#ok

targetBitPerChar, ... %#ok

targetBitPerShort, ... %#ok

targetBitPerInt, ... %#ok

targetBitPerLong) %#ok

% DO_MATCH - Create a custom match function. The base class

% checks the types of the arguments prior to calling this

% method. This will check additional data and perhaps modify

% the implementation function.

ent = []; % default the return to empty, indicating the match failed.

% Match sine function only if the target int size is 32 bits

if targetBitPerInt == 32

% Need to modify the default implementation, starting from a copy

% of the standard TflCFunctionEntry.

ent = RTW.TflCFunctionEntry(hThis);

% If the target int size is 32 bits, the implementation function

% takes an additional input flag argument indicating degress vs.

% radians. The additional argument can be created and added either

% in the TFL table definition file that instantiates this class, or

% here in the class definition, as follows:

createAndAddImplementationArg(ent, 'RTW.TflArgNumericConstant', ...

'Name', 'u2', ...

'IsSigned', true, ...

'WordLength', 32, ...

'FractionLength', 0, ...

'Value', 1);

end

end

end

end

Exit the class folder and return to the previous working folder.

31-128

Creating Function Replacement Tables

4 Create and save the following TFL table definition file,
tfl_table_custom_sinfcn_double.m. This file defines a TFL table
containing a function table entry for sine with double input and
output. This entry instantiates the derived class from the previous step,
TflCustomFunctionEntry.

function hTable = tfl_table_custom_sinfcn_double

hTable = RTW.TflTable;

%% Add TflCustomFunctionEntry

fcn_entry = TflCustomFunctionEntry;

setTflCFunctionEntryParameters(fcn_entry, ...

'Key', 'sin', ...

'Priority', 30, ...

'ImplementationName', 'mySin', ...

'ImplementationHeaderFile', 'mySin.h', ...

'ImplementationSourceFile', 'mySin.c');

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'DataTypeMode', 'double');

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'DataTypeMode', 'double');

% TflCustomFunctionEntry class do_match method will create and add

% an implementation function argument during code generation if

% the supported integer size on the current target is 32 bits.

copyConceptualArgsToImplementation(fcn_entry);

addEntry(hTable, fcn_entry);

5 Optionally, perform a quick check of the validity of the function entry
by invoking the table definition file at the MATLAB command line (>>
tbl = tfl_table_custom_sinfcn_double) and by viewing it in the TFL
Viewer (>> RTW.viewTfl(tfl_table_custom_sinfcn_double)). For more

31-129

31 Replacing Math Functions and Operators Using Target Function Libraries

information about validating TFL tables, see “Examining and Validating
Function Replacement Tables” on page 31-139.

6 Create and save the following TFL registration file, which references the
tfl_table_custom_sinfcn_double table.

The file specifies that the TFL to be registered is named
'Custom TFL Function Entry Example' and consists of
tfl_table_custom_sinfcn_double, with the default ANSI math library
as the base TFL table.

function sl_customization(cm)

% sl_customization function to register a target function library (TFL)

% Register the TFL defined in local function locTflRegFcn

cm.registerTargetInfo(@locTflRegFcn);

end % End of SL_CUSTOMIZATION

% Local function to define a TFL containing tfl_table_custom_sinfcn_double

function thisTfl = locTflRegFcn

% Instantiate a TFL registry entry

thisTfl = RTW.TflRegistry;

% Define the TFL properties

thisTfl.Name = 'Custom TFL Function Entry Example';

thisTfl.Description = 'Demonstration of custom match for function replacement';

thisTfl.TableList = {'tfl_table_custom_sinfcn_double'};

thisTfl.BaseTfl = 'C89/C90 (ANSI)';

thisTfl.TargetHWDeviceType = {'*'};

end % End of LOCTFLREGFCN

Place this sl_customization.m file in the MATLAB search path or in the
current working folder, so that the TFL is registered at each Simulink
startup.

31-130

Creating Function Replacement Tables

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. (To refresh
MATLAB Coder TFL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.)

For more information about registering TFLs with Simulink or MATLAB
Coder software, see “Registering Target Function Libraries” on page 31-148.

7 With your sl_customization.m file in the MATLAB search path or in
the current working folder, open the model you created in step 1 and
navigate to the Code Generation > Interface pane of the Configuration
Parameters dialog box. Verify that the Target function library option
lists the TFL name you specified and select it.

Optionally, you can relaunch the TFL Viewer, using the MATLAB
command RTW.viewTFL with no argument, to examine all registered TFLs,
including Custom TFL Function Entry Example.

8 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the options Create code generation
report andModel-to-code. Then go to the Code Generation pane, select
the Generate code only option, and generate code for the model.

9 Go to the model window and use model-to-code highlighting to trace the
code generated using your TFL entry. For example, right-click the sine
block and select Code Generation > Navigate to Code. This selection
highlights the sine block code within the model step function in the
model.c file. As shown below, the default implementation code for the
sine function has been replaced with mySin, and the additional units flag
input argument is present.

/* Model step function */

void sine_double_step(void)

{

/* Outport: '<Root>/Out1' incorporates:

* Inport: '<Root>/In1'

* Trigonometry: '<Root>/Trigonometric Function'

*/

sine_double_Y.Out1 = mySin(sine_double_U.In1, 1);

31-131

31 Replacing Math Functions and Operators Using Target Function Libraries

}

Note Optionally, you can change the current target for the model such
that the supported integer size is not 32 bits, and then regenerate code.
In that case, the custom match is not made, and the additional input
argument does not appear in the generated code for the sine block.

Replacing Math Functions Based on Computation
Method
Certain math function blocks are configured with computation or
approximation methods that you can use as distinguishing attributes to
control TFL-based function replacement. For example,

• You can configure the rSqrt block to use either of two computation methods,
Newton-Raphson or Exact.

• You can configure the Trigonometric Function block, with Function set to
sin or cos, to use either of two approximation methods, CORDIC or None.

You can define TFL table entries to replace these functions for one or all of
the available computation methods. For example, you could provide a table
entry to replace only Newton-Raphson instances of the rSqrt function.

To distinguish between computation methods for a given function, use
the EntryInfoAlgorithm property of TFL function entries in a call to the
setTflCFunctionEntryParameters function. The arguments for specifying
the computation method to match during code generation are:

• For rSqrt:

- 'RTW_DEFAULT' (match the default computation method, Exact)

- 'RTW_NEWTON_RAPHSON'

- 'RTW_UNSPECIFIED' (match any computation method)

• For Sine or Cosine:

- 'RTW_CORDIC'

- 'RTW_DEFAULT' (match the default approximation method, None)

31-132

Creating Function Replacement Tables

- 'RTW_UNSPECIFIED' (match any approximation method)

For example, to replace only Newton-Raphson instances of the rSqrt function,
you can create a table entry similar to the following:

hLib = RTW.TflTable;

%
% real_T rsqrt(real_T)
%

e = RTW.TflCFunctionEntry;
setTflCFunctionEntryParameters(e, ...

'Key', 'rSqrt', ...
'Priority', 80, ...
'ImplementationName', 'rsqrt_newton', ...
'ImplementationHeaderFile', 'rsqrt.h', ...
EntryInfoAlgorithm , RTW_NEWTON_RAPHSON);

createAndAddConceptualArg(e, 'RTW.TflArgNumeric', ...
'Name', 'y1', ...
'IOType', 'RTW_IO_OUTPUT', ...
'DataTypeMode', 'double');

createAndAddConceptualArg(e, 'RTW.TflArgNumeric', ...
'Name', 'u1', ...
'DataTypeMode', 'double');

copyConceptualArgsToImplementation(e);
addEntry(hLib, e);

The generated code for a Newton-Raphson instance of the rSqrt function
resembles the following:

/* Model step function */
void mrsqrt_step(void)
{

/* Outport: '<Root>/Out1' incorporates:
* Inport: '<Root>/In1'
* Sqrt: '<Root>/rSqrtBlk'
*/

mrsqrt_Y.Out1 = rsqrt_newton(mrsqrt_U.In1);
}

31-133

31 Replacing Math Functions and Operators Using Target Function Libraries

Specifying Build Information for Function
Replacements

• “Functions for Specifying Table Entry Build Information” on page 31-134

• “Using RTW.copyFileToBuildDir to Copy Files to the Build Folder” on
page 31-135

• “RTW.copyFileToBuildDir Examples” on page 31-135

Functions for Specifying Table Entry Build Information
As you create TFL table entries for function or operator replacement,
you specify the header and source file information for each function
implementation using one of the following:

• The arguments ImplementationHeaderFile,
ImplementationHeaderPath, ImplementationSourceFile, and
ImplementationSourcePath to setTflCFunctionEntryParameters or
setTflCOperationEntryParameters

• The headerFile argument to registerCFunctionEntry,
registerCPPFunctionEntry, or registerCPromotableMacroEntry

Also, each table entry can specify additional header files, source files, and
object files to be included in model builds whenever the TFL table entry is
matched and used to replace a function or operator in generated code. To add
an additional header file, source file, or object file, use the following TFL
table creation functions.

Function Description

addAdditionalHeaderFile Add additional header file to array of
additional header files for TFL table entry

addAdditionalIncludePath Add additional include path to array of
additional include paths for TFL table entry

addAdditionalLinkObj Add additional link object to array of
additional link objects for TFL table entry

31-134

Creating Function Replacement Tables

Function Description

addAdditionalLinkObjPath Add additional link object path to array of
additional link object paths for TFL table
entry

addAdditionalSourceFile Add additional source file to array of
additional source files for TFL table entry

addAdditionalSourcePath Add additional source path to array of
additional source paths for TFL table entry

Using RTW.copyFileToBuildDir to Copy Files to the Build Folder
If a TFL table entry uses header, source, or object files that reside in external
directories, and if the table entry is matched and used to replace a function
or operator in generated code, the external files will need to be copied to the
build folder before the generated code is built. The RTW.copyFileToBuildDir
function can be invoked after code generation to copy the table entry’s
specified header file, source file, additional header files, additional source
files, and additional link objects to the build folder. The copied files are then
available for use in the build process.

To direct that a table entry’s external files should be copied to the build folder
after code generation, specify the argument 'RTW.copyFileToBuildDir' to
the genCallback parameter of the TFL function that you use to set the table
entry parameters, among the following:

• registerCFunctionEntry

• registerCPPFunctionEntry

• registerCPromotableMacroEntry

• setTflCFunctionEntryParameters

• setTflCOperationEntryParameters

RTW.copyFileToBuildDir Examples
The following example defines a table entry for an optimized multiplication
function that takes signed 32-bit integers and returns a signed 32-bit integer,
taking saturation into account. Multiplications in the generated code will

31-135

31 Replacing Math Functions and Operators Using Target Function Libraries

be replaced with calls to your optimized function. Your optimized function
resides in an external folder and must be copied into the build folder to be
compiled and linked into the application.

The multiplication table entry specifies the source and header file names as
well as their full paths. To request the copy to be performed, the table entry
specifies the argument 'RTW.copyFileToBuildDir' to the genCallback
parameter of the setTflCOperationEntryParameters function. In this
example, the header file s32_mul.h contains an inlined function that invokes
assembly functions contained in s32_mul.s. If the table entry is matched and
used to generate code, the RTW.copyFileToBuildDir function will copy the
specified source and header files into the build folder.

function hTable = make_my_tfl_table

hTable = RTW.TflTable;

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_MUL', ...

'Priority', 100, ...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingMode', 'RTW_ROUND_UNSPECIFIED', ...

'ImplementationName', 's32_mul_s32_s32_sat', ...

'ImplementationHeaderFile', 's32_mul.h', ...

'ImplementationSourceFile', 's32_mul.s', ...

'ImplementationHeaderPath', {fullfile('$(MATLAB_ROOT)','tfl')}, ...

'ImplementationSourcePath', {fullfile('$(MATLAB_ROOT)','tfl')}, ...

'GenCallback', 'RTW.copyFileToBuildDir');

.

.

.

addEntry(hTable, op_entry);

The following example shows the use of the addAdditional* functions along
with RTW.copyFileToBuildDir.

hTable = RTW.TflTable;

% Path to external source, header, and object files

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

31-136

Creating Function Replacement Tables

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_ADD', ...

'Priority', 90, ...

'SaturationMode', 'RTW_SATURATE_UNSPECIFIED', ...

'RoundingMode', 'RTW_ROUND_UNSPECIFIED', ...

'ImplementationName', 's32_add_s32_s32', ...

'ImplementationHeaderFile', 's32_add_s32_s32.h', ...

'ImplementationSourceFile', 's32_add_s32_s32.c'...

'GenCallback', 'RTW.copyFileToBuildDir');

addAdditionalHeaderFile(op_entry, 'all_additions.h');

addAdditionalIncludePath(op_entry, fullfile(libdir, 'include'));

addAdditionalSourceFile(op_entry, 'all_additions.c');

addAdditionalSourcePath(op_entry, fullfile(libdir, 'src'));

addAdditionalLinkObj(op_entry, 'addition.o');

addAdditionalLinkObjPath(op_entry, fullfile(libdir, 'bin'));

.

.

.

addEntry(hTable, op_entry);

Adding Target Function Library Reserved Identifiers
The Simulink Coder software reserves certain words for its own use
as keywords of the generated code language. Reserved keywords for
code generation are for use internal to the Simulink Coder software
or C programming and should not be used in Simulink models as
identifiers or function names. Reserved keywords for code generation
include many TFL identifiers, the majority of which are function
names, such as acos. To view a list of reserved identifiers for the
TFL that you are using to generate code, call the MATLAB function
RTW.TargetRegistry.getInstance.getTflReservedIdentifiers, passing
the name of the TFL as displayed in the Target function library menu on
the Interface pane of the Configuration Parameters dialog box. For example,

tfl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU99 (GNU)')

For more information, see “Simulink Coder Target Function Library
Keywords” in the Simulink Coder documentation.

31-137

31 Replacing Math Functions and Operators Using Target Function Libraries

In a TFL table, each function implementation name defined by a table
entry is registered as a reserved identifier. You can register additional
reserved identifiers for the table on a per-header-file basis. Providing
additional reserved identifiers can help prevent duplicate symbols and other
identifier-related compile and link issues.

To register additional TFL reserved identifiers, use the following function.

Function Description

setReservedIdentifiers Register specified reserved identifiers to be
associated with TFL table

You can register up to four reserved identifier structures in a TFL table. One
set of reserved identifiers can be associated with an arbitrary TFL, while
the other three (if present) must be associated with ANSI, ISO16, or GNU17

libraries. The following example shows a reserved identifier structure that
specifies two identifiers and the associated header file.

d{1}.LibraryName = 'ANSI';

d{1}.HeaderInfos{1}.HeaderName = 'math.h';

d{1}.HeaderInfos{1}.ReservedIds = {'y0', 'y1'};

The specified identifiers are added to the reserved identifiers collection and
honored during the build procedure. For more information and examples, see
setReservedIdentifiers.

16. ISO® is a registered trademark of the International Organization for Standardization.

17. GNU® is a registered trademark of the Free Software Foundation.

31-138

Examining and Validating Function Replacement Tables

Examining and Validating Function Replacement Tables

In this section...

“Overview of Function Replacement Table Validation” on page 31-139

“Invoking the Table Definition File” on page 31-139

“Using the Target Function Library Viewer to Examine Your Table” on
page 31-140

“Using the Target Function Library Viewer to Examine Registered TFLs”
on page 31-141

“Tracing Code Generated Using Your Target Function Library” on page
31-143

“Examining TFL Cache Hits and Misses” on page 31-144

Overview of Function Replacement Table Validation
After you create a target function library (TFL) table containing your function
replacement entries, but before you deploy production TFLs containing your
table for general use in building models, you can use various techniques to
examine and validate the TFL table entries. These include:

• Invoking the table definition file

• Using the TFL Viewer at various stages of TFL development to examine
TFLs, tables, and entries

• Tracing code generated from models for which your TFL is selected

• Examining TFL cache hits and misses logged during code generation

Invoking the Table Definition File
Immediately after creating or modifying a table definition file (as described in
“Creating Function Replacement Tables” on page 31-16), you should invoke
it at the MATLAB command line. This invocation serves as a check of the
validity of your table entries. For example,

>> tbl = tfl_table_sinfcn

tbl =

31-139

31 Replacing Math Functions and Operators Using Target Function Libraries

RTW.TflTable

Version: '1.0'

AllEntries: [2x1 RTW.TflCFunctionEntry]

ReservedSymbols: []

StringResolutionMap: []

>>

Any errors found during the invocation are displayed. In the following
example, a typo in a data type name is detected and displayed.

>> tbl = tfl_table_sinfcn

??? RTW_CORE:tfl:TflTable: Unsupported data type, 'dooble'.

Error in ==> tfl_table_sinfcn at 7

hTable.registerCFunctionEntry(100, 1, 'sin', 'dooble', 'sin_dbl', ...

>>

Using the Target Function Library Viewer to Examine
Your Table
After creating or modifying a table definition file, as a further check of your
table entries, you should use the TFL Viewer to display and examine your
table. Invoke the TFL Viewer using the following form of the MATLAB
command RTW.viewTfl:

RTW.viewTfl(table-name)

For example,

>> RTW.viewTfl(tfl_table_sinfcn)

31-140

Examining and Validating Function Replacement Tables

Select entries in your table and verify that the graphical display of the
contents of your table meets your expectations. Common problems that can be
detected at this stage include:

• Incorrect argument order

• Conceptual argument naming that does not match the naming convention
used by the code generation process

• Incorrect relative priority of entries within the table (highest priority is 0,
and lowest priority is 100).

For more information about the TFL Viewer, see “Using the Target Function
Library Viewer” in the Simulink Coder documentation.

Using the Target Function Library Viewer to Examine
Registered TFLs
After you register a TFL that includes your function replacement table (as
described in “Registering Target Function Libraries” on page 31-148), you
should use the TFL Viewer to verify that your TFL was properly registered
and to examine the TFL and the tables it contains. Invoke the TFL Viewer

31-141

31 Replacing Math Functions and Operators Using Target Function Libraries

using the MATLAB command RTW.viewTfl with no arguments. This
command displays all TFLs registered in the current Simulink session. For
example:

>> RTW.viewTfl

If your TFL is not displayed,

• There may be an error in your TFL registration file.

• You may need to refresh the TFL registration information by
issuing the MATLAB command sl_refresh_customizations
or, for a MATLAB Coder TFL registration, using the command
RTW.TargetRegistry.getInstance('reset').

If your TFL is displayed, select the TFL and examine and compare its tables,
including their relative order. Common problems that can be detected at
this stage include

• Incorrect relative order of tables in the library (tables are displayed in
search order)

• Table entry problems as listed in the previous section

31-142

Examining and Validating Function Replacement Tables

For more information about the TFL Viewer, see “Using the Target Function
Library Viewer” in the Simulink Coder documentation.

Tracing Code Generated Using Your Target Function
Library
After you register a TFL that includes your function replacement tables,
you should use the TFL to generate code and verify that you are obtaining
the function or operator replacement that you expect. For example, the
following approach uses model-to-code highlighting to trace a specific expected
replacement.

1 Open a ERT-based model for which you anticipate that a function or
operator replacement should occur.

2 Select your TFL in the Target function library drop-down list on the
Interface pane of the Configuration Parameters dialog box.

3 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the options Create code generation
report and Model-to-code.

4 Go to the Code Generation pane, select the Generate code only option,
and generate code for the model.

5 Go to the model window and use model-to-code highlighting to trace the
code generated using your TFL. For example, right-click a block that you
expect to have generated a function or operator replacement and select
Code Generation > Navigate to Code. This selection highlights the
applicable generated function code within sinefcn.c as shown in HTML
code generation report.

31-143

31 Replacing Math Functions and Operators Using Target Function Libraries

Inspect the generated code and see if the function or operator replacement
occurred as you expected.

Note If a function or operator was not replaced as you expected, it means
that a call site request was not matched as you intended by your table entry
attributes. Either a higher-priority (lower priority value) match was used or
no match was found. You can analyze the TFL table entry matching behavior
by using the following resources together:

• TFL Viewer, as described in “Using the Target Function Library Viewer
to Examine Your Table” on page 31-140 and “Using the Target Function
Library Viewer to Examine Registered TFLs” on page 31-141

• HTML code generation reports, with bidirectional tracing including
model-to-code highlighting

• Statistics for TFL cache hits and misses logged during code generation, as
described in “Examining TFL Cache Hits and Misses” on page 31-144

Examining TFL Cache Hits and Misses
Target function library (TFL) replacement may behave differently than
you expect in some cases. To verify that you are obtaining the function or

31-144

Examining and Validating Function Replacement Tables

operator replacement that you expect, you first inspect the generated code, as
described in “Tracing Code Generated Using Your Target Function Library”
on page 31-143.

To analyze replacement behavior, in addition to referencing the generated
code and examining your TFL tables in the TFL Viewer, you can view the TFL
cache hits and misses logged during the most recent code generation session.
This approach provides information on what data types and attributes should
be registered in order to achieve the desired replacement.

To display the TFL cache hits and misses logged during the most recent code
generation session, you specify the model parameter TargetFcnLibHandle in
a get_param call, as follows:

>> tfl=get_param('model', 'TargetFcnLibHandle')

The resulting display includes the following fields:

Field Description

HitCache Table containing function entries that were successfully
matched during a code generation session. These entries
represent function implementations that should appear in
the generated code.

MissCache Table containing function entries that failed to match during
a code generation session. These entries are created by the
code generation process for the purpose of querying the TFL
to locate a registered implementation. If there is a registered
implementation that you feel should have been used in the
generated code and was not, examining the MissCache for
entries that are similar but did not match can help you locate
discrepancies in a conceptual argument list or in table entry
attributes.

31-145

31 Replacing Math Functions and Operators Using Target Function Libraries

Note You also can view cache hits and misses in the TFL Viewer, using the
TFL handle returned by the get_param call. For example:

>> tfl=get_param('model', 'TargetFcnLibHandle')

>> RTW.viewTfl(tfl)

This opens the TFL viewer. You can then examine the cache hits and misses
by clicking on the entries under those caches.

In the following example, the most recent code generation session logged
one cache hit and zero cache misses. You can examine the logged HitCache
entry using its table index.

>> a=get_param(sinefcn , TargetFcnLibHandle)

a =

RTW.TflControl

Version: '1.0'

HitCache: [1x1 RTW.TflCFunctionEntry]

MissCache: [0x1 handle]

TLCCallList: [0x1 handle]

TflTables: [2x1 RTW.TflTable]

>> a.HitCache(1)

ans =

RTW.TflCFunctionEntry

Key: 'sin'

Priority: 100

ConceptualArgs: [2x1 RTW.TflArgNumeric]

Implementation: [1x1 RTW.CImplementation]

RTWmakecfgLibName: ''

GenCallback: ''

GenFileName: ''

SaturationMode: 'RTW_SATURATE_UNSPECIFIED'

RoundingMode: 'RTW_ROUND_UNSPECIFIED'

AcceptExprInput: 1

31-146

Examining and Validating Function Replacement Tables

SideEffects: 0

UsageCount: 2

SharedUsageCount: 0

Description: ''

ImplType: 'FCN_IMPL_FUNCT'

AdditionalHeaderFiles: {0x1 cell}

AdditionalIncludePaths: {0x1 cell}

AdditionalSourceFiles: {0x1 cell}

AdditionalSourcePaths: {0x1 cell}

AdditionalLinkObjs: {0x1 cell}

AdditionalLinkObjsPaths: {0x1 cell}

>>

31-147

31 Replacing Math Functions and Operators Using Target Function Libraries

Registering Target Function Libraries

In this section...

“Overview of TFL Registration” on page 31-148

“Using the sl_customization API to Register a TFL with Simulink Software”
on page 31-149

“Using the rtwTargetInfo API to Register a TFL with MATLAB® Coder
Software” on page 31-153

“Registering Multiple TFLs” on page 31-154

Overview of TFL Registration
After you define function and operator replacements in a target function
library (TFL) table definition file, your table can be included in a TFL that
you register either with Simulink software or with MATLAB Coder software.
When a TFL is registered, it appears in the Target function library
drop-down list on the Interface pane of either the Simulink Configuration
Parameters dialog box or the MATLAB Coder Project Settings dialog box. You
can select it from the Target function library drop-down list for use in
code generation.

To register TFLs with Simulink software, use the Simulink customization
file sl_customization.m. This file is a mechanism that allows you to use
MATLAB code to perform customizations of the standard Simulink user
interface. The Simulink software reads the sl_customization.m file, if
present on the MATLAB path, when it starts and the customizations specified
in the file are applied to the Simulink session. For more information on the
sl_customization.m customization file, see “Customizing the Simulink User
Interface” in the Simulink documentation.

To register TFLs with MATLAB Coder software, use the MATLAB Coder
customization file rtwTargetInfo.m. This file is a mechanism that allows
you to use MATLAB code to perform customizations of the standard
MATLAB Coder project settings. The MATLAB Coder software reads the
rtwTargetInfo.m file, if present on the MATLAB path, when it starts and the
customizations specified in the file are applied to the MATLAB Coder session.

31-148

Registering Target Function Libraries

Using the sl_customization API to Register a TFL with
Simulink Software
To register a TFL, you create an instance of sl_customization.m and
include it on the MATLAB path of the Simulink installation that you want to
customize. The sl_customization function accepts one argument: a handle
to a customization manager object. The function is declared as follows:

function sl_customization(cm)

The body of the sl_customization function invokes the
registerTargetInfo(tfl) method to register one or more TFLs
with the Simulink software. Typically, the registerTargetInfo function call
references a local function that defines the TFLs to be registered. For example:

% Register the TFL defined in local function locTflRegFcn

cm.registerTargetInfo(@locTflRegFcn);

end % End of SL_CUSTOMIZATION

Below the sl_customization function, the referenced local function describes
one or more TFLs to be registered. For example, you can declare the local
function as follows:

% Local function to define a TFL

function thisTfl = locTflRegFcn

In the local function body, for each TFL to be registered, you instantiate a
TFL registry entry using tfl = RTW.TflRegistry. For example,

thisTfl = RTW.TflRegistry;

Then, you define the TFL properties shown in the following table within the
registry entry.

31-149

31 Replacing Math Functions and Operators Using Target Function Libraries

TFL Property Description

Name String specifying the name of the TFL, as it should
be displayed in the Target function library
drop-down list on the Interface pane of the
Configuration Parameters dialog box.

Description String specifying a text description of the TFL, as
it should be displayed in the tool tip for the TFL in
the Configuration Parameters dialog box.

TableList Cell array of strings specifying the tables that
make up the TFL, in descending priority order.
Tables can be specified in any of the following
ways:

• Name of a TFL table file on the MATLAB search
path

• Absolute path to a table file

• Path to a table file relative to $(MATLAB_ROOT)

See “Registering Multiple TFLs” on page 31-154
for examples of each type of table specification.

BaseTfl String specifying the name of the TFL on which
this TFL is based.

Note To ensure that functions, macros, and
constants used by built-in blocks are available
in your TFL, and to help ensure compatibility
between releases, you must specify one of the
default MathWorks libraries as the base TFL:
'C89/C90 (ANSI)', 'C99 (ISO)', 'GNU99 (GNU)',
'C++ (ISO)', or an equivalent alias.

31-150

Registering Target Function Libraries

TFL Property Description

TargetHWDeviceType Always specify {'*'}.

LanguageConstraint Cell array of strings specifying language constraint
keywords. You must specify {'C++'} if your TFL
includes C++ function entries or a mix of C and
C++ function entries. Otherwise you can omit the
field or specify it as empty.

For example:

thisTfl.Name = 'Sine Function Example';

thisTfl.Description = 'Demonstration of sine function replacement';

thisTfl.TableList = {'tfl_table_sinfcn'};

thisTfl.BaseTfl = 'C89/C90 (ANSI)';

thisTfl.TargetHWDeviceType = {'*'};

end % End of LOCTFLREGFCN

Combining the elements described in this section, the complete
sl_customization function for the 'Sine Function Example' TFL would
appear as follows:

function sl_customization(cm)

% sl_customization function to register a target function library (TFL)

% for use with Simulink

% Register the TFL defined in local function locTflRegFcn

cm.registerTargetInfo(@locTflRegFcn);

end % End of SL_CUSTOMIZATION

% Local function to define a TFL containing tfl_table_sinfcn

function thisTfl = locTflRegFcn

% Instantiate a TFL registry entry

thisTfl = RTW.TflRegistry;

% Define the TFL properties

31-151

31 Replacing Math Functions and Operators Using Target Function Libraries

thisTfl.Name = 'Sine Function Example';

thisTfl.Description = 'Demonstration of sine function replacement';

thisTfl.TableList = {'tfl_table_sinfcn'};

thisTfl.BaseTfl = 'C89/C90 (ANSI)';

thisTfl.TargetHWDeviceType = {'*'};

end % End of LOCTFLREGFCN

If you place the sl_customization.m file containing this function in the
MATLAB search path or in the current working folder, the TFL is registered
at each Simulink startup. The Simulink software will display the TFL in
the Target function library drop-down list on the Interface pane of the
Configuration Parameters dialog box. For example, the following figure shows
the Configuration Parameters dialog box display, including tool tip, for the
'Sine Function Example' TFL.

Tip

• To refresh Simulink customizations within the current MATLAB session,
use the command sl_refresh_customizations.

• To list all sl_customization files in the current search path, use the
command which sl_customization -all.

• If you disable a TFL registration (for example, by renaming the registration
file sl_customization.m and then issuing sl_refresh_customizations),
you may want to reset and save the Target function library option
setting in any saved models that selected the disabled TFL.

31-152

Registering Target Function Libraries

Using the rtwTargetInfo API to Register a TFL with
MATLAB Coder Software
To register a TFL for use with MATLAB Coder software, you create an
instance of rtwTargetInfo.m and include it on the MATLAB path of the
MATLAB Coder installation that you want to customize. The rtwTargetInfo
function accepts one argument: a handle to a target registration object. The
function is declared as follows:

function rtwTargetInfo(tr)

The body of the rtwTargetInfo function invokes the
registerTargetInfo(tfl) method provided by the target registry object to
register one or more TFLs with the MATLAB Coder software. Typically, the
registerTargetInfo function call references a local function that defines the
TFLs to be registered. For example:

% Register the TFL defined in local function locTflRegFcn

tr.registerTargetInfo(@locTflRegFcn);

end % End of RTWTARGETINFO

Below the rtwTargetInfo function, the referenced local function describes
one or more TFLs to be registered. The format exactly matches the TFL
description format previously described for Simulink use. For example,
here is the MATLAB Coder equivalent of the complete TFL registration
file displayed in “Using the sl_customization API to Register a TFL with
Simulink Software” on page 31-149.

function rtwTargetInfo(tr)

% rtwTargetInfo function to register a target function library (TFL)

% for use with codegen

% Register the TFL defined in local function locTflRegFcn

tr.registerTargetInfo(@locTflRegFcn);

end % End of RTWTARGETINFO

% Local function to define a TFL containing tfl_table_sinfcn

function thisTfl = locTflRegFcn

31-153

31 Replacing Math Functions and Operators Using Target Function Libraries

% Instantiate a TFL registry entry

thisTfl = RTW.TflRegistry;

% Define the TFL properties

thisTfl.Name = 'Sine Function Example';

thisTfl.Description = 'Demonstration of sine function replacement';

thisTfl.TableList = {'tfl_table_sinfcn'};

thisTfl.BaseTfl = 'C89/C90 (ANSI)';

thisTfl.TargetHWDeviceType = {'*'};

end % End of LOCTFLREGFCN

If you place the rtwTargetInfo.m file containing this function in the
MATLAB search path or in the current working folder, the TFL is registered
at each MATLAB Coder startup. The MATLAB Coder software will display
the TFL in the Target function library drop-down list on the Code
Generation > Interface pane of the Configuration Parameter dialog box.

Tip To refresh MATLAB Coder TFL registration information
within the current MATLAB session, use the command
RTW.TargetRegistry.getInstance('reset');.

Registering Multiple TFLs
For an example of a TFL registration file that registers multiple TFLs, see
the sl_customization.m file used in the TFL demo, rtwdemo_tfl_script.
The following example illustrates the general approach, which applies equally
to Simulink and MATLAB Coder TFL registration files. In this example,
the three TFL tables referenced in the TableList fields reside at different
locations, either on the MATLAB search path or at locations specified using
path strings.

function sl_customization(cm)

cm.registerTargetInfo(@locTflRegFcn);

end % End of SL_CUSTOMIZATION

31-154

Registering Target Function Libraries

% Local function(s)

function thisTfl = locTflRegFcn

% Register a Target Function Library for use with model: rtwdemo_tfladdsub.mdl

thisTfl(1) = RTW.TflRegistry;

thisTfl(1).Name = 'Addition & Subtraction Examples';

thisTfl(1).Description = 'Demonstration of addition/subtraction op replacement';

thisTfl(1).TableList = {'tfl_table_addsub'};

thisTfl(1).BaseTfl = 'C89/C90 (ANSI)';

thisTfl(1).TargetHWDeviceType = {'*'};

% Register a Target Function Library for use with model: rtwdemo_tflmuldiv.mdl

thisTfl(2) = RTW.TflRegistry;

thisTfl(2).Name = 'Multiplication & Division Examples';

thisTfl(2).Description = 'Demonstration of mult/div op repl for built-in integers';

thisTfl(2).TableList = {'c:/work_tfl/tfl_table_muldiv'};

thisTfl(2).BaseTfl = 'C89/C90 (ANSI)';

thisTfl(2).TargetHWDeviceType = {'*'};

% Register a Target Function Library for use with model: rtwdemo_tflfixpt.mdl

thisTfl(3) = RTW.TflRegistry;

thisTfl(3).Name = 'Fixed-Point Examples';

thisTfl(3).Description = 'Demonstration of fixed-point operator replacement';

thisTfl(3).TableList = ...

{fullfile('$(MATLAB_ROOT)','toolbox','rtw','rtwdemos','tfl_demo','tfl_table_fixpt')};

thisTfl(3).BaseTfl = 'C89/C90 (ANSI)';

thisTfl(3).TargetHWDeviceType = {'*'};

end % End of LOCTFLREGFCN

31-155

31 Replacing Math Functions and Operators Using Target Function Libraries

Target Function Library Limitations
• Target function library (TFL) replacement may behave differently than
you expect in some cases. For example, data types that you observe in a
model do not necessarily match what the code generator determines to use
as intermediate data types in an operation. To verify whether you are
obtaining the function or operator replacement that you expect, inspect
the generated code.

• To analyze replacement behavior, in addition to referencing the generated
code and examining your TFL tables in the TFL Viewer, view the TFL
cache hits and misses logged during the most recent code generation
session. This approach provides information on what data types should
be registered in order to achieve the desired replacement. For more
information on analyzing TFL table entries, see “Examining and Validating
Function Replacement Tables” on page 31-139.

• You must register a TFL in either an sl_customization.m file or an
rtwTargetInfo file, but not in both files.

31-156

Setting Up Generated Code To
Interface With Components in
the Run-Time Environment

• Chapter 32, “Configuring the Target Hardware Environment”

• Chapter 33, “Model Entry Points”

• Chapter 34, “Interfacing With Hardware That is Not Running an
Operating System (Bare Board)”

• Chapter 35, “Wind River Systems VxWorks Example Main Program”

32

Configuring the Target
Hardware Environment

• “Configuring Support for Numeric Data” on page 32-2

• “Configuring Support for Time Values” on page 32-3

• “Setting Up Support for Non-Inlined S-Functions” on page 32-4

• “Configuring Model Function Generation and Argument Passing” on page
32-5

• “Setting Up Support for Code Reuse” on page 32-7

• “Configuring Target Function Libraries” on page 32-8

32 Configuring the Target Hardware Environment

Configuring Support for Numeric Data
By default, ERT targets support code generation for integer, floating-point,
nonfinite, and complex numbers.

To Generate Code that
Supports...

Do...

Integer data only Deselect Support floating-point numbers. If any noninteger
data or expressions are encountered during code generation, an
error message reports the offending blocks and parameters.

Floating-point data Select Support floating-point numbers.

Nonfinite values (for example,
NaN, Inf)

Select Support floating-point numbers and Support
non-finite numbers .

Complex data Select Support complex numbers .

For more information, see “Code Generation Pane: Interface” in the Simulink
Coder reference documentation.

32-2

Configuring Support for Time Values

Configuring Support for Time Values
Certain blocks require the value of absolute time (that is, the time from the
start of program execution to the present time) , elapsed time (for example,
the time elapsed between two trigger events), or continuous time. Depending
on the blocks used, you might need to adjust the configuration settings for
supported time values.

To... Select...

Generate code that creates
and maintains integer
counters for blocks that use
absolute or elapsed time
values (default)

Support absolute time. For further information on the
allocation and operation of absolute and elapsed timers, see the
“Using Timers” chapter of the Simulink Coder documentation. If
you do not select this parameter and the model includes block that
use absolute or elapsed time values, the build process generates
an error.

Generate code for blocks
that rely on continuous time

Support continuous time. If you do not select this parameter
and the model includes continuous-time blocks, the build process
generates an error.

For more information, see “Code Generation Pane: Interface” in the Simulink
Coder reference documentation.

32-3

32 Configuring the Target Hardware Environment

Setting Up Support for Non-Inlined S-Functions
To generate code for noninlined S-Functions in a model, select Support
noninlined S-functions. The generation of noninlined S-functions requires
floating-point and nonfinite numbers. Thus, when you select Support
non-inlined S-functions, the ERT target automatically selects Support
floating-point numbers and Support non-finite numbers.

When you select Support non-finite numbers, the build process generates
an error if the model includes a C MEX S-function that does not have a
corresponding TLC implementation (for inlining code generation).

Note that inlining S-functions is highly advantageous in production code
generation, for example in implementing device drivers. To enforce the use
of inlined S-functions for code generation, deselect Support non-inlined
S-functions.

For more information, see “Code Generation Pane: Interface” in the Simulink
Coder reference documentation.

32-4

Configuring Model Function Generation and Argument Passing

Configuring Model Function Generation and Argument
Passing

For ERT targets, you can configure how a model’s functions are generated and
how arguments are passed to the functions.

To... Do...

Generate model function calls
that are compatible with the main
program module of the GRT target
(grt_main.c or .cpp)

Select GRT compatible call interface and MAT-file
logging . In addition, deselect Suppress error status
in real-time model data structure. GRT compatible
call interface provides a quick way to use ERT target
features with a GRT-based custom target by generating
wrapper function calls that interface to the ERT target’s
Embedded-C formatted code.

Reduce overhead and use more local
variables by combining the output
and update functions in a single
model_step function

Select Single output/update function Errors or
unexpected behavior can occur if a Model block is part of
a cycle and “Single output/update function” is enabled
(the default). See “Model Blocks and Direct Feedthrough”
for details.

Generate a model_terminate
function for a model not designed to
run indefinitely

Select Terminate function required. For more
information, see the description of model_terminate.

Generate reusable, reentrant code
from a model or subsystem

Select Generate reusable code. See “Setting Up
Support for Code Reuse” on page 32-7 for details.

Statically allocate model data
structures and access them directly
in the model code

Deselect Generate reusable code. The generated code
is not reusable or reentrant. See Chapter 33, “Model
Entry Points” for information on the calling interface
generated for model functions in this case.

32-5

32 Configuring the Target Hardware Environment

To... Do...

Suppress the generation of an error
status field in the real-time model
data structure, rtModel, for example,
if you do not need to log or monitor
error messages

Select Suppress error status in real-time model
data structure. Selecting this parameter can also cause
the rtModel structure to be omitted completely from the
generated code.

When generating code for multiple integrated models, set
this parameter the same for all of the models. Otherwise,
the integrated application might exhibit unexpected
behavior. For example, if you select the option in one
model but not in another, the error status might not be
registered by the integrated application.

Do not select this parameter if you select the MAT-file
logging option. The two options are incompatible.

Launch the Model Step Functions
dialog box (see “Configuring Model
Function Prototypes” on page 29-4)
preview and modify the model’s
model_step function prototype

Click Configure Step Function. Based on the
Function specification value you select for your
model_step function (supported values include
Default model-step function and Model specific C
prototype), you can preview and modify the function
prototype. Once you validate and apply your changes,
you can generate code based on your function prototype
modifications. For more information about using the
Configure Step Function button and the Model Step
Functions dialog box, see Chapter 29, “Controlling
Generation of Function Prototypes”.

For more information, see “Code Generation Pane: Interface” in the Simulink
Coder reference documentation.

32-6

Setting Up Support for Code Reuse

Setting Up Support for Code Reuse
For ERT targets, you can configure how a model reuses code using the
Generate reusable code parameter.

Pass root-level I/O as provides options that control how model inputs and
outputs at the root level of the model are passed to the model_step function.

To... Select...

Pass each root-level model input and
output argument to themodel_step function
individually (the default)

Generate reusable code and Pass
root-level I/O as > Individual arguments.

Pack root-level input arguments and root-level
output arguments into separate structures that
are then passed to the model_step function

Generate reusable code and Pass
root-level I/O as > Structure reference

In some cases, selecting Generate reusable code can generate code that
compiles but is not reentrant. For example, if any signal, DWork structure, or
parameter data has a storage class other than Auto, global data structures are
generated. To handle such cases, use the Reusable code error diagnostic
parameter to choose the severity levels for diagnostics

In some cases, the Embedded Coder software is unable to generate valid and
compilable code. For example, if the model contains any of the following,
the code generated would be invalid.

• An S-function that is not code-reuse compliant

• A subsystem triggered by a wide function call trigger

In these cases, the build terminates after reporting the problem.

For more information, see “Code Generation Pane: Interface” in the Simulink
Coder reference documentation.

32-7

32 Configuring the Target Hardware Environment

Configuring Target Function Libraries
A target function library (TFL) is a set of one or more function replacement
tables that define the target-specific implementations of math functions
and operators to be used in generating code for your Simulink model. The
Simulink Coder product provides default TFLs, which you can select from
the Target function library drop-down list on the Interface pane of the
Configuration Parameters dialog box.

TFL Description Contains tables...

C89/C90
(ANSI)

Generates calls to the ISO/IEC 9899:1990
C standard math library for floating-point
functions.

ansi_tfl_table_tmw.mat

C99 (ISO) Generates calls to the ISO/IEC 9899:1999 C
standard math library.

iso_tfl_table_tmw.mat
ansi_tfl_table_tmw.mat

GNU99 (GNU) Generates calls to the Free Software
Foundation’s GNU gcc math library, which
provides C99 extensions as defined by compiler
option -std=gnu99.

gnu_tfl_table_tmw.mat
iso_tfl_table_tmw.mat
ansi_tfl_table_tmw.mat

C++ (ISO) Generates calls to the ISO/IEC 14882:2003
C++ standard math library.

iso_cpp_tfl_table_tmw.mat
private_iso_cpp_tfl_table_tmw.mat
iso_tfl_table_tmw.mat
ansi_tfl_table_tmw.mat

TFL tables provide the basis for replacing default math functions and
operators in your model code with target-specific code. If you select a library
and then hover over the selected library with the cursor, a tool tip is displayed
that describes the TFL and lists the function replacement tables it contains.
Tables are listed in the order in which they are searched for a function or
operator match.

32-8

Configuring Target Function Libraries

The Simulink Coder product allows you to view the content of TFL function
replacement tables using the Target Function Library Viewer, as described
in “Selecting and Viewing Target Function Libraries”. The Embedded
Coder product allows you to additionally create and register the function
replacement tables that make up a TFL, as described in Chapter 31,
“Replacing Math Functions and Operators Using Target Function Libraries”.

32-9

32 Configuring the Target Hardware Environment

32-10

33

Model Entry Points

The following functions represent entry points in the generated code for a
Simulink model.

Function Description

model_initialize Initialization entry point in
generated code for Simulink model

model_SetEventsForThisBaseStep Set event flags for multirate,
multitasking operation before calling
model_step for Simulink model
— not generated as of Version 5.1
(R2008a)

model_step Step routine entry point in generated
code for Simulink model

model_terminate Termination entry point in generated
code for Simulink model

Note that the calling interface generated for each of these functions differs
significantly depending on how you set the Generate reusable code option
(see Chapter 32, “Configuring the Target Hardware Environment”).

By default, Generate reusable code is off, and the model entry point
functions access model data with statically allocated global data structures.

When Generate reusable code is on, model data structures are passed in
(by reference) as arguments to the model entry point functions. For efficiency,
only those data structures that are actually used in the model are passed in.
Therefore when Generate reusable code is on, the argument lists generated
for the entry point functions vary according to the requirements of the model.

33 Model Entry Points

The entry points are exported with model.h. To call the entry-point functions
from your hand-written code, add an #include model.h directive to your
code. If Generate reusable code is on, you must examine the generated
code to determine the calling interface required for these functions.

33-2

For more information, see the reference pages for the listed functions.

Note The function reference pages document the default (Generate
reusable code off) calling interface generated for these functions.

33-3

33 Model Entry Points

33-4

34

Interfacing With Hardware
That is Not Running an
Operating System (Bare
Board)

• “About Standalone Program Execution” on page 34-2

• “Generating a Standalone Program” on page 34-3

• “Standalone Program Components” on page 34-4

• “Main Program” on page 34-5

• “rt_OneStep and Scheduling Considerations” on page 34-7

• “Static Main Program Module” on page 34-14

• “Rate Grouping Compliance and Compatibility Issues” on page 34-19

34 Interfacing With Hardware That is Not Running an Operating System (Bare Board)

About Standalone Program Execution
By default, the Embedded Coder software generates standalone programs
that do not require an external real-time executive or operating system. A
standalone program requires minimal modification to be adapted to the target
hardware. The standalone program architecture supports execution of models
with either single or multiple sample rates.

34-2

Generating a Standalone Program

Generating a Standalone Program
To generate a standalone program:

1 In the Custom templates section of the Code Generation > Templates
pane of the Configuration Parameters dialog box, select the Generate
an example main program option (is on by default). This enables the
Target operating system menu.

2 From the Target operating system menu, select BareBoardExample
(the default selection).

3 Generate the code.

Different code is generated for multirate models depending on the following
factors:

• Whether the model executes in single-tasking or multitasking mode.

• Whether or not reusable code is being generated.

These factors affect the scheduling algorithms used in generated code, and in
some cases affect the API for the model entry point functions. The following
sections discuss these variants.

34-3

34 Interfacing With Hardware That is Not Running an Operating System (Bare Board)

Standalone Program Components
The core of a standalone program is the main loop. On each iteration, the
main loop executes a background or null task and checks for a termination
condition.

The main loop is periodically interrupted by a timer. The function rt_OneStep
is either installed as a timer interrupt service routine (ISR), or called from a
timer ISR at each clock step.

The execution driver, rt_OneStep, sequences calls to the model_step
functions. The operation of rt_OneStep differs depending on whether
the generating model is single-rate or multirate. In a single-rate model,
rt_OneStep simply calls the model_step function. In a multirate model,
rt_OneStep prioritizes and schedules execution of blocks according to the
rates at which they run.

34-4

Main Program

Main Program

In this section...

“Overview of Operation” on page 34-5

“Guidelines for Modifying the Main Program” on page 34-5

Overview of Operation
The following pseudocode shows the execution of a main program.

main()
{

Initialization (including installation of rt_OneStep as an
interrupt service routine for a real-time clock)

Initialize and start timer hardware
Enable interupts
While(not Error) and (time < final time)

Background task
EndWhile
Disable interrupts (Disable rt_OneStep from executing)
Complete any background tasks
Shutdown

}

The pseudocode is a design for a harness program to drive your model. The
ert_main.c or .cpp program only partially implements this design. You must
modify it according to your specifications.

Guidelines for Modifying the Main Program
This section describes the minimal modifications you should make in your
production version of ert_main.c or .cpp to implement your harness program.

1 Call model_initialize.

2 Initialize target-specific data structures and hardware, such as ADCs or
DACs.

3 Install rt_OneStep as a timer ISR.

34-5

34 Interfacing With Hardware That is Not Running an Operating System (Bare Board)

4 Initialize timer hardware.

5 Enable timer interrupts and start the timer.

Note rtModel is not in a valid state until model_initialize has
been called. Servicing of timer interrupts should not begin until
model_initialize has been called.

6 Optionally, insert background task calls in the main loop.

7 On termination of the main loop (if applicable):

• Disable timer interrupts.

• Perform target-specific cleanup such as zeroing DACs.

• Detect and handle errors. Note that even if your program is designed to
run indefinitely, you may need to handle severe error conditions, such as
timer interrupt overruns.

You can use the macros rtmGetErrorStatus and rtmSetErrorStatus
to detect and signal errors.

34-6

rt_OneStep and Scheduling Considerations

rt_OneStep and Scheduling Considerations

In this section...

“Overview of Operation” on page 34-7

“Single-Rate Single-tasking Operation” on page 34-8

“Multirate Multitasking Operation” on page 34-9

“Multirate Single-Tasking Operation” on page 34-11

“Guidelines for Modifying rt_OneStep” on page 34-12

Overview of Operation
The operation of rt_OneStep depends upon

• Whether your model is single-rate or multirate. In a single-rate model, the
sample times of all blocks in the model, and the model’s fixed step size, are
the same. Any model in which the sample times and step size do not meet
these conditions is termed multirate.

• Your model’s solver mode (SingleTasking versus MultiTasking)

Permitted Solver Modes for Embedded Coder™ Targeted Models on page 34-7
summarizes the permitted solver modes for single-rate and multirate models.
Note that for a single-rate model, only SingleTasking solver mode is allowed.

Permitted Solver Modes for Embedded Coder Targeted Models

Mode Single-Rate Multirate

SingleTasking Allowed Allowed

MultiTasking Disallowed Allowed

Auto Allowed

(defaults to
SingleTasking)

Allowed

(defaults to MultiTasking)

34-7

34 Interfacing With Hardware That is Not Running an Operating System (Bare Board)

The generated code for rt_OneStep (and associated timing data structures
and support functions) is tailored to the number of rates in the model and to
the solver mode. The following sections discuss each possible case.

Single-Rate Single-tasking Operation
The only valid solver mode for a single-rate model is SingleTasking. Such
models run in “single-rate” operation.

The following pseudocode shows the design of rt_OneStep in a single-rate
program.

rt_OneStep()
{

Check for interrupt overflow or other error
Enable "rt_OneStep" (timer) interrupt
Model_Step() -- Time step combines output,logging,update

}

For the single-rate case, the generated model_step function is

void model_step(void)

Single-rate rt_OneStep is designed to execute model_step within a single
clock period. To enforce this timing constraint, rt_OneStep maintains and
checks a timer overrun flag. On entry, timer interrupts are disabled until the
overrun flag and other error conditions have been checked. If the overrun flag
is clear, rt_OneStep sets the flag, and proceeds with timer interrupts enabled.

The overrun flag is cleared only upon successful return from model_step.
Therefore, if rt_OneStep is reinterrupted before completing model_step, the
reinterruption is detected through the overrun flag.

Reinterruption of rt_OneStep by the timer is an error condition. If this
condition is detected rt_OneStep signals an error and returns immediately.
(Note that you can change this behavior if you want to handle the condition
differently.)

Note that the design of rt_OneStep assumes that interrupts are disabled
before rt_OneStep is called. rt_OneStep should be noninterruptible until the
interrupt overflow flag has been checked.

34-8

rt_OneStep and Scheduling Considerations

Multirate Multitasking Operation
In a multirate multitasking system, code generation uses a prioritized,
preemptive multitasking scheme to execute the different sample rates in
your model.

The following pseudocode shows the design of rt_OneStep in a multirate
multitasking program.

rt_OneStep()
{

Check for base-rate interrupt overrun
Enable "rt_OneStep" interrupt
Determine which rates need to run this time step

Model_Step0() -- run base-rate time step code

For N=1:NumTasks-1 -- iterate over sub-rate tasks
If (sub-rate task N is scheduled)
Check for sub-rate interrupt overrun

Model_StepN() -- run sub-rate time step code
EndIf

EndFor
}

Task Identifiers
The execution of blocks having different sample rates is broken into tasks.
Each block that executes at a given sample rate is assigned a task identifier
(tid), which associates it with a task that executes at that rate. Where
there are NumTasks tasks in the system, the range of task identifiers is
0..NumTasks-1.

Prioritization of Base-Rate and Subrate Tasks
Tasks are prioritized, in descending order, by rate. The base-rate task is the
task that runs at the fastest rate in the system (the hardware clock rate).
The base-rate task has highest priority (tid 0). The next fastest task (tid 1)
has the next highest priority, and so on down to the slowest, lowest priority
task (tid NumTasks-1).

34-9

34 Interfacing With Hardware That is Not Running an Operating System (Bare Board)

The slower tasks, running at submultiples of the base rate, are called subrate
tasks.

Rate Grouping and Rate-Specific model_step Functions
In a single-rate model, all block output computations are performed within
a single function, model_step. For multirate, multitasking models, code
generation uses a different strategy (whenever possible). This strategy is
called rate grouping. Rate grouping generates separate model_step functions
for the base rate task and each subrate task in the model. The function
naming convention for these functions is

model_stepN

where N is a task identifier. For example, for a model named my_model that
has three rates, the following functions are generated:

void my_model_step0 (void);
void my_model_step1 (void);
void my_model_step2 (void);

Each model_stepN function executes all blocks sharing tid N; in other words,
all block code that executes within task N is grouped into the associated
model_stepN function.

Scheduling model_stepN Execution
On each clock tick, rt_OneStep and model_step0 maintain scheduling
counters and event flags for each subrate task. The counters are implemented
in the Timing.TaskCounters.TIDn fields of rtModel. The event flags are
implemented as arrays, indexed on tid.

The scheduling counters are maintained by the rate_monotonic_scheduler
function, which is called by model_step0 (that is, in the base-rate task).
The function updates flags—an active task flag for each subrate and rate
transition flags for tasks that exchange data—and assumes the use of a
rate monotonic scheduler. The scheduling counters are, in effect, clock rate
dividers that count up the sample period associated with each subrate task.

The event flags indicate whether or not a given task is scheduled for
execution. rt_OneStep maintains the event flags based on a task counter that

34-10

rt_OneStep and Scheduling Considerations

is maintained by code in the model’s example main program (ert_main.c).
When a counter indicates that a task’s sample period has elapsed, the
example main code sets the event flag for that task.

On each invocation, rt_OneStep updates its scheduling data structures and
steps the base-rate task (rt_OneStep always calls model_step0 because the
base-rate task must execute on every clock step). Then, rt_OneStep iterates
over the scheduling flags in tid order, unconditionally calling model_stepN
for any task whose flag is set. This ensures that tasks are executed in order of
priority.

Preemption
Note that the design of rt_OneStep assumes that interrupts are disabled
before rt_OneStep is called. rt_OneStep should be noninterruptible until the
base-rate interrupt overflow flag has been checked (see pseudocode above).

The event flag array and loop variables used by rt_OneStep are stored as local
(stack) variables. This ensures that rt_OneStep is reentrant. If rt_OneStep is
reinterrupted, higher priority tasks preempt lower priority tasks. Upon return
from interrupt, lower priority tasks resume in the previously scheduled order.

Overrun Detection
Multirate rt_OneStep also maintains an array of timer overrun flags.
rt_OneStep detects timer overrun, per task, by the same logic as single-rate
rt_OneStep.

Note If you have developed multirate S-functions, or if you use a
customized static main program module, see “Rate Grouping Compliance and
Compatibility Issues” on page 34-19 for information about how to adapt your
code for rate grouping compatibility. This adaptation lets your multirate,
multitasking models generate more efficient code.

Multirate Single-Tasking Operation
In a multirate single-tasking program, by definition, all sample times in the
model must be an integer multiple of the model’s fixed-step size.

34-11

34 Interfacing With Hardware That is Not Running an Operating System (Bare Board)

In a multirate single-tasking program, blocks execute at different rates, but
under the same task identifier. The operation of rt_OneStep, in this case, is a
simplified version of multirate multitasking operation. Rate grouping is not
used. The only task is the base-rate task. Therefore, only one model_step
function is generated:

void model_step(int_T tid)

On each clock tick, rt_OneStep checks the overrun flag and calls model_step,
passing in tid 0. The scheduling function for a multirate single-tasking
program is rate_scheduler (rather than rate_monotonic_scheduler). The
scheduler maintains scheduling counters on each clock tick. There is one
counter for each sample rate in the model. The counters are implemented in
an array (indexed on tid) within the Timing structure within rtModel.

The counters are, in effect, clock rate dividers that count up the sample period
associated with each subrate task. When a counter indicates that a sample
period for a given rate has elapsed, rate_scheduler clears the counter. This
condition indicates that all blocks running at that rate should execute on the
next call to model_step, which is responsible for checking the counters.

Guidelines for Modifying rt_OneStep
rt_OneStep does not require extensive modification. The only required
modification is to reenable interrupts after the overrun flags and error
conditions have been checked. If applicable, you should also

• Save and restore your FPU context on entry and exit to rt_OneStep.

• Set model inputs associated with the base rate before calling model_step0.

• Get model outputs associated with the base rate after calling model_step0.

Note If you modify rt_OneStep to read a value from a continuous output
port after each base-rate model step, see the relevant cautionary guideline
below.

• In a multirate, multitasking model, set model inputs associated with
subrates before calling model_stepN in the subrate loop.

34-12

rt_OneStep and Scheduling Considerations

• In a multirate, multitasking model, get model outputs associated with
subrates after calling model_stepN in the subrate loop.

Comments in rt_OneStep indicate the appropriate place to add your code.

In multirate rt_OneStep, you can improve performance by unrolling for
and while loops.

In addition, you may choose to modify the overrun behavior to continue
execution after error recovery is complete.

Also observe the following cautionary guidelines:

• You should not modify the way in which the counters, event flags, or other
timing data structures are set in rt_OneStep, or in functions called from
rt_OneStep. The rt_OneStep timing data structures (including rtModel)
and logic are critical to correct operation of any generated program.

• If you have customized ert_main.c or .cpp to read model outputs after
each base-rate model step, be aware that selecting model options Support:
continuous time and Single output/update function together may
cause output values read from ert_main for a continuous output port
to differ slightly from the corresponding output values in the model’s
logged data. This is because, while logged data is a snapshot of output at
major time steps, output read from ert_main after the base-rate model
step potentially reflects intervening minor time steps. To eliminate the
discrepancy, either separate the generated output and update functions
(clear the Single output/update function option) or place a Zero-Order
Hold block before the continuous output port.

34-13

34 Interfacing With Hardware That is Not Running an Operating System (Bare Board)

Static Main Program Module

In this section...

“Overview” on page 34-14

“Rate Grouping and the Static Main Program” on page 34-15

“Modifying the Static Main Program” on page 34-16

Overview
In most cases, the easiest strategy for deploying generated code is to use the
Generate an example main program option to generate the ert_main.c
or .cpp module (see “Generating a Standalone Program” on page 34-3).

However, if you turn the Generate an example main program option off,
you can use the module matlabroot/rtw/c/ert/ert_main.c as a template
example for developing your embedded applications. The module is not part of
the generated code; it is provided as a basis for your custom modifications,
and for use in simulation. If your existing applications, developed prior to this
release, depend upon a static ert_main.c, you may need to continue using
this module.

When developing applications using a static ert_main.c, you should copy this
module to your working directory and rename it to model_ert_main.c before
making modifications. Also, you must modify the template makefile such that
the build process creates model_ert_main.obj (on UNIX, model_ert_main.o)
in the build directory.

The static ert_main.c contains

• rt_OneStep, a timer interrupt service routine (ISR). rt_OneStep calls
model_step to execute processing for one clock period of the model.

• A skeletal main function. As provided, main is useful in simulation only.
You must modify main for real-time interrupt-driven execution.

For single-rate models, the operation of rt_OneStep and the main function
are essentially the same in the static version of ert_main.c as they are in the
autogenerated version described in “About Standalone Program Execution”

34-14

Static Main Program Module

on page 34-2. For multirate, multitasking models, however, the static and
generated code is slightly different. The next section describes this case.

Rate Grouping and the Static Main Program
Targets based on the ERT target sometimes use a static ert_main module
and disallow use of the Generate an example main program option. This
may be necessary because target-specific modifications have been added to
the static ert_main.c, and these modifications would not be preserved if
the main program were regenerated.

Your ert_main module may or may not use rate grouping compatible
model_stepN functions. If your ert_main module is based on the static
ert_main.c module, it does not use rate-specific model_stepN function
calls. The static ert_main.c module uses the old-style model_step function,
passing in a task identifier:

void model_step(int_T tid);

By default, when the Generate an example main program option is off,
the ERT target generates a model_step “wrapper” for multirate, multitasking
models. The purpose of the wrapper is to interface the rate-specific
model_stepN functions to the old-style call. The wrapper code dispatches
to the appropriate model_stepN call with a switch statement, as in the
following example:

void mymodel_step(int_T tid) /* Sample time: */
{

switch(tid) {
case 0 :
mymodel_step0();
break;

case 1 :
mymodel_step1();
break;

case 2 :
mymodel_step2();
break;

default :
break;

34-15

34 Interfacing With Hardware That is Not Running an Operating System (Bare Board)

}
}

The following pseudocode shows how rt_OneStep calls model_step from the
static main program in a multirate, multitasking model.

rt_OneStep()
{

Check for base-rate interrupt overflow
Enable "rt_OneStep" interrupt
Determine which rates need to run this time step

ModelStep(tid=0) --base-rate time step

For N=1:NumTasks-1 -- iterate over sub-rate tasks
Check for sub-rate interrupt overflow
If (sub-rate task N is scheduled)

ModelStep(tid=N) --sub-rate time step
EndIf

EndFor
}

You can use the TLC variable RateBasedStepFcn to specify that only the
rate-based step functions are generated, without the wrapper function. If your
target calls the rate grouping compatible model_stepN function directly, set
RateBasedStepFcn to 1. In this case, the wrapper function is not generated.

You should set RateBasedStepFcn prior to the %include
"codegenentry.tlc" statement in your system target file. Alternatively, you
can set RateBasedStepFcn in your target_settings.tlc file.

Modifying the Static Main Program
As in the generated ert_main.c, a few modifications to the main loop and
rt_OneStep are necessary. See “Guidelines for Modifying the Main Program”
on page 34-5 and “Guidelines for Modifying rt_OneStep” on page 34-12.

Also, you should replace the rt_OneStep call in the main loop with a
background task call or null statement.

34-16

Static Main Program Module

Other modifications you may need to make are

• If your model has multiple rates, the generated code does not operate
correctly unless:

- The multirate scheduling code is removed. The relevant code is tagged
with the keyword REMOVE in comments (see also the Version 3.0
comments in ert_main.c).

- Use the MODEL_SETEVENTS macro (defined in ert_main.c) to set the
event flags instead of accessing the flags directly. The relevant code is
tagged with the keyword REPLACE in comments.

• If applicable, follow comments in the code regarding where to add code for
reading/writing model I/O and saving/restoring FPU context.

Note If you modify ert_main.c to read a value from a continuous output
port after each base-rate model step, see the relevant cautionary guideline
in “Guidelines for Modifying rt_OneStep” on page 34-12.

• When the Generate an example main program option is off
autobuild.h is generated to provide an interface between the main module
and generated model code. If you create your own static main program
module, you would normally include autobuild.h.

Alternatively, you can suppress generation of autobuild.h, and include
model.h directly in your main module. To suppress generation of
autobuild.h, use the following statement in your system target file:

%assign AutoBuildProcedure = 0

• If you have cleared the Terminate function required option, remove or
comment out the following in your production version of ert_main.c:

- The #if TERMFCN... compile-time error check

- The call to MODEL_TERMINATE

• If you do not want to combine output and update functions, clear the Single
output/update function option and make the following changes in your
production version of ert_main.c:

34-17

34 Interfacing With Hardware That is Not Running an Operating System (Bare Board)

- Replace calls to MODEL_STEP with calls to MODEL_OUTPUT and
MODEL_UPDATE.

- Remove the #if ONESTEPFCN... error check.

• The static ert_main.c module does not support the Generate Reusable
Code option. Use this option only if you are generating a main program.
The following error check raises a compile-time error if Generate
Reusable Code is used illegally.

#if MULTI_INSTANCE_CODE==1

• The static ert_main.cmodule does not support the External mode option.
Use this option only if you are generating a main program. The following
error check raises a compile-time error if External mode is used illegally.

#ifdef EXT_MODE

34-18

Rate Grouping Compliance and Compatibility Issues

Rate Grouping Compliance and Compatibility Issues

In this section...

“Main Program Compatibility” on page 34-19

“Making Your S-Functions Rate Grouping Compliant” on page 34-19

Main Program Compatibility
When the Generate an example main program option is off, code
generation produces slightly different rate grouping code, for compatibility
with the older static ert_main.c module. See “Rate Grouping and the Static
Main Program” on page 34-15 for details.

Making Your S-Functions Rate Grouping Compliant
All built-in Simulink blocks, as well as all DSP System Toolbox blocks,
are compliant with the requirements for generating rate grouping code.
However, user-written multirate inlined S-functions may not be rate grouping
compliant. Noncompliant blocks generate less efficient code, but are otherwise
compatible with rate grouping. To take full advantage of the efficiency of
rate grouping, your multirate inlined S-functions must be upgraded to be
fully rate grouping compliant. You should upgrade your TLC S-function
implementations, as described in this section.

Use of noncompliant multirate blocks to generate rate-grouping code
generates dead code. This can cause two problems:

• Reduced code efficiency.

• Warning messages issued at compile time. Such warnings are caused when
dead code references temporary variables before initialization. Since the
dead code never runs, this problem does not affect the run-time behavior of
the generated code.

To make your S-functions rate grouping compliant, you can use the following
TLC functions to generate ModelOutputs and ModelUpdate code, respectively:

OutputsForTID(block, system, tid)
UpdateForTID(block, system, tid)

34-19

34 Interfacing With Hardware That is Not Running an Operating System (Bare Board)

The code listings below illustrate generation of output computations without
rate grouping (Listing 1) and with rate grouping (Listing 2). Note the
following:

• The tid argument is a task identifier (0..NumTasks-1).

• Only code guarded by the tid passed in to OutputsForTID is generated.
The if (%<LibIsSFcnSampleHit(portName)>) test is not used in
OutputsForTID.

• When generating rate grouping code, OutputsForTID and/or UpdateForTID
is called during code generation. When generating non-rate-grouping code,
Outputs and/or Update is called.

• In rate grouping compliant code, the top-level Outputs and/or Update
functions call OutputsForTID and/or UpdateForTID functions for each rate
(tid) involved in the block. The code returned by OutputsForTID and/or
UpdateForTID must be guarded by the corresponding tid guard:

if (%<LibIsSFcnSampleHit(portName)>)

as in Listing 2.

Listing 1: Outputs Code Generation Without Rate Grouping

%% multirate_blk.tlc

%implements "multirate_blk" "C"

%% Function: mdlOutputs ===

%% Abstract:

%%

%% Compute the two outputs (input signal decimated by the

%% specified parameter). The decimation is handled by sample times.

%% The decimation is only performed if the block is enabled.

%% Each ports has a different rate.

%%

%% Note, the usage of the enable should really be protected such that

%% Neach task has its own enable state. In this example, the enable

%% occurs immediately which may or may not be the expected behavior.

34-20

Rate Grouping Compliance and Compatibility Issues

%%

%function Outputs(block, system) Output

/* %<Type> Block: %<Name> */

%assign enable = LibBlockInputSignal(0, "", "", 0)

{

int_T *enabled = &%<LibBlockIWork(0, "", "", 0)>;

%if LibGetSFcnTIDType("InputPortIdx0") == "continuous"

%% Only check the enable signal on a major time step.

if (%<LibIsMajorTimeStep()> && ...

%<LibIsSFcnSampleHit("InputPortIdx0")>) {

*enabled = (%<enable> > 0.0);

}

%else

if (%<LibIsSFcnSampleHit("InputPortIdx0")>) {

*enabled = (%<enable> > 0.0);

}

%endif

if (*enabled) {

%assign signal = LibBlockInputSignal(1, "", "", 0)

if (%<LibIsSFcnSampleHit("OutputPortIdx0")>) {

%assign y = LibBlockOutputSignal(0, "", "", 0)

%<y> = %<signal>;

}

if (%<LibIsSFcnSampleHit("OutputPortIdx1")>) {

%assign y = LibBlockOutputSignal(1, "", "", 0)

%<y> = %<signal>;

}

}

}

%endfunction

%% [EOF] sfun_multirate.tlc

Listing 2: Outputs Code Generation With Rate Grouping

%% example_multirateblk.tlc

%implements "example_multirateblk" "C"

34-21

34 Interfacing With Hardware That is Not Running an Operating System (Bare Board)

%% Function: mdlOutputs ===

%% Abstract:

%%

%% Compute the two outputs (the input signal decimated by the

%% specified parameter). The decimation is handled by sample times.

%% The decimation is only performed if the block is enabled.

%% All ports have different sample rate.

%%

%% Note: the usage of the enable should really be protected such that

%% each task has its own enable state. In this example, the enable

%% occurs immediately which may or may not be the expected behavior.

%%

%function Outputs(block, system) Output

%assign portIdxName = ["InputPortIdx0","OutputPortIdx0","OutputPortIdx1"]

%assign portTID = [%<LibGetGlobalTIDFromLocalSFcnTID("InputPortIdx0")>, ...

%<LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx0")>, ...

%<LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx1")>]

%foreach i = 3

%assign portName = portIdxName[i]

%assign tid = portTID[i]

if (%<LibIsSFcnSampleHit(portName)>) {

%<OutputsForTID(block,system,tid)>

}

%endforeach

%endfunction

%function OutputsForTID(block, system, tid) Output

/* %<Type> Block: %<Name> */

%assign enable = LibBlockInputSignal(0, "", "", 0)

%assign enabled = LibBlockIWork(0, "", "", 0)

%assign signal = LibBlockInputSignal(1, "", "", 0)

%switch(tid)

%case LibGetGlobalTIDFromLocalSFcnTID("InputPortIdx0")

34-22

Rate Grouping Compliance and Compatibility Issues

%if LibGetSFcnTIDType("InputPortIdx0") == "continuous"

%% Only check the enable signal on a major time step.

if (%<LibIsMajorTimeStep()>) {

%<enabled> = (%<enable> > 0.0);

}

%else

%<enabled> = (%<enable> > 0.0);

%endif

%break

%case LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx0")

if (%<enabled>) {

%assign y = LibBlockOutputSignal(0, "", "", 0)

%<y> = %<signal>;

}

%break

%case LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx1")

if (%<enabled>) {

%assign y = LibBlockOutputSignal(1, "", "", 0)

%<y> = %<signal>;

}

%break

%default

%% error it out

%endswitch

%endfunction

%% [EOF] sfun_multirate.tlc

34-23

34 Interfacing With Hardware That is Not Running an Operating System (Bare Board)

34-24

35

Wind River Systems
VxWorks Example Main
Program

• “Introduction to the VxWorks Example Main Program” on page 35-2

• “Task Management” on page 35-3

35 Wind River® Systems VxWorks® Example Main Program

Introduction to the VxWorks Example Main Program
The Embedded Coder product provides a Wind River Systems VxWorks
example main program as a template for the deployment of generated code
in a real-time operating system (RTOS) environment. You should read
the preceding sections of this chapter as a prerequisite to working with
the VxWorks example main program. An understanding of the Embedded
Coder scheduling and tasking concepts and algorithms, described in “About
Standalone Program Execution” on page 34-2, is essential to understanding
how generated code is adapted to an RTOS.

In addition, an understanding of how tasks are managed under the VxWorks
RTOS is required. See your VxWorks documentation.

To generate a VxWorks example program:

1 In the Custom templates subpane of the Code Generation > Templates
pane of the Configuration Parameters dialog box, select the Generate an
example main program option (this option is on by default).

2 When Generate an example main program is selected, the Target
operating system menu is enabled. Select VxWorksExample from this
menu.

Some modifications to the generated code are required; comments in the
generated code identify the required modifications.

35-2

Task Management

Task Management

In this section...

“Overview of Operation” on page 35-3

“Single-Rate Single-tasking Operation” on page 35-3

“Multirate Multitasking Operation” on page 35-4

“Multirate Single-tasking Operation” on page 35-4

Overview of Operation
In a VxWorks example program, the main program and the base rate and
subrate tasks (if any) run as prioritized tasks. The logic of a VxWorks example
program parallels that of a stand-alone program; the main difference lies in
the fact that base rate and subrate tasks are activated by clock semaphores
managed by the operating system, rather than directly by timer interrupts.

Your application code must spawn model_main() as an independent VxWorks
task. The task priority you specify is passed in to model_main().

As with a stand-alone program, the VxWorks example program architecture
is tailored to the number of rates in the model and to the solver mode (see
Permitted Solver Modes for Embedded Coder™ Targeted Models on page
34-7). The following sections discuss each possible case.

Single-Rate Single-tasking Operation
In a single-rate, single-tasking model, model_main() spawns a base rate
task, tBaseRate. In this case tBaseRate is the functional equivalent to
rtOneStep. The base rate task is activated by a clock semaphore provided by
the VxWorks RTOS, rather than by a timer interrupt. On each activation,
tBaseRate calls model_step.

Note that the clock rate granted by the VxWorks RTOS may not be the same
as the rate requested by model_main.

35-3

35 Wind River® Systems VxWorks® Example Main Program

Multirate Multitasking Operation
In a multirate, multitasking model, model_main() spawns a base rate task
and subrate tasks. Task priorities are assigned by rate.

As in a stand-alone program, rate grouping code is used (where possible)
for multirate, multitasking models. The base rate task calls model_step0,
while the subrate tasks call model_stepN. The base rate task calls a function
that updates flags—an active task flag for each subrate and rate transition
flags for tasks that exchange data. This function assumes the use of a
rate-monotonic scheduler.

Multirate Single-tasking Operation
In a multirate, single-tasking model, model_main() spawns only a base rate
task, tBaseRate. All rates run under this task. The base rate task is activated
by a clock semaphore provided by the VxWorks RTOS, rather than by a timer
interrupt. On each activation, tBaseRate calls model_step.

model_step in turn calls the rate_scheduler utility, which maintains the
scheduling counters that determine which rates should execute. model_step
is responsible for checking the counters.

35-4

Verifying Generated Code
Applications

• Chapter 36, “Tracing Generated Code to Requirements”

• Chapter 37, “Verifying Generated Code”

• Chapter 38, “Rapid Prototyping On a Target System”

• Chapter 39, “Verifying Generated Code With SIL and PIL
Simulations”

• Chapter 40, “Verifying a Component in the Target Environment”

• Chapter 41, “Verifying a Component by Building a Complete
Real-Time Target Environment”

• Chapter 42, “Verifying Numerical Equivalence of Results with Code
Generation Verification API”

36

Tracing Generated Code to
Requirements

• “About Generated Code and Requirements Traceability” on page 36-2

• “Goals of Generated Code and Requirements Traceability” on page 36-3

36 Tracing Generated Code to Requirements

About Generated Code and Requirements Traceability
Assuming that you have captured application requirements in a document,
spreadsheet, data base, or requirements management tool, using a tool
such as Simulink Report Generator, Microsoft Word, Microsoft Excel, raw
HTML, Telelogic®, or DOORS®, you can use interactive traceability and
traceability reports to validate whether generated code meets the documented
requirements. These mechanisms provide a way to trace generated code back
to documented requirements and generate traceability reports.

36-2

Goals of Generated Code and Requirements Traceability

Goals of Generated Code and Requirements Traceability
For example, you can

• Associate requirements documents with objects in a concept model and
generate a report on requirements associated with that model. For more
information, see:

- slvnvdemo_fuelsys_docreq

- “Requirements Linking and Traceability” in the Simulink Verification
and Validation documentation

- Bidirectional tracing in Microsoft Word, Microsoft Excel, HTML, and
Telelogic DOORS

• Include requirements tags in generated code. For more information, see:

- rtwdemo_requirements

- “Including Requirements Information with Generated Code” in the
Simulink Verification and Validation documentation

• Trace model blocks and subsystems to generated code and vice versa. For
more information, see:

- rtwdemo_hyperlinks

- “About Traceability” on page 37-2

36-3

36 Tracing Generated Code to Requirements

36-4

37

Verifying Generated Code

• “Traceability for Production Code Generation” on page 37-2

• “Checking Code Correctness” on page 37-11

37 Verifying Generated Code

Traceability for Production Code Generation

In this section...

“About Traceability” on page 37-2

“Tracing Code to Model Objects Using Hyperlinks” on page 37-2

“Tracing Model Objects to Generated Code” on page 37-4

“Reloading Existing Traceability Information” on page 37-6

“Customizing Traceability Reports” on page 37-8

“Generating a Traceability Matrix (DO Qualification Kit or IEC
Certification Kit)” on page 37-9

“Traceability Limitations” on page 37-10

About Traceability
The Simulink Coder product introduces traceability capabilities:

• “About Code Traceability”

• “Format of Traceability Tags”

• “Examples of Tagged Code”

• “Tracing Code To Blocks Using hilite_system”

• “Traceability Limitations”

The Embedded Coder product includes traceability capabilities to support:

• “Tracing Code to Model Objects Using Hyperlinks” on page 37-2

• “Tracing Model Objects to Generated Code” on page 37-4

• “Reloading Existing Traceability Information” on page 37-6

• “Customizing Traceability Reports” on page 37-8

Tracing Code to Model Objects Using Hyperlinks
When using the Simulink Coder product, you can trace code to model objects
using the hilite_system command. The Embedded Coder product simplifies

37-2

Traceability for Production Code Generation

traceability with the use of hyperlinks in HTML code generation reports. The
reports display hyperlinks in “Regarding,” “Outport,” and other comment lines
in generated code. You can highlight the corresponding block or subsystem
in the model diagram by clicking the hyperlinks.

To use hyperlinks for tracing code to model objects:

1 Open the model and make sure it is configured for an ERT target.

2 In the Configuration Parameters dialog box, select Code
Generation > Report Create code generation report. The parameter
is selected by default. When selected, the parameter enables and selects
Launch report automatically and Code-to-model.

3 Build or generate code for the model. An HTML code generation report
is displayed.

4 In the HTML report window, click hyperlinks to highlight source blocks.
For example, generate an HTML report for model rtwdemo_hyperlinks. In
the generated code for the model step function in rtwdemo_hyperlinks.c,
click the first UnitDelay block hyperlink .

In the model window, the corresponding UnitDelay block is highlighted.

37-3

37 Verifying Generated Code

For more information on generating HTML code generation reports or using
the hilite_system command to trace code to blocks, see the following topics
in the Simulink Coder documentation:

• “Generating Reports for Code Reviews and Traceability Analysis”

• “Tracing Generated Code”

Tracing Model Objects to Generated Code
To trace model objects to generated code:

1 Open the model and make sure it is configured for an ERT target.

2 In the Configuration Parameters dialog box, select Code
Generation > Report > Create code generation report. The
parameter is selected by default. When selected, the parameter enables
and selects the Launch report automatically and Code-to-model
parameters.

3 Select Model-to-code.

37-4

Traceability for Production Code Generation

This parameter:

• Enables the Configure button, which opens a dialog box for loading
existing trace information.

• Enables and selects parameters for customizing the content of a
traceability report.

4 Build or generate code for the model. An HTML code generation report
is displayed.

5 In the model window, right-click a model object.

6 In the context menu, select Code Generation > Navigate to Code. In
the HTML code generation report, you see the first instance of highlighted
code generated for the model object. In the left pane of the report, numbers
that appear to the right of generated file names indicate the total number
of highlighted lines in each file. The following figure shows the result of
tracing the Unit Delay block in model rtwdemo_hyperlinks.

37-5

37 Verifying Generated Code

To navigate through multiple instances of highlighted lines, click Previous
and Next.

If you close and reopen a model, the Navigate to Code context menu option
might not be available. This occurs because Embedded Coder cannot find a
build directory for your model in the current working directory. To address
this, do one of the following:

• Reset the current working directory to the parent directory of the existing
build directory.

• Select Model-to-code and rebuild the model. This regenerates the build
directory into the current working directory.

• Click Configure and in the Model-to-code navigation dialog box, reload the
existing trace information.

Reloading Existing Traceability Information
To reload existing traceability information for a model:

1 In the Configuration Parameters dialog box, click Code
Generation > Report > Configure. The Model-to-code navigation dialog
box opens.

37-6

Traceability for Production Code Generation

2 In the Build directory field, type or browse to the build directory that
contains the existing traceability information.

If you close and reopen a model, the Navigate to Code context menu option
might not be available. This occurs because Embedded Coder cannot find a
build directory for your model in the current working directory. To fix this
without having to reset the current working directory or rebuild the model,
do the following:

1 Click Configure to open the Model-to-code navigation dialog box.

2 In the Model-to-code navigation dialog box, click Browse.

3 Browse to the build directory for your model, and select the directory. The
build directory path is displayed in the Build directory field, as shown in
the preceding figure.

4 Click Apply or OK. This loads traceability information from the
earlier build into your Simulink session, provided that you selected
Model-to-code for the build.

5 Right-click Code Generation > Navigate to Code to open the context
menu and trace a model object to corresponding code.

37-7

37 Verifying Generated Code

Customizing Traceability Reports
In the Configuration Parameters dialog box, the Code
Generation > Report > Traceability Report Contents section
lists parameters you can select and clear to customize the content of your
traceability reports. By default, all parameters are selected, as shown in
the following figure.

Select or clear any combination of the following:

• Eliminated / virtual blocks (account for blocks that are untraceable)

• Traceable Simulink blocks

• Traceable Stateflow objects

• Traceable MATLAB functions

If you select all parameters, you get a complete mapping between model
elements and the generated code.

The following figure shows the top section of the traceability report
generated by selecting all traceability content parameters for model
rtwdemo_hyperlinks.

37-8

Traceability for Production Code Generation

Generating a Traceability Matrix (DO Qualification
Kit or IEC Certification Kit)
If you are licensed for either DO Qualification Kit software or IEC
Certification Kit software and are using a Windows host, you can generate a
traceability matrix into Microsoft Excel format directly from the traceability
report described in “Customizing Traceability Reports” on page 37-8.

To do this, go to the Traceability Report section of the HTML code
generation report and click the Generate Traceability Matrix button.

37-9

37 Verifying Generated Code

When you click the button, a Generate Traceability Matrix dialog box appears.
Use this dialog to select an existing matrix file to update or specify a new
matrix file to create. Optionally, you can use this dialog to select and order
the columns that appear in the generated matrix. For more information,
see “Generating a Traceability Matrix” in either the DO Qualification Kit
documentation or the IEC Certification Kit documentation.

Traceability Limitations
In addition to the Simulink Coder traceability limitations, the following
limitations apply to reports generated by Embedded Coder software.

• Under the following conditions, model-to-code traceability is disabled for
a block if the block name contains:

- A single quote (').

- An asterisk (*), that causes a name-mangling ambiguity relative to other
names in the model. This name-mangling ambiguity occurs if in a block
name or at the end of a block name, an asterisk precedes or follows
a slash (/).

- The character (char(255)).

• You cannot trace blocks representing the following types of subsystems to
generated code:

- Virtual subsystems

- Masked subsystems

- Nonvirtual subsystems for which code has been optimized away

If you cannot trace a subsystem at subsystem level, you might be able to
trace individual blocks within the subsystem.

37-10

Checking Code Correctness

Checking Code Correctness

In this section...

“About Checking Code Correctness” on page 37-11

“How To Check Code Correctness” on page 37-11

About Checking Code Correctness
Checking code correctness involves verifying that no compile-time, link-time,
or run-time errors (for example, an overflow, divide by zero, or out-of-bounds
array access) are in the source code.

How To Check Code Correctness
You can rely on integrated development environment (IDE) tools to detect and
facilitate correction of compile-time and link-time errors. However, it is more
difficult to detect and correct run-time errors, such as overflows and division
by zero. Some methods of detecting run-time errors include

• Running the executable and analyzing the results

• Inserting code instrumentation, such as print statements

• Writing and running tests

When checking the correctness of the generated code, you also have the option
of using Polyspace products. Polyspace products are based on verification
technology that uses formal methods to detect and mathematically prove
whether classes of run-time errors, such as overflows, exist.

In addition, the Polyspace Model Link™ SL product lets you trace the results
reported by Polyspace® Client™ for C/C++ software back to your Simulink
model.

For more information about using Polyspace products, see the Polyspace
documentation.

37-11

37 Verifying Generated Code

37-12

38

Rapid Prototyping On a
Target System

• “About On-Target Rapid Prototyping” on page 38-2

• “Goals of On-Target Rapid Prototyping” on page 38-3

• “Optimizing Generated Code for an Embedded Processor With On-Target
Rapid Prototyping” on page 38-4

38 Rapid Prototyping On a Target System

About On-Target Rapid Prototyping
After you refine a detailed software design, you are ready to generate code
to run on an embedded microprocessor and optimize the code with on-target
rapid prototyping. During on-target rapid prototyping, you run generated
code in real time, tune parameters, and monitor real-time data on the same
processor that you plan to use in mass production, or a close equivalent to it.

Code generation provides a framework for on-target rapid prototyping. You
can generate code from your model and then assess, interact with, and
optimize the code using real embedded compilers and hardware. This effort
can help determine whether your algorithm can fit on or run fast enough for
production devices, which typically have limited processor resources.

The following figure shows an example of an on-target rapid prototyping
environment.

Embedded
microprocessor

Actual environment (plants)

Algorithm model

Tuning and

logging

System model

Environment model

Co
de

ge
ne

ra
tio

n

Host

Harness

38-2

Goals of On-Target Rapid Prototyping

Goals of On-Target Rapid Prototyping
Assuming that you have a detailed software design and an embedded
microprocessor target, you can use on-target rapid prototyping to:

• Refine the concept model of your component or system

• Test and validate model functionality in real time

• Test hardware

• Obtain real-time profiles and code metrics for analysis and sizing based
on an embedded processor

• Assess the feasibility of an algorithm based on integration with
environment or plant hardware

38-3

38 Rapid Prototyping On a Target System

Optimizing Generated Code for an Embedded Processor
With On-Target Rapid Prototyping

To do on-target rapid prototyping:

1 Generate the source code for your models, integrate the code into your
production build environment, and run it on existing hardware. For more
information see:

• “Testing and Refining a Model With Rapid Prototyping” in the Simulink
Coder documentation

• “Selecting and Configuring a Target”

• “Interfacing With a Real-Time Operating System ”

2 Integrate existing, externally written C or C++ code with your model for
simulation and code generation. For more information, see “Integrating
Existing C Functions into Simulink Models with the Legacy Code Tool” in
the Simulink documentation.

3 Use a third-party integrated development environment (IDE) or a makefile
with the IDE link capability, a third-party product, or custom integration
to build an executable for the embedded microprocessor.

4 To monitor signals, tune parameters, and log data as the embedded
microprocessor controls the actual environment or plant, see the section
on “Signal Monitoring and Parameter Tuning.”

5 If using custom integration, use a Embedded Coder runtime interface
option, such as external mode, C API, or ASAP2 file generation, to monitor
and tune signals. Also consider using the Vehicle Network Toolbox™
product if you are developing a solution based on a controller-area network
(CAN).

38-4

39

Verifying Generated
Code With SIL and PIL
Simulations

• “About SIL and PIL Simulations” on page 39-2

• “How SIL and PIL Simulations Work” on page 39-6

• “Comparison of SIL and PIL Simulation” on page 39-7

• “Choosing a SIL or PIL Approach” on page 39-9

• “Configuring a SIL or PIL Simulation” on page 39-16

• “Code Coverage” on page 39-25

• “Code Execution Profiling” on page 39-34

• “Running a Top Model as a SIL or PIL Simulation” on page 39-41

• “Running a Referenced Model as a SIL or PIL Simulation” on page 39-43

• “SIL and PIL Code Interfaces” on page 39-47

• “Configuring Hardware Implementation Settings for SIL” on page 39-49

• “Programming PIL Support for Third-Party Tools and Target Hardware”
on page 39-53

• “Creating a Connectivity Configuration for a Target” on page 39-54

• “SIL and PIL Simulation Support and Limitations” on page 39-60

39 Verifying Generated Code With SIL and PIL Simulations

About SIL and PIL Simulations

In this section...

“Overview” on page 39-2

“What are SIL and PIL Simulations?” on page 39-2

“Why Use SIL and PIL” on page 39-3

Overview
Embedded Coder supports software-in-the-loop (SIL) and processor-in-the-loop
(PIL) simulations, which allow you to verify generated source code and
compiled object code.

A SIL simulation involves compiling and running production source code
on your host computer, while a PIL simulation involves cross-compiling
and running production object code on a target processor or an equivalent
instruction set simulator.

You can use SIL and PIL simulations to verify the numerical correctness
of your code, optimize your code, collect code metrics such as code coverage
and execution profiling data, and achieve IEC 61508, ISO 26262, or DO-178
certification. See “Why Use SIL and PIL” on page 39-3.

For examples of SIL and PIL verification, see rtwdemo_sil_pil_script. For
information about how you verify that your model is correctly configured
for a SIL or PIL simulation, see “Verifying a SIL or PIL Configuration” on
page 39-22.

What are SIL and PIL Simulations?
The Embedded Coder product supports software-in-the-loop (SIL) and
processor-in-the-loop (PIL) simulations.

A SIL simulation involves compiling and running production source code
on your host computer to verify the source code. SIL provides a convenient
alternative to processor-in-the-loop (PIL) simulation as no target hardware
(for example, an evaluation board or instruction set simulator) is required.
For examples of SIL verification, see rtwdemo_sil_pil_script.

39-2

About SIL and PIL Simulations

A PIL simulation involves cross-compiling and running production object code
on a target processor or an equivalent instruction set simulator.

You can run a SIL or PIL simulation using:

• The Software-in-the-Loop (SIL) or Processor-in-the-Loop (PIL)
simulation mode for top models and Model blocks

• A SIL or PIL block

For more information, see “Choosing a SIL or PIL Approach” on page 39-9.

The following features enable you to verify the generated code:

• Compare the output of regular simulation modes, for example, Normal or
Accelerator, against the output of SIL and PIL simulation modes.

• Easily switch between regular simulation, SIL, and PIL modes.

You can model and test your embedded software component in Simulink and
then reuse your test suites across simulation and compiled production code.
This approach avoids the time-consuming process of leaving the Simulink
software environment and verifying production code on a separate test
infrastructure.

Why Use SIL and PIL
You can achieve early verification and fixing of defects when you use SIL
and PIL. See “V-Model for System Development” in the Simulink Coder
documentation.

The following table describes situations when you should use SIL and PIL.

39-3

39 Verifying Generated Code With SIL and PIL Simulations

Situation Use...

You want to reuse test vectors developed for Normal mode
simulation to verify numerical correctness of generated (or
legacy) code. For example, reusing test cases generated
by Simulink® Design Verifier™. See “Generating Test
Cases” in Simulink Design Verifier documentation.

SIL and PIL

You want to collect metrics for generated code:
• Code coverage. See “Using a Code Coverage Tool in a
SIL Simulation” on page 39-25.

• Execution profiling. See “Code Execution Profiling” on
page 39-34

• Stack profiling. See “Stack Profiling” on page 44-21.

SIL and PIL

You want to achieve IEC 61508, ISO 26262, and DO-178
certification. See “Verification and Validation at the Code
Level (Code Verification)” in the IEC Certification Kit
documentation and Testing of Outputs of Integration
Process in the DO Qualification Kit documentation.

SIL and PIL

You do not have target hardware and want a convenient
alternative to PIL.

SIL

You have target hardware, for example, an evaluation
board or instruction set simulator, and you want to:
• Confirm correct behavior of target specific code, for
example, Chapter 31, “Replacing Math Functions
and Operators Using Target Function Libraries”
optimizations, and legacy code.

• Optimize the execution speed and memory footprint
of your code. See, in this table, row with information
about collecting execution profiling and stack profiling
metrics.

• Investigate effects of compiler settings and
optimizations, for example, deviation from ANSI C
overflow behavior.

Normal simulation techniques do not account for
restrictions and requirements that the hardware

PIL

39-4

About SIL and PIL Simulations

Situation Use...

imposes, such as limited memory resources or behavior of
target-specific optimized code.
See “Example Custom Targets” in the Simulink Coder
documentation, which gives information about running
PIL simulations on specific targets.

39-5

39 Verifying Generated Code With SIL and PIL Simulations

How SIL and PIL Simulations Work
In a SIL/PIL simulation, code is generated for either the top model or part
of the model. With SIL, this code is compiled for, and executed on the host
computer. With PIL, the code is cross-compiled for the target hardware and
runs on the target processor.

Through a communication channel, Simulink sends stimulus signals to the
code on the host or target processor for each sample interval of the simulation:

• For a top model, Simulink uses stimulus signals from the base or model
workspace.

• If you have designated only part of the model to simulate in SIL/PIL mode,
then a part of the model remains in Simulink without the use of code
generation. Typically, you configure this part of the model to provide test
vectors for the software executing on the hardware. This part of the model
can represent other parts of the algorithm or the environment model in
which the algorithm operates.

When the host/target processor receives signals from Simulink, the processor
executes the SIL/PIL algorithm for one sample step. The SIL/PIL algorithm
returns output signals computed during this step to Simulink through a
communication channel. At this point, one sample cycle of the simulation is
complete and Simulink proceeds to the next sample interval. The process
repeats and the simulation progresses. SIL/PIL simulations do not run in real
time. At each sample period, Simulink and the object code exchange all I/O
data. See also “Verifying Internal Signals of a Component” on page 39-43.

39-6

Comparison of SIL and PIL Simulation

Comparison of SIL and PIL Simulation
Use SIL or PIL simulation to verify automatically generated code by
comparing the results with a Normal mode simulation. With SIL, you can
easily verify the behavior of production source code on your host computer.
However, you cannot verify exactly the same code that is subsequently
compiled for your target hardware because the code must be compiled for
your host computer (that is, a different compiler and different processor
architecture than the target). With PIL simulation, you can verify exactly the
same code that you intend to deploy in production, and you can run the code
on either real target hardware or an instruction set simulator. See “What are
SIL and PIL Simulations?” on page 39-2.

You can use any of the following approaches to verification.

Approach SIL PIL

Simulation mode
(for top model or
Model block)

Generated production
code compiled and
executed on host computer
as separate process,
independent of the
MATLAB process.
Execution is host/host and
nonreal time

Test the generated
code as cross-compiled
object code on target
processor or instruction
set simulator. Exercises
same object code used in
production software.
Execution is host/target
and nonreal time.

Block Create SIL block.
Software runs generated
code through S-function
wrapper on host computer.
SIL S-function links
directly with generated
code, so generated code
runs inside MATLAB
process.
Execution is host/host and
nonreal time.
See “Using a SIL or PIL
Block” on page 39-20.

Create PIL block.
Software runs
cross-compiled object
code through S-function
wrapper on host
computer. S-function
communicates with
object code executing as
standalone application
on target processor or
instruction set simulator.
Execution is host/target
and nonreal time.
See “Using a SIL or PIL
Block” on page 39-20.

39-7

39 Verifying Generated Code With SIL and PIL Simulations

To decide which verification approach you want to use, see “Choosing a SIL or
PIL Approach” on page 39-9 .

39-8

Choosing a SIL or PIL Approach

Choosing a SIL or PIL Approach

In this section...

“About Choosing a SIL or PIL Simulation” on page 39-9

“When to Use Top-Model SIL or PIL” on page 39-9

“When to Use Model Block SIL or PIL” on page 39-9

“When to Use the SIL or PIL Block” on page 39-14

About Choosing a SIL or PIL Simulation
This section describes how to choose the SIL or PIL verification approach for
your needs.

For examples, see rtwdemo_sil_pil_script, which allow you to compare:

• SIL block for SIL Simulation

• SIL or PIL Simulation for Model Blocks

• SIL or PIL Simulation for Top Models

When to Use Top-Model SIL or PIL
Use the top-model approach if you want to:

• Verify code generated for a top model (standalone code interface).

• Load test vectors or stimulus inputs from the MATLAB workspace.

• Switch the entire model between normal, SIL, or PIL simulation modes.

For an example, see rtwdemo_sil_pil_script .

When to Use Model Block SIL or PIL
Use the Model block approach if you want to:

• Verify code generated for referenced models (model reference code
interface).

39-9

39 Verifying Generated Code With SIL and PIL Simulations

• Provide a test harness model (or a system model) to generate test vector or
stimulus inputs.

• Switch a Model block between normal, SIL, or PIL simulation modes.

See “Modeling Scenarios with the Model Block” on page 39-10.

Modeling Scenarios with the Model Block
You can use the Model block to test single components or a whole hierarchy
of model reference components. For example, you can select a single leaf
component for SIL verification. Later in the development cycle, as your
components become integrated into a larger system, you can select a hierarchy
of components for SIL verification.

You must deploy your Model block component code as part of a standalone
executable. The following examples show ways of testing your component.

• “Testing a Model Reference Component in SIL Mode” on page 39-10

• “Deploying Through an Atomic Subsystem” on page 39-11

• “Deploying Through a Top Model” on page 39-12

Testing a Model Reference Component in SIL Mode. You can test a
model reference component or hierarchy of components by placing a Model
block in a test harness model, as shown in model T1.

To test the component, for example, in SIL mode:

39-10

Choosing a SIL or PIL Approach

1 Set the simulation mode of component C to SIL mode.

2 Simulate the model to run component C in SIL mode, and test its model
reference target.

Note If the model reference target code interface for component C does
not already exist, simulating the model generates it. For more information
about the model reference target code interface, see “SIL and PIL Code
Interfaces” on page 39-47.

The following deployment scenarios reuse the model reference target of
component C. This reuse ensures that you test exactly the same object code
that you deploy.

Deploying Through an Atomic Subsystem. To generate code with the
standalone interface for deployment, place a Model block inside an atomic
subsystem, as shown by model D1.

39-11

39 Verifying Generated Code With SIL and PIL Simulations

To create standalone code, perform a subsystem build of D_Subsys. The
standalone code calls the model reference target of component C.

To test the component, for example, in SIL mode:

1 Set the simulation mode of component C to SIL mode.

2 Simulate the model to run component C in SIL mode and test its model
reference target.

You can place multiple Model blocks and other blocks into the model to deploy
a whole system of components.

Deploying Through a Top Model. To generate code with the standalone
interface for deployment, place the Model block inside a top model, as shown
by model D2.

39-12

Choosing a SIL or PIL Approach

To create standalone code, perform a build of D2. The standalone code calls
the model reference target of component C.

You can place multiple Model blocks and other blocks into the model to deploy
a whole system of components.

To pass test inputs to component C (running in SIL mode):

1 Create a test harness model that references model D2 in Normal mode, as
shown by model T2.

2 Simulate the T2 model to run component C in SIL mode and test its model
reference target.

The Model Dependency Viewer shows the model reference hierarchy of T2 and
the simulation modes of each Model block component.

39-13

39 Verifying Generated Code With SIL and PIL Simulations

When to Use the SIL or PIL Block
Use the SIL or PIL block if you want to:

• Verify code generated for a top model with a standalone code interface, or a
subsystem with a (right-click build) standalone code interface. For more
information about the standalone target code interface, see “SIL and PIL
Code Interfaces” on page 39-47.

• Change the model and insert a SIL or PIL block to represent a component
running in SIL or PIL mode, in a situation where a test harness model or a
system model provides test vector or stimulus inputs.

For example, you can replace the controller subsystem in the following
model,

39-14

Choosing a SIL or PIL Approach

with a SIL block (highlighted) that represents the controller.

For information about how you create a SIL or PIL block, see “Using a
SIL or PIL Block” on page 39-20.

Note If you compare a SIL or PIL block simulation with a top-model
simulation, you see that you must perform two steps before you can run the
simulation. First, you perform a right-click subsystem build to create the
SIL or PIL block. Then, you replace the subsystem in the original model
with the newly created SIL block.

39-15

39 Verifying Generated Code With SIL and PIL Simulations

Configuring a SIL or PIL Simulation

In this section...

“Top-Model SIL or PIL Simulation” on page 39-16

“Model Block SIL or PIL Simulation” on page 39-18

“Using a SIL or PIL Block” on page 39-20

“Verifying a SIL or PIL Configuration” on page 39-22

“Compatible Models” on page 39-23

Top-Model SIL or PIL Simulation
To configure and run a top-model SIL or PIL simulation:

1 Open your model.

2 Select either Simulation > Software-in-the-Loop (SIL) or
Simulation > Processor-in-the-Loop (PIL).

Note This option is available only if the model is configured for an ERT or
AUTOSAR target. See “Code Generation Pane: General” and Chapter 24,
“Generating Code for AUTOSAR Software Components” for configuration
information.

3 If you have not already done so, in the Configuration Parameters dialog
box, on the Data Import/Export pane:

• In the Input check box and field, specify stimulus signals (or test
vectors) for your top model.

• Configure logging for model outputs, using either output logging or
signal logging:

– In the Output check box and field, specify output logging.

– In the Signal logging check box and field, specify signal logging.

The software logs only signals that connect to root-level inports and
outports. See “Verifying Internal Signals of a Component” on page

39-16

Configuring a SIL or PIL Simulation

39-43. If the root outports of your model connect to bus signals, then
output logging is not available. Use signal logging for bus signals that
connect to root outports.

If you name the signals, you can log signals that connect to inports
or outports of the top model. If you select Signal logging but do not
name signals that connect to inports or outports of the top model,
then the signal logging object (for example, logsout) does not hold
signal data.

• Disable logging of Data Store Memory variables. The software does not
support this option for this simulation mode. If you do not clear the
Data stores check box, the software produces a warning when you run
the simulation.

For information about the Data Import/Export pane, see “Importing and
Exporting Simulation Data” and “Data Import/Export Pane”.

4 If you are configuring a SIL simulation, specify one of the following:

• Hardware implementation settings that correspond to the host machine.
See “Configuring the Hardware Implementation” in the Simulink Coder
documentation.

For a SIL simulation, you do not have to specify a value for the Byte
ordering field on the Hardware Implementation pane. The software
uses the byte ordering that the host computer uses.

• Portable word sizes. See “Configuring Hardware Implementation
Settings for SIL” on page 39-49.

5 If required, configure:

• Code coverage. See “Code Coverage” on page 39-25.

• Code execution profiling. See “Configuring Code Execution Profiling”
on page 39-34.

6 Start the simulation.

39-17

39 Verifying Generated Code With SIL and PIL Simulations

Note You cannot:

• Close the model while the simulation is running. To interrupt the
simulation, in the Command Window, press Ctrl+C.

• Alter the model during the simulation. You can move blocks and lines as
long as it does not alter the behavior of the model.

You can run a top-model SIL or PIL simulation using the command
sim(model).

Note The software supports the sim command options SrcWorkspace and
DstWorkspace for only the following values:

• SrcWorkspace — 'base'

• DstWorkspace — 'base' or 'current'

For more information on the sim command and its options, see “Simulation”
in the Simulink documentation.

For information about how a simulation behaves when the top model contains
a Model block (and this Model block is a parent Model block containing Model
blocks at lower levels of its reference hierarchy), see “Simulation Mode
Override Behavior in Model Reference Hierarchy” on page 39-44.

For a PIL simulation, you control the way code compiles and executes in the
target environment through connectivity configurations. See “Creating a
Connectivity Configuration for a Target” on page 39-54.

Model Block SIL or PIL Simulation
To configure a Model block for a SIL or PIL simulation:

1 Open your model.

39-18

Configuring a SIL or PIL Simulation

2 Right-click your Model block, for example, Counter A. In the context
menu, select ModelReference Parameters to open the Model Reference
Parameters dialog box.

3 From the Simulation Mode drop-down list, select the required mode, for
example, Software-in-the-loop (SIL).

39-19

39 Verifying Generated Code With SIL and PIL Simulations

4 If configuring a SIL simulation, select one of the following:

• Hardware implementation settings that correspond to the host machine.
See “Configuring the Hardware Implementation” in the Simulink Coder
documentation.

You do not have to specify a value for the Byte ordering field on the
Hardware Implementation pane. The software uses the byte ordering
that the host computer uses.

• Portable word sizes. See Setting Up a Model to Generate Code for Host
Simulations and Target Deployment

5 Configure code coverage, if required. See “Code Coverage” on page 39-25.

6 If you require code execution profiling for your Model block, then configure
execution profiling for the top model. See “Configuring Code Execution
Profiling” on page 39-34.

7 Start the simulation.

Note For a PIL simulation, you control the way code compiles and executes
in the target environment through connectivity configurations. See “Creating
a Connectivity Configuration for a Target” on page 39-54.

Using a SIL or PIL Block
You can automatically create a SIL or PIL block from a complete model or a
subsystem. You can use this block to test the code generated from your model:

1 In the Configuration Parameters dialog box, selectCodeGeneration > SIL
and PIL Verification.

2 From the Create block drop-down list, select either SIL or PIL.

3 If you want to enable code execution profiling for a PIL block:

a Select the Collect execution time measurements check box.

b In the Workspace variable field, specify a name.
The software does not support code execution profiling in SIL blocks. For
more information, see “Code Execution Profiling” on page 39-34.

39-20

Configuring a SIL or PIL Simulation

4 Click OK.

5 In your model window, right-click the subsystem that you want to simulate.

6 Select Code Generation > Build Subsystem.

7 Click Build to start a subsystem build that generates a SIL or PIL block
for the generated subsystem code.

8 Add the generated block to an environment or test harness model that
supplies test vectors or stimulus input.

9 Run simulations with the environment or test harness model to perform
SIL or PIL tests.

10 Verify that the generated code captured in the SIL or PIL block provides
the same result as the original subsystem.

Note You cannot create a SIL or PIL block (Create block appears dimmed)
if you do one of the following:

• Disable either the CreateSILPILBlock or GenerateErtSFunction property

• Select a code coverage tool

For a PIL simulation, you control the way code compiles and executes in the
target environment through connectivity configurations. See “Creating a
Connectivity Configuration for a Target” on page 39-54.

For an example of how the SIL block is used in testing, see
rtwdemo_sil_pil_script.

For a description of the SIL block as an S-function wrapper, see Chapter 26,
“Generating S-Function Wrappers”.

39-21

39 Verifying Generated Code With SIL and PIL Simulations

Verifying a SIL or PIL Configuration
You might need to change model settings to configure the model correctly for
SIL or PIL. To find out what settings you must change, use the cgv.Config
class. Using the cgv.Config class, you can review your model configuration
and determine which settings you must change to configure the model
correctly for SIL or PIL. By default, cgv.Config changes configuration
parameter values to the value that it recommends, but does not save the
model. Alternatively, you can specify that cgv.Config use one of the following
approaches:

• Change configuration parameter values to the values that cgv.Config
recommends, and save the model. Specify this approach using the
SaveModel property.

• List the values that cgv.Config recommends for the configuration
parameters, but do not change the configuration parameters or the model.
Specify this approach using the ReportOnly property.

Note

• To execute the model in the target environment successfully, you might
need to make additional modifications to the configuration parameter
values or the model.

• Do not use referenced configuration sets in models that you are changing
using cgv.Config. If the model uses a referenced configuration
set, update the model with a copy of the configuration set. Use
the Simulink.ConfigSetRef.getRefConfigSet method. For more
information, see Simulink.ConfigSetRef in the Simulink documentation.

• If you use cgv.Config on a model that executes a callback function, the
callback function might change configuration parameter values each
time the model loads. The callback function might revert changes that
cgv.Config made. When this change occurs, the model might no longer be
set up correctly for SIL or PIL. For more information, see “Using Callback
Functions”.

For more information about the cgv.Config class, see cgv.Config.

39-22

Configuring a SIL or PIL Simulation

How To Verify a SIL or PIL Configuration
To verify that your model is configured correctly:

1 Construct a cgv.Config object that changes the configuration parameter
values without saving the model. For example, to configure your model
for SIL:

c = cgv.Config('vdp', 'connectivity', 'sil');

Tip

• You can obtain a list of changes without changing the configuration
parameter values. When you construct the object, include the
'ReportOnly', 'on' property name and value pair.

• You can change the configuration parameter values and save the model.
When you construct the object, include the 'SaveModel', 'on' property
name and value pair.

2 Determine and change the configuration parameter values that the object
recommends using the configModel method. For example:

c.configModel();

3 Display a report of the changes that configModel makes. For example:

c.displayReport();

4 Review the changes.

5 To apply the changes to your model, save the model.

Compatible Models
You can use the SIL simulation mode with any Simulink model, if:

1 The model specifies an ERT-based target.

2 The model specifies one of the following template makefiles:

a ert_default_tmf

39-23

39 Verifying Generated Code With SIL and PIL Simulations

b ert_unix.tmf

c ert_vc.tmf

d ert_vcx64.tmf

e ert_lcc.tmf

The software does not support the Watcom compiler template makefile
(ert_watc.tmf).

3 The host and target word sizes match. For example, if your host is a
Windows XP computer, then you must specify, through the Hardware
Implementation pane, a hardware device with the following word sizes
(in bits):

• char — 8

• short — 16

• int — 32

• long — 32

• native word size — 32
See also “Configuring Hardware Implementation Settings for SIL” on
page 39-49.

39-24

Code Coverage

Code Coverage

In this section...

“Using a Code Coverage Tool in a SIL Simulation” on page 39-25

“Code Coverage for a PIL Simulation” on page 39-32

“Configuring Code Coverage Programmatically” on page 39-32

Using a Code Coverage Tool in a SIL Simulation
During a top-model or Model block SIL simulation, you can collect code
coverage metrics for generated code using a third-party tool.

Embedded Coder supports the BullseyeCoverage™ tool from Bullseye Testing
Technology™. MathWorks does not supply this tool. For information about
installing and using this tool, go to http://www.bullseye.com/cgi-bin/mwEval.

To configure a code coverage tool for a top-model or Model block SIL
simulation:

1 Select Simulation > Configuration Parameters > Code
Generation > SIL and PIL Verification.

2 From the Code coverage tool drop-down list, select a tool, for example,
BullseyeCoverage.

3 Click Configure Coverage to open the Code Coverage Settings dialog box.

4 In the Installation folder field, specify the location where your coverage
tool is installed.

5 Specify the models for which you want code coverage data:

• To generate coverage data for just the current (top) model, select the
Code coverage for this model check box.

• To generate data for models referenced by the current (top) model, select
the Code coverage for referenced models check box.

39-25

http://www.bullseye.com/cgi-bin/mwEval

39 Verifying Generated Code With SIL and PIL Simulations

Note If you do not select a check box, the software does not generate
code coverage data.

6 Click OK. You return to the SIL and PIL Verification pane.

7 To view cumulative code coverage results within a code generation report,
in Configuration Parameters > Code Generation > Report, select
the following check boxes:

• Create code generation report

• Launch report automatically

Note On a Linux® platform, the default browser that displays the
report automatically does not support JavaScript. As a result, the
code coverage information does not appear in the report. Selecting the
Launch report automatically check box is unnecessary. At the end
of the simulation, a link to the code generation report appears in the
Command Window. This link is configured to open the report with an
external browser that supports JavaScript. Click this link to view the
report with code coverage information.

.

8 Click OK. You return to the model window.

Note During the SIL simulation, the code coverage software checks the time
stamp of each source file to determine whether the source file is newer than
the code coverage data generated for the file. If the source file is newer, the
software produces an error. As you may edit a file manually after compilation
(with code coverage configured), this software behavior prevents collection
of code coverage data for object code that is stale.

39-26

Code Coverage

When the simulation is complete, the code generation report opens
automatically. This report provides summary data and code annotations
with coverage information.

The cumulative coverage data in a code generation report is derived from
instrumented files associated with your latest top model simulation and
coverage data collected from simulations with other top models that share
referenced models with your current top model.

In the following example, there are two annotations. At line 41, TF indicates
that the if decision had both true and false outcomes during the simulation.
At line 52, =>F indicates that the if decision was false only during the
simulation.

For a list of annotations, see “Code Coverage Annotations in Code Generation
Report” on page 39-29.

The code generation report allows you to navigate easily between blocks in
your model and the corresponding sections in the source code. See “Tracing
Model Objects to Generated Code” on page 37-4 and “Tracing Code to Model
Objects Using Hyperlinks” on page 37-2.

39-27

39 Verifying Generated Code With SIL and PIL Simulations

When the SIL simulation is complete, you see two hyperlinks in the Command
Window.

To view the coverage report for the simulation in the BullseyeCoverage
Browser, click the first link.

The BullseyeCoverage Browser shows cumulative coverage data for all
instrumented files associated with your latest top model simulation. The
coverage data shown in the browser is not cumulative and pertains only to
the most recent simulation.

For information about the BullseyeCoverage Browser, go to www.bullseye.com.

For an example on collecting code coverage metrics, view the demo
rtwdemo_code_coverage_script.

39-28

http://www.bullseye.com

Code Coverage

Code Coverage Annotations in Code Generation Report
The following table describes the code annotations you may see in a code
generation report produced by a SIL simulation. For information on
configuring code coverage annotation, see “Using a Code Coverage Tool in a
SIL Simulation” on page 39-25.

Code feature Annotation
symbol What happened during simulation

=> Decision not executed

TF Decision evaluated both true and false

=>T Decision evaluated true only
Decision

=>F Decision evaluated false only

=> Function not called
Function

Fcn Function called

=> Switch command not used
Switch label

Sw Switch command used

Constant k
Decision or condition was constant, which
did not allow any variation in coverage.

=> Condition not encountered

tf Condition evaluated both true and false

=>t Condition evaluated true only
Condition

=>f Condition evaluated false only

Tips and Limitations

Compilers and Platforms Supported for SIL Code Coverage. For SIL
code coverage, the software supports the following compilers and platforms:

• On a Linux platform, gcc

• On a Windows platform, vc

39-29

39 Verifying Generated Code With SIL and PIL Simulations

The software does not support the Lcc or Watcom compiler. If either compiler
is specified with code coverage, the software produces an error when you build
your model. For information on how to specify a compiler, see “Choosing and
Configuring a Compiler” in the Simulink Coder documentation.

BullseyeCoverage Tool Support. Embedded Coder is tested with version
7.14.20 of the BullseyeCoverage tool on the following operating systems:

• Windows 32-bit

• Windows 64-bit

• Linux 32-bit

• Linux 64-bit

Embedded Coder support for the BullseyeCoverage tool is untested on the
Macintosh® 64-bit operating system.

BullseyeCoverage License Wait. When you build your model, you
may have to wait for a BullseyeCoverage license. If you want to see
information about the wait, before you build your model, select Code
Generation > Debug > Verbose build.

Characters in matlabroot and File Path. If matlabroot or the path to your
generated files contains a space or the . (period) character, code coverage
may fail.

Code Coverage Instrumentation in a Standalone Executable. If you
build your model and the model is configured for code coverage, then the
generated standalone executable contains instrumentation for collecting code
coverage metrics. However, MathWorks recommends that you use only the
SIL or PIL simulation mode to generate code coverage metrics.

.cov Files in Build Folders. The software uses only the .cov file in the
code generation working folder to collect code coverage metrics for the
entire model hierarchy. You can see other .cov files in the build folders for
individual model components, for example, the top model and referenced
models. However, these files are intermediate files, which the software does
not use during a SIL simulation.

39-30

Code Coverage

Code Coverage for Source Files in Shared Utility Folders. The software
supports code coverage for source files generated in shared utility folders.
If you configure code coverage for a model that uses shared utility code
generation, when you build the model, you also build all source files in the
shared utilities folder with code coverage enabled.

Whenever you build a model, the code coverage settings of the model must be
consistent with source files that you previously built in the shared utilities
folder. Otherwise, the software reports that code in the shared utilities folder
is inconsistent with the current model configuration and must be rebuilt. For
example, if you run a SIL simulation for a model with code coverage enabled
and then a SIL simulation for another model with code coverage disabled, the
software must rebuild all source files in the shared utilities folder.

The BullseyeCoverage tool, by default, does not provide code coverage data
for inline macros.

For example, if a model generates a file
slprj/ert/_sharedutils/rt_SATURATE.h that contains the macro

#define rt_SATURATE(sig,ll,ul) (((sig) >= (ul)) ? (ul) :
(((sig) <= (ll)) ? (ll) : (sig)))

and the macro is in sat_ert_rtw/sat.c, then the coverage report provides a
measurement for sat.c, but no coverage data for the conditions within the
macro rt_SATURATE.

To configure the BullseyeCoverage tool to provide code coverage data for
inline macros:

1 Open the BullseyeCoverage Browser.

2 Select Tools > Options to open the Options dialog box.

3 On the Build tab, select the Instrument macro expansions check box.

4 Click OK.

5 Rerun your simulation.

39-31

39 Verifying Generated Code With SIL and PIL Simulations

Alternatively, you can add the text -macro to the
BullseyeCoverage configuration file. For more information, go to
http://www.bullseye.com/help/ref_covc.html.

Code Coverage for a PIL Simulation
You can configure code coverage for top-model and Model block SIL
simulations. See “Using a Code Coverage Tool in a SIL Simulation” on page
39-25. Code coverage is also available for the corresponding PIL simulations
provided your PIL application can write directly to the host file system.
Your target for the PIL application must provide fopen and fread access to
the host file system.

If code coverage is not available when you run the PIL application on your
target hardware, you may be able to collect code coverage measurements by
running the PIL application on an instruction set simulator that supports
direct file I/O with the host file system.

Configuring Code Coverage Programmatically
You can configure code coverage for your model using command line APIs.
The following example shows a typical workflow.

1 Using get_param, retrieve the object containing coverage settings for the
current model, for example, gcs.

>> covSettings = get_param(gcs, 'CodeCoverageSettings')

covSettings =

cov.CodeCoverageSettings handle

Package: cov

Properties:

TopModelCoverage: 'on'

ReferencedModelCoverage: 'off'

CoverageTool: 'BullseyeCoverage'

Methods, Events, Superclasses

39-32

http://www.bullseye.com/help/ref_covc.html

Code Coverage

Note The property TopModelCoverage determines whether the
software generates code coverage data for just the top model, while
ReferencedModelCoverage determines whether the software generates
coverage data for models referenced by the top model. If neither property is
'on', then no code coverage data is generated during a SIL simulation.

When you save your model, the properties TopModelCoverage,
ReferencedModelCoverage, and CoverageTool are also saved.

2 Check the class of covSettings.

>> class(covSettings)

ans =

cov.CodeCoverageSettings

3 Switch on coverage for referenced models.

>> covSettings.ReferencedModelCoverage='on';

4 Using set_param, apply the new coverage settings to the model.

>>set_param(gcs,'CodeCoverageSettings', covSettings);

5 Assuming you have installed the BullseyeCoverage tool, specify the
installation path.

>> cov.BullseyeCoverage.setPath('C:\Program Files\BullseyeCoverage')

6 Check that the path has been saved as a preference.

>> cov.BullseyeCoverage.getPath

39-33

39 Verifying Generated Code With SIL and PIL Simulations

Code Execution Profiling

In this section...

“About Code Execution Profiling” on page 39-34

“Configuring Code Execution Profiling” on page 39-34

“Viewing and Analyzing Code Execution Profiles” on page 39-35

“Tips and Limitations” on page 39-39

About Code Execution Profiling
Use this feature to collect a profile of execution time for each task within
your generated code.

You can collect execution time measurements in a specified base workspace
variable during a SIL or PIL simulation. See “Configuring Code Execution
Profiling” on page 39-34.

At the end of the simulation, you can view or analyze the measurements
within the MATLAB environment. See “Viewing and Analyzing Code
Execution Profiles” on page 39-35.

Note The software supports code execution profiling for all types of SIL and
PIL simulations, with the exception of SIL block simulations.

Configuring Code Execution Profiling
To configure code execution profiling for a SIL or PIL simulation:

1 Select Simulation > Configuration Parameters > Code
Generation > SIL and PIL Verification.

2 Select the Collect execution time measurements check box.

3 In the Workspace variable field, specify a name. When you run the
simulation, the software generates a variable with this name. The variable

39-34

Code Execution Profiling

contains the execution time measurements, and is an object of type
rtw.pil.ExecutionProfile.

4 Click OK.

For a PIL simulation, you must configure a hardware-specific timer. When
you set up the connectivity configuration for your target, create a timer object.
See “Creating a Connectivity Configuration for a Target” on page 39-54. This
action is not required for a SIL simulation.

How Profiling Settings Apply to Model and PIL Blocks
If your top model contains a Model block configured for SIL or PIL, the
execution profiling settings of the top model also apply to the Model block.

If your top model has a PIL block, the execution profiling settings that apply
to the PIL block are the settings from the original model that you used to
create the PIL block. See “Using a SIL or PIL Block” on page 39-20. The
execution profiling settings of your top model have no effect on the PIL block.

Viewing and Analyzing Code Execution Profiles
After a SIL or PIL simulation, from the Command Window, you can
view and analyze execution profile data using methods from the
rtw.pil.ExecutionProfile and rtw.pil.ExecutionProfileSection
classes.

The rtw.pil.ExecutionProfile class provides the following methods:

• getNumSectionProfiles— Get number of code sections for which profiling
data is available

• getSectionProfile— Get rtw.pil.ExecutionProfileSection object

• getTimerTicksPerSecond— Get number of timer ticks per second

• setTimerTicksPerSecond— Set number of timer ticks per second

• display — Display summary in Command Window

The rtw.pil.ExecutionProfileSection class provides the following
methods:

39-35

39 Verifying Generated Code With SIL and PIL Simulations

• getName — Get name of profiled code section

• getSamplePeriod — Get sample time associated with profiled section of
code

• getSampleOffset — Get sample offset associated with profiled section
of code

• getTicks — Get vector of execution times (in timer ticks) for profiled
section of code

• getTimes— Get vector of execution times (in seconds) for profiled section
of code

For more information about these methods, see “Code Execution Profiling”.

Code Execution Profiling Example

Suppose you do the following with rtwdemo_sil_topmodel:

1 Enable code execution profiling.

2 Specify a workspace variable myExecutionProfile.

3 Run a SIL simulation.

The software creates an rtw.pil.ExecutionProfile object.

>> rtwdemo_sil_topmodel

Starting build procedure for model: rtwdemo_sil_topmodel

Successful completion of build procedure for model: rtwdemo_sil_topmodel

Preparing to start SIL simulation ...

Starting SIL simulation for component: rtwdemo_sil_topmodel

Stopping SIL simulation for component: rtwdemo_sil_topmodel

>> whos

Name Size Bytes Class Attributes

T 1x1 8 double

myExecutionProfile 1x1 60 rtw.pil.ExecutionProfile

out 1x1 180 Simulink.SimulationOutput

reset 1x1 1413 struct

39-36

Code Execution Profiling

ticks_to_count 1x1 1413 struct

You can use the method display to provide a summary of all profiled code
sections. Alternatively, enter the name of the workspace variable.

>> myExecutionProfile

Minimum Average Maximum

1. rtwdemo_sil_topmodel_step [0.1 0] : 121 141 352

>>

In this example, there is only one code section with profiling data. The software
displays the following information for the task rtwdemo_sil_topmodel_step:

• Sample period (0.1 seconds)

• Sample offset (0)

• Execution times for the code section — minimum (121), average (141), and
maximum (352). Since the timer is uncalibrated, the values represent
timer ticks.

To get the total number of code sections that have profiling data, use the
getNumSectionProfiles method.

>> no_of_Sections = myExecutionProfile.getNumSectionProfiles

no_of_Sections =

1

>>

To get the rtw.pil.ExecutionProfileSection object for a profiled code
section, use the method getSectionProfile.

>> FirstSectionProfile = myExecutionProfile.getSectionProfile(1)

rtw.pil.ExecutionProfileSection

Section name = rtwdemo_sil_topmodel_step

39-37

39 Verifying Generated Code With SIL and PIL Simulations

Sample period = 0.1

Sample offset = 0

>>

Use rtw.pil.ExecutionProfileSection methods to extract profiling
information for a particular code section. For example, use getName to obtain
the name of a profiled code section.

>> name_of_section = FirstSectionProfile.getName

name_of_section =

rtwdemo_sil_topmodel_step

>>

To get the sample time associated with the profiled code section, use the
method getSamplePeriod.

>> sample_time = FirstSectionProfile.getSamplePeriod

sample_time =

0.1000

>>

If the timer is uncalibrated, applying the method getTimes returns an empty
array.

>> execution_times = FirstSectionProfile.getTimes

execution_times =

[]

>>

39-38

Code Execution Profiling

However, if you know the timer rate, for example 2.2 GHz, you can use the
rtw.pil.ExecutionProfile method setTimerTicksPerSecond to calibrate
the timer.

>> myExecutionProfile.setTimerTicksPerSecond(2.2e9)

>> FirstSectionProfile = myExecutionProfile.getSectionProfile(1);

>>

You can then use getTimes to generate a vector of execution times for the
code section, and extract, for example, the minimum and maximum execution
times.

>> execution_times = FirstSectionProfile.getTimes;

>> whos execution_times

Name Size Bytes Class Attributes

execution_times 1x101 808 double

>> minmax(execution_times)

ans =

1.0e-006 *

0.0550 0.1600

>>

Tips and Limitations

Triggered Model Block
Consider the case where a triggered Model block is configured to run in the
SIL or PIL simulation mode. The software generates one execution time
measurement each time the referenced model is triggered to run. If there are
multiple triggers in a single time step, there are multiple measurements for
the triggered Model block. Conversely, if there is no trigger in a given time
step, the software generates no time measurements.

39-39

39 Verifying Generated Code With SIL and PIL Simulations

Outliers in Execution Profiles
The operating system may preempt a SIL application after the start of
a measurement, making the execution profiling result for the time step
unreliable. As a consequence of preemption, you may see outliers in your code
execution profiles, with execution times that are longer than expected.

Additionally, for execution time measurements greater than 232 ticks, the
counter wraps. Counter wrapping occurs when the actual execution time is
very long, which results in a measured execution time that is shorter than
expected.

Execution Times with Separate Output and Update Functions
If you clear the check box Configuration Parameters > Code
Generation > Interface > Single output/update function before building
your model, the generated code has separate output and update functions.
The measured execution time for each step is the sum of the execution times
for the separate functions.

39-40

Running a Top Model as a SIL or PIL Simulation

Running a Top Model as a SIL or PIL Simulation
With a top-model SIL or PIL simulation:

• Simulink generates and executes code that uses the same code interface
produced by the standalone build process. See “SIL and PIL Code
Interfaces” on page 39-47.

• You can specify external stimulus signals and log output signals, which
allows you to verify object code generated from a complete model without
creating a separate test harness model. Running the SIL or PIL simulation
is a simple operation.

Top-model SIL simulation is an alternative to the block-based approach
where you provide a test harness model that wraps a Model block (in SIL
mode). Two differences between the block-based approach and top-model
SIL simulation are:

• With Model block SIL simulation, the model reference target that is
generated does not have the same interface as standalone code (see “SIL
and PIL Code Interfaces” on page 39-47).

• With Model block SIL simulations, you cannot directly specify external
stimulus signals or enable signal logging. You must use input and output
blocks to feed signals into and out of your model. See “Verifying Internal
Signals of a Component” on page 39-43 and “Choosing a SIL or PIL
Approach” on page 39-9.

To compare all SIL simulation options, see “Choosing a SIL or PIL Approach”
on page 39-9.

For the top-model SIL approach, Simulink creates a hidden wrapper model.
When you run a top-model SIL simulation, the software generates code for the
model and creates a hidden wrapper model to call this code at each time step.

• If there are errors during a SIL simulation, you may see messages that
refer to the wrapper model. For wrapper model error messages, the
wrapper model is made visible to allow you to investigate the error.

• For signal logging, the software adds the suffix _wrapper to the block path
for signals in logsout, as shown in the following example:

39-41

39 Verifying Generated Code With SIL and PIL Simulations

>> logsout.SignalLogging

Name: 'SignalLogging'
BlockPath: 'sillogging_wrapper/sillogging'
PortIndex: 1

SignalName: 'SignalLogging'
ParentName: 'SignalLogging'

TimeInfo: [1x1 Simulink.TimeInfo]
Time: [11x1 double]
Data: [11x1 double]

• For output logging, if the save format is Structure or Structure with
time, the software adds the suffix _wrapper to the block name for signals
in yout, as shown in the following example:

>> yout.signals

ans =
values: [11x1 double]

dimensions: 1
label: 'SignalLogging'

blockName: 'sillogging_wrapper/OutputLogging'

If the save format is Array, then the software does not add a wrapper suffix.

39-42

Running a Referenced Model as a SIL or PIL Simulation

Running a Referenced Model as a SIL or PIL Simulation
In addition to the regular simulation modes, Model blocks have a
Software-in-the-loop (SIL) and Processor-in-the-loop (PIL) mode.

You can switch the Model block between regular, SIL, and PIL simulation
modes. This allows you to easily verify the generated code by executing the
referenced model as compiled code on the host computer or target platform.
You can model and test your embedded software component in Simulink and
you can reuse your regression test suites across simulation and compiled
object code. This capability avoids the time-consuming process of leaving the
Simulink software environment to run tests again on object code compiled for
your production hardware.

The label (SIL) or (PIL) on the block indicates the mode of the Model block.

To understand how SIL or PIL works in the Model block, see the following
information:

• “Simulation Mode Override Behavior in Model Reference Hierarchy” on
page 39-44

• “SIL and PIL Code Interfaces” on page 39-47

• “When to Use Model Block SIL or PIL” on page 39-9

• “Modeling Scenarios with the Model Block” on page 39-10

For an introduction to the Model block, see the Model Variants block section
in the Simulink reference documentation.

Verifying Internal Signals of a Component
Outputs of the SIL or PIL component are available for verification. If you
want to examine an internal signal, you can:

• Manually route the signal to the top level.

• Use global data stores to access internal signals:

1 Inside the component, connect a Data Store Write block to the required
signal.

39-43

39 Verifying Generated Code With SIL and PIL Simulations

2 Outside the component, use a Data Store Read block to access the signal
value.

See “Working with Data Stores” and “Global Data Store Example” in the
Simulink documentation.

• Use MAT-file logging. See “Setting Up Runtime Logging to MAT-Files” in
the Simulink Coder documentation. For PIL, target environment must
support MAT-file logging.

For more information on signal support, see “I/O Support” on page 39-71.

Simulation Mode Override Behavior in Model
Reference Hierarchy
This section describes simulation behavior when the top model contains a
Model block. This Model may also be a parent block containing child Model
blocks at lower levels of its reference hierarchy.

Note You can view your model hierarchy in the Model Dependency Viewer.
In the Referenced Model Instances view, the software displays Model
blocks differently to indicate their simulation modes, for example, Normal,
Accelerator, SIL, and PIL. In this view, the software does not indicate the
simulation mode of the top model.

You can specify the simulation mode of a top model to be Normal, Accelerator,
Rapid Accelerator, SIL, or PIL. With a Model block, you can specify all modes
except Rapid Accelerator. The configured simulation mode of a Model block
may be overridden by the parent simulation mode. The following table shows
how the software determines the effective simulation mode of any Model
block in the hierarchy.

39-44

Running a Referenced Model as a SIL or PIL Simulation

Mode of parent or child block in reference
hierarchyMode of top

model or
parent block Normal Accelerator SIL PIL

Normal Equivalent Compatible Compatible Compatible

Accelerator Override Equivalent Error Error

Rapid
Accelerator

Override Override Error Error

SIL Override Override Equivalent Error

PIL Override Override Error Equivalent

The following list explains the different types of simulation behavior:

• Equivalent – Both parent and child Model block run in the same simulation
mode.

• Compatible – If the simulation mode of the top model or parent block is
Normal, then the software simulates the child block in the mode specified
for it.

• Error – The simulation produces an error. For example, if a top model
or parent Model block has simulation mode Accelerator but contains a
child block in SIL or PIL mode, then running a simulation produces an
error: the Accelerator mode can never override the SIL and PIL mode of
child blocks. This behavior avoids the risk of “false positives”, that is, the
successful simulation of a model in Accelerator mode will never lead to
the conclusion that generated source or object code of child Model blocks
has been tested or verified.

• Override – The simulation mode of the top model or parent Model block
overrides the simulation mode of the child block. For example, if a top
model or parent Model block that is configured for a SIL simulation contains
a child Model block with simulation mode Normal or Accelerator, then the
software simulates the child block in SIL mode. This override behavior:

- Allows a Model block anywhere in the reference hierarchy to have the
SIL or PIL mode.

- Ensures that if you simulate the top model or parent Model block in SIL
or PIL mode, all lower-level referenced models execute in SIL or PIL

39-45

39 Verifying Generated Code With SIL and PIL Simulations

mode. You do not have to switch manually the simulation mode of every
model component in the hierarchy.

For an example model hierarchy, see “Modeling Scenarios with the Model
Block” on page 39-10.

39-46

SIL and PIL Code Interfaces

SIL and PIL Code Interfaces
This section describes and compares the different code interfaces that the
code generation products produce.

You generate standalone code when you perform a top-model or right-click
subsystem build for a single deployable component. You can compile and
link standalone code into a standalone executable or integrate it with other
code. For more information on the standalone code interface, see Chapter 33,
“Model Entry Points”.

When you generate code for a referenced model hierarchy, the software
generates standalone executable code for the top model, and a library module
called a model reference target for each referenced model. When the code
executes, the standalone executable invokes the applicable model reference
targets to compute the referenced model outputs. For more information, see
“Creating Model Components” in the Simulink Coder documentation.

Note The model reference target does not have the same code interface as
standalone code.

If you intend to integrate automatically generated code with legacy code, use
standalone code because the standalone code interface (for example, entry
points) is fully documented.

SIL/PIL Feature Standalone Code
Interface

Model Reference
Code Interface

Top-model Yes No (but you can include
Model blocks inside
your top model)

Model block No Yes

SIL or PIL block Yes No

Code Interface for Top-Model SIL or PIL
Top-model SIL or PIL generates the standalone code interface for the model.

39-47

39 Verifying Generated Code With SIL and PIL Simulations

When you run a top-model SIL or PIL simulation, the software calls the
standalone code for the model if it already exists. The software generates the
standalone code if it does not exist.

Code Interface for Model Block SIL or PIL
Model block SIL or PIL mode generates the model reference code interface.

When you run a simulation with a Model block in SIL or PIL mode, the
software calls the model reference target for the Model block if it already
exists, or generates the model reference target.

If the model reference target does not yet exist, you can generate it in one of
three ways:

• Run the simulation.

• Press Ctrl+B to build the top model containing the Model block.

• Use the command slbuild, specifying the model reference option, for
example:

slbuild('model','ModelReferenceRTWTargetOnly')

You cannot use standalone code with the Model block. You can generate
standalone code for a model referenced by a Model block by opening the model
and performing a top-level build. However, you cannot use this standalone
code with Model block SIL or PIL simulation.

For more information, see the table in “Choosing a SIL or PIL Approach”
on page 39-9.

39-48

Configuring Hardware Implementation Settings for SIL

Configuring Hardware Implementation Settings for SIL

In this section...

“Compiling Generated Code That Supports Portable Word Sizes” on page
39-51

“Portable Word Sizes Limitations” on page 39-51

Embedded Coder provides an option to specify portable word sizes. If you
select this option for a model, you can use the same generated source code
files for:

• Software-in-the-loop (SIL) simulation on the host computer

• Production deployment on the target platform

If you do not specify portable word sizes for a SIL simulation, you can
configure the model to use an emulation hardware option. For integer and
fixed-point operations, this option guarantees bit-true agreement between
host computer simulation and target deployment. See “Configuring the
Hardware Implementation” in the Simulink Coder documentation.

Note If processor word sizes differ between host and target platforms, and
you do not use any of the preceding options for SIL simulation, there are likely
to be differences between host computer results and target execution results.
When you use portable word sizes for SIL simulation, subtle differences in
host and target processor behavior can still occasionally cause host simulation
results to differ from target execution results. For more information, see
“Portable Word Sizes Limitations” on page 39-51.

To configure a model to use portable word sizes, set the following model
configuration parameters.

39-49

39 Verifying Generated Code With SIL and PIL Simulations

Set... To...

Hardware
Implementation > Emulation
hardware > None

Selected

Code Generation > SIL and PIL
Verification > Create block

SIL

Code Generation > SIL and PIL
Verification > Enable portable word
sizes

Selected

When you generate code for a model with the preceding parameter settings,
the code generator conditionalizes data type definitions:

• tmwtypes.h supports SIL simulation on the host system

• Code generation types support deployment on the target system

For example, in the following generated code, the first two lines define types
for SIL simulation on a host system. The bold lines define types for target
deployment.

#ifdef PORTABLE_WORDSIZES /* PORTABLE_WORDSIZES defined */
include "tmwtypes.h"
#else /* PORTABLE_WORDSIZES not defined */
#define __TMWTYPES__
#include <limits.h>
...
typedef signed char int8_T;
typedef unsigned char uint8_T;
typedef int int16_T;
typedef unsigned int uint16_T;
typedef long int32_T;
typedef unsigned long uint32_T;
typedef float real32_T;
typedef double real64_T;
...
#endif /* PORTABLE_WORDSIZES */

39-50

Configuring Hardware Implementation Settings for SIL

For an example of how to configure a model to maintain bit-true
agreement between host simulation and target deployment, and
generate code that is portable between the host and target systems, see
rtwdemo_sil_hardware_config.

Compiling Generated Code That Supports Portable
Word Sizes
When you compile generated code that supports portable word sizes for SIL
testing, pass the definition PORTABLE_WORDSIZES to the compiler.

For example:

-DPORTABLE_WORDSIZES

To build the same code for target deployment, compile the code without the
PORTABLE_WORDSIZES definition.

Portable Word Sizes Limitations
The following limitations apply to using portable word sizes for SIL
simulation:

• Numerical results might differ between generated code executing in a SIL
simulation versus executing on the embedded hardware under one of the
following conditions:

- Your model contains blocks implemented in TLC, for which C integral
promotion in expressions might behave differently between the MATLAB
host and the embedded hardware target. Normal and PIL simulation
results will match, but SIL simulation results might be different.

- Your embedded hardware implements rounding to Floor for signed
integer division, and divisions in your model use rounding mode Floor
or Simplest. Normal and PIL simulation results will match, but SIL
simulation results might be different.

- The precision of floating-point operations differs between the MATLAB
host and the embedded hardware target. In this case, Normal and SIL
simulation results will match, but PIL simulation results might be
different.

39-51

39 Verifying Generated Code With SIL and PIL Simulations

• Compilation warnings might occur for code generated using portable word
sizes if all of the following conditions exist:

- The combination of MATLAB host and embedded hardware target word
sizes causes rtwtypes.h to redefine the word sizes using preprocessor
macros. For example, when the embedded hardware has a 16-bit int
data type and the MATLAB host has a 16-bit short data type, int16_T
is redefined to be short on the host and int on the target.

- The data types are used in pointer arguments to function calls.

- The called functions are host-based precompiled functions (not compiled
using rtwtypes.h).

Under these conditions, the compiler typically issues a warning similar
to the following:

warning: passing argument 2 of 'frexp' from incompatible pointer type

Executing the generated code on the MATLAB host could lead to memory
corruption. For example, the function "double frexp (double value,
int *exp);" expects 'int *' as the second argument, for which 'int16_T
*' is passed in the generated code. But on the MATLAB host, int16_T is
redefined to short, and during SIL execution, frexp will attempt to write 4
bytes to a 2 byte location.

A potential workaround for the SIL workflow is to provide a custom
Target Function Library (TFL) entry for functions that write to address
locations obtained through pointer arguments. In the above example, the
function frexp is called by the reciprocal square root operation (rSqrt) and
rSqrt is replaceable using TFLs. Therefore, you can provide a custom
version of rSqrt to support SIL execution. The replacement function would
perform the necessary change in memory allocation for the data accessed
by the pointer variable, perhaps by introducing a temporary variable and
transferring the data to and from that variable. For more information
about TFLs, see Chapter 31, “Replacing Math Functions and Operators
Using Target Function Libraries”.

39-52

Programming PIL Support for Third-Party Tools and Target Hardware

Programming PIL Support for Third-Party Tools and Target
Hardware

You can use the Processor-in-the-loop (PIL) Connectivity API to apply the
power of PIL verification to object code compiled for your target processor.
There are many custom or third-party tools for building, downloading, and
communicating with an executable on a target environment. Use the API to
integrate your tools for:

• Building the PIL application (an executable for the target hardware)

• Downloading and running the executable

• Communicating with the executable

You can use PIL with any target hardware or instruction set simulator,
and any combination of tools that provide the required level of automation.
For hardware cases that MathWorks does not support, see “SIL and PIL
Simulation Support and Limitations” on page 39-60.

For instructions and demos on PIL and the Target Connectivity API, see:

• “Configuring a SIL or PIL Simulation” on page 39-16

• “Creating a Connectivity Configuration for a Target” on page 39-54

• “Demos of the Target Connectivity API” on page 39-59

39-53

39 Verifying Generated Code With SIL and PIL Simulations

Creating a Connectivity Configuration for a Target

In this section...

“What Is a PIL Connectivity Configuration?” on page 39-54

“Overview of the Target Connectivity API” on page 39-55

“Creating a Connectivity API Implementation” on page 39-58

“Registering a Connectivity API Implementation” on page 39-58

“Demos of the Target Connectivity API” on page 39-59

What Is a PIL Connectivity Configuration?
You can use PIL connectivity configurations and the target connectivity API
to customize PIL to work with any target environment.

Use a connectivity configuration to define:

• A configuration name

• A connectivity API implementation

• Settings that define the set of Simulink models that the configuration is
compatible with, for example, the set of models that have a particular
system target file, template makefile, and hardware implementation.

You can use the API to integrate third party tools for:

• Building the PIL application, an executable for the target hardware

• Downloading and running the executable

• Communicating with the executable

A particular connectivity configuration name is associated with a single
connectivity API implementation. Many different connectivity configurations
can coexist and be available for use with PIL simulations. You register each
connectivity configuration to Simulink by creating an sl_customization.m
file and placing it on the MATLAB path.

39-54

Creating a Connectivity Configuration for a Target

To run a PIL simulation, the software must first determine which of the
available connectivity configurations to use. The software looks for a
connectivity configuration that is compatible with the model under test. If the
software finds multiple or no compatible connectivity configurations, you see
an error message describing how to resolve the problem.

For information on how you create a connectivity configuration for a target,
see:

1 “Overview of the Target Connectivity API” on page 39-55

2 “Creating a Connectivity API Implementation” on page 39-58

3 “Registering a Connectivity API Implementation” on page 39-58

See also Example Custom Targets for information about running PIL
simulations on specific targets.

Overview of the Target Connectivity API

• “Target Connectivity API Components” on page 39-55

• “Communications rtiostream API” on page 39-56

Target Connectivity API Components
The following diagram shows what functions the Target Connectivity API
components perform:

• Configuring the build process

• Controlling communication between Simulink and the target

• Downloading, starting, and stopping the application on the target

39-55

http://www.mathworks.com/access/helpdesk/help/toolbox/rtw/ug/bsf8_k4-1.html

39 Verifying Generated Code With SIL and PIL Simulations

Communications rtiostream API
The communications part of the target connectivity API builds upon the
rtiostream API, described in this section.

You can use the rtiostream API to implement a communication channel to
enable exchange of data between different processes. This communication
channel is required to enable processor-in-the-loop (PIL) on a new target.

PIL requires a host-target communications channel. This communications
channel comprises driver code that runs on the host and target. The
rtiostream API defines the signature of both target-side and host-side
functions that must be implemented by this driver code.

39-56

Creating a Connectivity Configuration for a Target

The API is independent of the physical layer that sends the data. Possible
physical layers include RS232, Ethernet, or Controller Area Network (CAN).

A full rtiostream implementation requires both host-side and target-side
drivers. Code generation software includes host-side drivers for the default
TCP/IP implementation (all platforms) as well as a Windows only version
for serial communications. To use the TCP/IP rtiostream communications
channel, you must provide, or obtain from a third party, target-specific TCP/IP
device drivers. You must also do this if you require serial communications.
For other communication channels and platforms, there is no default
implementation provided by the code generation software. You must provide
both the host-side and the target-side drivers.

The rtiostream API comprises the following functions:

• rtIOStreamOpen

• rtIOStreamSend

• rtIOStreamRecv

• rtIOStreamClose

You can use rtiostream_wrapper to test the rtiostream shared library
methods from MATLAB code.

To see how the rtiostream functions fit into the workflow of creating a
connectivity implementation, see the next section, “Creating a Connectivity
API Implementation” on page 39-58.

39-57

39 Verifying Generated Code With SIL and PIL Simulations

Creating a Connectivity API Implementation
To create a target connectivity API implementation, you must create a
subclass of rtw.connectivity.Config.

• You must instantiate rtw.connectivity.MakefileBuilder. This class
configures the build process.

• You must create a subclass of rtw.connectivity.Launcher. This class
downloads and executes the application using a third-party tool.

• Configure your rtiostream communications implementation:

- On the target-side, integrate the driver code implementing rtiostream
functions directly into the build process by creating a subclass of
rtw.pil.RtIOStreamApplicationFramework.

- On the host-side, compile the driver code into a shared library. You
load and initialize this shared library by instantiating (or optionally,
customizing) rtw.connectivity.RtIOStreamHostCommunicator.

• If you want to carry out code execution profiling and your target
does not have built-in timer support, you must create a subclass of
rtw.connectivity.Timer to generate a timer object. This timer object
provides details of the hardware-specific timer and any associated source
files.

See also:

• “Creating Subclasses — Syntax and Techniques” in MATLAB
documentation.

• “Processor-in-the-Loop” for all classes, methods, and functions in the
Target Connectivity API

• rtwdemo_custom_pil for a demo that helps you to create a target
connectivity configuration using the Target Connectivity API

Registering a Connectivity API Implementation
Register the new connectivity API implementation to Simulink as a
connectivity configuration, by creating or adding to an sl_customization.m
file. By doing this, you also define the set of Simulink models that the new
connectivity configuration is compatible with.

39-58

Creating a Connectivity Configuration for a Target

For details, see rtw.connectivity.ConfigRegistry.

Demos of the Target Connectivity API
For step-by-step examples, see the following demos:

• rtwdemo_custom_pil

This demo shows you how to create a custom PIL implementation using
the target connectivity APIs. You can examine the code that configures the
build process to support PIL, a tool to use for downloading and execution,
and a communication channel between host and target. Follow the steps in
the demo to activate a full host-based PIL configuration.

• rtwdemo_rtiostream

This demo shows you how to implement a communication channel for
use with the Embedded Coder product and your embedded target. This
communication channel enables exchange of data between different
processes. PIL simulation requires this because it requires exchange of
data between the Simulink software running on your host computer and
deployed code executing on target hardware.

The rtiostream interface provides a generic communication channel that
you can implement in the form of target connectivity drivers for a range of
connection types. The demo shows how to configure your own target-side
driver for TCP/IP, to operate with the default host-side TCP/IP driver. The
default TCP/IP communications allow high bandwidth communication
between host and target, suitable for transferring data such as video.

The demo also shows how to implement custom target connectivity drivers,
for example, using serial, CAN, or USB for both host and target sides of
the communication channel.

39-59

39 Verifying Generated Code With SIL and PIL Simulations

SIL and PIL Simulation Support and Limitations

In this section...

“About SIL and PIL Simulation Support and Limitations” on page 39-61

“Code Source Support” on page 39-62

“Block Support” on page 39-65

“Configuration Parameters Support” on page 39-67

“I/O Support” on page 39-71

“Hardware Implementation Support” on page 39-84

“Other Feature Support” on page 39-88

39-60

SIL and PIL Simulation Support and Limitations

About SIL and PIL Simulation Support and Limitations
Top-model and Model block software-in-the-loop (SIL) and
processor-in-the-loop (PIL) simulation modes, and SIL and PIL blocks are
Embedded Coder features.

The following tables summarize the support provided for top-model SIL and
PIL, Model block SIL and PIL and the SIL or PIL block. “Yes” indicates
a supported feature.

Information on selected aspects of SIL and PIL is also provided, especially
unsupported features and limitations.

39-61

39 Verifying Generated Code With SIL and PIL Simulations

Code Source Support

Code
Source

Code
Interface

Top-Model
SIL/PIL

Model Block
SIL/PIL

SIL Block PIL Block

Top model Standalone Yes No Yes Yes

Atomic
subsystem

Standalone No No Yes Yes

Virtual
subsystem

Standalone No No Yes, but
recommend
atomic
subsystem.
See “Algebraic
Loop Issues”
on page 39-69

Yes, but
recommend
atomic
subsystem.
See “Algebraic
Loop Issues”
on page 39-69.

Model block Model
reference
target

No, but you
can include
Model blocks
inside your
top model.

Yes. See “Cannot
Use Multirate
Model Block
SIL/PIL Inside
Conditionally
Executed
Subsystem” on
page 39-64

No, but you
can include
Model blocks
inside your
model.

No, but you
can include
Model blocks
inside your
model.

Enabled/
Triggered
subsystem

Standalone No No Yes Yes

Export
Functions
subsystem

Export
Functions

N/A N/A Yes Yes. See “PIL
Block Export
Functions” on
page 39-64.

39-62

SIL and PIL Simulation Support and Limitations

Code
Source

Code
Interface

Top-Model
SIL/PIL

Model Block
SIL/PIL

SIL Block PIL Block

Legacy code Custom See “Custom
Code
Interfaces”
on page
39-64.

See “Custom
Code Interfaces”
on page 39-64.

See “Custom
Code
Interfaces” on
page 39-64.

See “Custom
Code
Interfaces” on
page 39-64.

MATLAB
Coder

MATLAB
Coder

See “Custom
Code
Interfaces”
on page
39-64.

See “Custom
Code Interfaces”
on page 39-64.

See “Custom
Code
Interfaces” on
page 39-64.

See “Custom
Code
Interfaces” on
page 39-64.

For more information on code interfaces, see “SIL and PIL Code Interfaces” on
page 39-47.

39-63

39 Verifying Generated Code With SIL and PIL Simulations

Custom Code Interfaces
MathWorks does not provide direct SIL/PIL support for code interfaces such
as legacy code and MATLAB Coder. However, you can incorporate these
interfaces into Simulink as an S-function (for example, using the Legacy
Code Tool, S-Function Builder, or handwritten code), and then verify them
using SIL/PIL.

SIL/PIL Does Not Check Simulink Coder Error Status
SIL/PIL does not check the Simulink Coder error status of the generated code
under test. This error status flags exceptional conditions during execution
of the generated code.

The Simulink Coder error status can also be set by blocks in the model (for
example, custom blocks developed by a user). It is a limitation that SIL/PIL
cannot check this error status and report back errors.

Cannot Use Multirate Model Block SIL/PIL Inside Conditionally
Executed Subsystem
You see an error if you place your Model block (in either SIL or PIL simulation
mode) in a conditionally executed subsystem and the referenced model is
multirate (that is, has multiple sample times). Single rate referenced models
(with only a single sample time) are not affected.

PIL Block Export Functions
The PIL block does not support the export of functions from triggered
subsystems. With the PIL block, you can export only function-call subsystems.

39-64

SIL and PIL Simulation Support and Limitations

Block Support

Blocks Top-Model
SIL/PIL

Model Block SIL/PIL SIL Block PIL Block

Model block Yes, you can
include Model
blocks inside
your top model.

Yes Yes, you can
include Model
blocks inside
your subsystem
or model.

Yes, you can
include Model
blocks inside
your subsystem
or model.

DSP System
Toolbox

Yes Yes Yes Yes

Computer
Vision System
Toolbox™

Yes Yes Yes Yes

MATLAB
Function block

Yes Yes Yes Yes

Driver blocks Yes, but not
recommended.

Yes, but not
recommended.

Yes, but not
recommended.

Yes, but not
recommended.

To File blocks Yes, if MAT-file
logging is
on. MAT-file
logging may not
be available in
PIL mode.

No. MAT-file logging
is not supported.

Yes, if MAT-file
logging is on.

Yes, if MAT-file
logging is
supported and
on.

To Workspace
blocks

Yes, if MAT-file
logging is
on. MAT-file
logging may not
be available in
PIL mode.

No, MAT-file logging
is not supported.

Yes, if MAT-file
logging is on.

Yes, if MAT-file
logging is
supported and
on.

39-65

39 Verifying Generated Code With SIL and PIL Simulations

Blocks Top-Model
SIL/PIL

Model Block SIL/PIL SIL Block PIL Block

Merge blocks Yes Yes. Cannot connect
SIL/PIL outputs to
Merge blocks. See
“Merge Block Issue”
on page 39-66.

Yes. Cannot
connect SIL
outputs to Merge
blocks. See
“Merge Block
Issue” on page
39-66.

Yes. Cannot
connect PIL
outputs to Merge
blocks. See
“Merge Block
Issue” on page
39-66.

Stop block No. SIL/PIL
ignores the
Stop Simulation
block and
continues
simulating.

No. SIL/PIL ignores
the Stop Simulation
block and continues
simulating.

No. SIL
ignores the Stop
Simulation block
and continues
simulating.

No. PIL
ignores the Stop
Simulation block
and continues
simulating.

Scope blocks,
and all types
of run-time
display
For example,
display of port
values and
signal values

No No No No

Merge Block Issue
If you connect SIL/PIL outputs to a Merge block, you see an error because
S-function memory is not reusable.

Other Top-Model SIL/PIL Limitations
SIL/PIL does not support the callbacks (model or block) StartFcn and
StopFcn.

Note Top-model SIL/PIL supports the callback InitFcn.

39-66

SIL and PIL Simulation Support and Limitations

Configuration Parameters Support

Configuration
Parameters

Top-Model
SIL/PIL

Model Block SIL/PIL SIL Block PIL Block

ERT-based
system target
file

Yes Yes Yes Yes

AUTOSAR
system target
file

Yes. See
“AUTOSAR Top
Model SIL and
PIL Support” on
page 24-65.

Yes. See “AUTOSAR
Model Block SIL and
PIL Support” on page
24-66.

Yes. See
“AUTOSAR SIL
and PIL Block
Support” on
page 24-67.

Yes. See
“AUTOSAR SIL
and PIL Block
Support” on
page 24-67.

GRT-based
system target
file

No No No No

GRT compatible
call interface

No; see “Missing
Code Interface
Description File
Errors” on page
39-68.

No; see “Missing Code
Interface Description
File Errors” on page
39-68.

No No; see
“Missing Code
Interface
Description File
Errors” on page
39-68.

Function
Prototype
Control

Yes Yes Yes Yes

Reusable code
format

Yes, but see the
special cases in
“Imported Data
Definitions” on
page 39-77.

N/A Yes Yes, but see the
special cases in
“Imported Data
Definitions” on
page 39-77.

Target
Function
Library

Yes Yes Yes Yes

39-67

39 Verifying Generated Code With SIL and PIL Simulations

Configuration
Parameters

Top-Model
SIL/PIL

Model Block SIL/PIL SIL Block PIL Block

C++ No; see “Missing
Code Interface
Description File
Errors” on page
39-68.

No; see “Missing Code
Interface Description
File Errors” on page
39-68.

Yes No; see
“Missing Code
Interface
Description File
Errors” on page
39-68.

Generate
ASAP2 file

Yes Yes Yes Yes

Generate
example main

N/A N/A N/A N/A

MAT-file
logging

Yes. For PIL,
the target
environment
may not support
MAT-file
logging.

No Yes Yes, if
the target
environment
supports
MAT-file
logging.

Signal logging Yes, but only
for signals
connected
to root-level
inports and
outports.

No, but see “Verifying
Internal Signals of a
Component” on page
39-43.

No, but see
“Verifying
Internal
Signals of a
Component” on
page 39-43.

No, but see
“Verifying
Internal
Signals of a
Component” on
page 39-43.

’Simplified’
model
initialization

Yes Yes Yes Yes

Single
output/update

Yes, but see
“Algebraic Loop
Issues” on page
39-69.

Yes, but see “Algebraic
Loop Issues” on page
39-69.

Yes, but see
“Algebraic Loop
Issues” on page
39-69.

Yes, but see
“Algebraic Loop
Issues” on page
39-69.

Configuration
set reference

Yes Yes Yes Yes

• “Missing Code Interface Description File Errors” on page 39-68

• “Algebraic Loop Issues” on page 39-69

Missing Code Interface Description File Errors
SIL/PIL requires a code interface description file, which is generated during
the code generation process for the component under test. If the code interface
description file is missing, the SIL/PIL simulation cannot proceed and you
see an error reporting that the file does not exist. This error can occur if you
select these unsupported options in your configuration parameters:

• GRT compatible call interface

39-68

SIL and PIL Simulation Support and Limitations

• Target Language option C++ encapsulated

Do not select these options.

Algebraic Loop Issues
For more information on algebraic loops, see:

• “Algebraic Loops” in the Simulink documentation.

• The Algebraic Loops section in “Simulation Considerations That Affect
Code Generation” in the Simulink Coder documentation.

• The Introduction section in “Creating Subsystems” in the Simulink Coder
documentation.

There are three ways that PIL simulation can introduce algebraic loops that
do not exist for a normal simulation:

• “Algebraic Loops Caused by Code Generation for a Virtual Subsystem” on
page 39-69

• “Algebraic Loops Caused by “Single output/update function”” on page 39-69

• “Algebraic Loops Caused by SIL/PIL Scheduling Limitations” on page 39-70

Algebraic Loops Caused by Code Generation for a Virtual Subsystem.
If you generate code for a virtual subsystem, code generation treats the
subsystem as atomic and generates the code accordingly. The resulting code
can change the execution behavior of your model, for example, by applying
algebraic loops, and introduce inconsistencies to the simulation behavior.

Declare virtual subsystems as atomic subsystems to ensure consistent
simulation and execution behavior for your model.

See “Creating Subsystems” in the Simulink Coder documentation.

Algebraic Loops Caused by “Single output/update function”. The
“single output/update function” in code generation optimization can introduce
algebraic loops because it introduces direct feedthrough via a combined output
and update function.

39-69

39 Verifying Generated Code With SIL and PIL Simulations

This option is not compatible with the Minimize algebraic loop
occurrences option (in the Subsystem Parameters dialog box and Model
Referencing pane of the Configuration Parameters dialog box). This option
allows code generation to remove algebraic loops by partitioning generated
code appropriately between output and update functions to avoid direct
feedthrough.

Algebraic Loops Caused by SIL/PIL Scheduling Limitations. The
S-function scheduling mechanism that the software uses to execute the
SIL/PIL component has the following limitations:

• Direct feedthrough is always set to true.

• Separate output and update functions in the SIL/PIL component are always
executed from the mdlOutputs S-function callback.

These limitations mean that SIL/PIL can introduce algebraic loops that do
not exist in normal simulation, and you might get incorrect results. If this
happens, you see a warning or error about the introduced algebraic loop and
SIL/PIL results may differ from simulation results. You do not see or warning
or error if the algebraic loop setting is “none” in the Configuration Parameters
dialog box (under Diagnostics on the Solver pane).

A workaround is to break the algebraic loop by inserting a Unit Delay block so
that the algebraic loop does not occur. You can then use SIL/PIL successfully.

39-70

SIL and PIL Simulation Support and Limitations

I/O Support

I/O Top-Model
SIL/PIL

Model Block SIL/PIL SIL Block PIL Block

Tunable
parameters
(Model
reference
arguments)

N/A Yes. See “Tunable
Parameters and SIL/PIL”
on page 39-75.

N/A N/A

Tunable
parameters
(Workspace
variables)

No Yes. See “Tunable
Parameters and SIL/PIL”
on page 39-75.

Yes Yes. See
“Tunable
Parameters
and SIL/PIL”
on page 39-75.

Virtual buses No Yes Yes Yes, but some
limitations
at PIL
component
boundary;
see “PIL
Block Virtual
Bus Support
Limitations”
on page 39-82.

Nonvirtual
buses

Yes, but see
“Top-Model
SIL/PIL Bus
Limitations” on
page 39-81.

Yes Yes Yes

MUX/DEMUX No Yes Yes Yes, but see
“PIL Block
MUX Support
Limitations”
on page 39-82.

Vector/2D/
Multidimensional

Yes Yes Yes Yes

39-71

39 Verifying Generated Code With SIL and PIL Simulations

I/O Top-Model
SIL/PIL

Model Block SIL/PIL SIL Block PIL Block

Complex data Yes Yes Yes Yes

Fixed-point
data

Yes Yes Yes Yes

Complex
fixed-point data

Yes Yes Yes Yes

Fixed-point
data type
override

Not at SIL or
PIL component
boundary. See
“Fixed-Point
Tool Data Type
Override” on
page 39-80

Not at SIL or PIL
component boundary.
See “Fixed-Point Tool
Data Type Override” on
page 39-80.

Yes Not at PIL
component
boundary. See
“Fixed-Point
Tool Data
Type
Override” on
page 39-80.

Data type
replacement

Yes, but see
“Data Type
Replacement
Limitation” on
page 39-81

Yes, but see “Data Type
Replacement Limitation”
on page 39-81

Yes Yes, but see
“Data Type
Replacement
Limitation” on
page 39-81

Goto/From I/O N/A N/A Yes Goto / From
blocks must
not cross
the PIL
component
boundary. You
can use Goto /
From blocks to
route buried
signals up
to top-level
Inports and
Outports
inside the PIL
component.

39-72

SIL and PIL Simulation Support and Limitations

I/O Top-Model
SIL/PIL

Model Block SIL/PIL SIL Block PIL Block

Global data
store I/O

Yes. See
“Global Data
Store Support”
on page
39-76 and
“Imported Data
Definitions” on
page 39-77.

Yes. See “Global Data
Store Support” on page
39-76 and “Imported
Data Definitions” on page
39-77.

Yes. See
“Global Data
Store Support”
on page 39-76.

Yes. See
“Global Data
Store Support”
on page 39-76
and “Imported
Data
Definitions”
on page 39-77.

Local data store
I/O

No. See
“Imported Data
Definitions” on
page 39-77.

No. See “Imported Data
Definitions” on page
39-77.

Yes No. See
“Imported
Data
Definitions”
on page 39-77.

Non-port-based
sample times

Yes Yes Yes Yes

Continuous
sample times

Not at SIL or
PIL component
boundary.

No No Not at PIL
component
boundary.

Outputs with
constant sample
time

Yes No Yes Yes

Non-auto-storage
classes for data
(such as signals,
parameters,
data stores)

Yes. See
“Imported Data
Definitions” on
page 39-77.

Yes. See “Imported Data
Definitions” on page
39-77.

Yes Yes. See
“Imported
Data
Definitions”
on page 39-77.

Simulink data
objects

Yes Yes Yes Yes

Simulink
numeric type
and
alias type

Yes Yes Yes Yes

39-73

39 Verifying Generated Code With SIL and PIL Simulations

I/O Top-Model
SIL/PIL

Model Block SIL/PIL SIL Block PIL Block

Simulink
enumerated
data

Yes Yes Yes Yes

Custom storage
classes

Yes, but see
“Imported Data
Definitions” on
page 39-77, and
“Unsupported
Custom
Storage
Classes” on
page 39-78.

Yes, but see “Imported
Data Definitions” on page
39-77, and “Unsupported
Custom Storage Classes”
on page 39-78.

Yes Yes, but see
“Imported
Data
Definitions”
on page
39-77, and
“Unsupported
Custom
Storage
Classes” on
page 39-78.

Variable-size
signals

No. See
“Variable-Size
Signals and
SIL/PIL” on
page 39-80.

No. See “Variable-Size
Signals and SIL/PIL” on
page 39-80.

Yes No. See
“Variable-Size
Signals and
SIL/PIL” on
page 39-80.

Noninlined
S-functions

Yes No Yes Yes

• “Tunable Parameters and SIL/PIL” on page 39-75

• “Global Data Store Support” on page 39-76

• “Imported Data Definitions” on page 39-77

• “Unsupported Custom Storage Classes” on page 39-78

• “Unsupported Implementation Errors” on page 39-78

• “Variable-Size Signals and SIL/PIL” on page 39-80

• “Fixed-Point Tool Data Type Override” on page 39-80

• “Data Type Overrides Unavailable for Most Blocks in Embedded Targets
and Desktop Targets” on page 39-81

39-74

SIL and PIL Simulation Support and Limitations

• “Data Type Replacement Limitation” on page 39-81

• “Top-Model SIL/PIL Bus Limitations” on page 39-81

• “PIL Block Virtual Bus Support Limitations” on page 39-82

• “PIL Block MUX Support Limitations” on page 39-82

• “Incremental Build for Top-Model SIL/PIL” on page 39-82

• “Top-Model SIL/PIL Logging Limitations” on page 39-83

• “Exported Functions in Feedback Loops” on page 39-83

Tunable Parameters and SIL/PIL
You can tune parameters during a SIL/PIL mode simulation the same way
that you tune parameters during a Normal mode simulation.

For more information, see “Global Tunable Parameters” and “Using Model
Arguments” in the Simulink documentation.

Limitations. During a PIL block simulation, the software supports the tuning
of tunable workspace parameters but not tunable block dialog parameters.

During a SIL/PIL simulation, the software cannot define, initialize, or tune
the following types of tunable workspace parameters and produces warnings
or errors.

Software response for ...Tunable Workspace
Parameters Not
Supported Top-Model

SIL/PIL
Model Block
SIL/PIL

PIL Block

Parameters with
storage class that
applies "static"
scope or "const"
keyword. For example,
Custom, Const, or
ConstVolatile

Warning Warning Warning

39-75

39 Verifying Generated Code With SIL and PIL Simulations

Software response for ...Tunable Workspace
Parameters Not
Supported Top-Model

SIL/PIL
Model Block
SIL/PIL

PIL Block

Fixed-point
parameters with data
type size greater than
32 bits

Warning Error Warning

Parameters with
data types that have
different sizes on host
and target

Warning Error Warning

Structure parameters
with storage class
SimulinkGlobal

Warning Supported, so
no warning or
error

Warning

If you select the configuration parameter Generate reusable code but do
not select Inline parameters and the model contains parameters, then
top-Model SIL/PIL and the PIL block can produce errors . If these conditions
apply, then the software produces an error similar to the following:

Parameter Dialog:InitialOutput in 'rtwdemo_sil_topmodel/CounterTypeA/count'

is part of the imported "rtP" structure in the generated code but cannot be

initialized by SIL or PIL. To avoid this error, make sure the parameter

corresponds to a tunable base workspace variable with a storage class such

as SimulinkGlobal and is supported for dynamic parameter initialization /

tuning with SIL/PIL.

Global Data Store Support
SIL/PIL supports global data stores. PIL components that access global data
stores must be single rate. If your SIL/PIL component has multiple sample
times and accesses global data stores, you see an error. To avoid the error,
either remove accesses to global data stores or make the component single
rate.

39-76

SIL and PIL Simulation Support and Limitations

Imported Data Definitions
You can use signals, parameters, data stores, etc., that specify storage classes
with imported data definitions.

Model Block SIL/PIL. The SIL/PIL application automatically defines storage
for imported data associated with:

• Signals at the root level of the component (on the I/O boundary)

• Parameters. See Tunable Parameters and SIL/PIL Limitations.

• Global data stores

A limitation is that SIL/PIL does not define storage for other
imported data storage. You must define the storage through custom
code included by the component under test or through the PIL
rtw.pil.RtIOStreamApplicationFramework API. For example, the PIL
application does not define imported data storage for data associated with:

• Internal signals (not on the I/O boundary)

• Local data stores

Top-Model SIL/PIL and SIL/PIL Block. The top-model SIL/PIL or PIL block
application automatically defines storage for imported data associated with:

• Signals at the root level of the component (on the I/O boundary)

• Global data stores

• Parameters. See Tunable Parameters and SIL/PIL Limitations.

A limitation is that SIL/PIL does not define storage for other
imported data storage. You must define the storage through custom
code included by the component under test or through the PIL
rtw.pil.RtIOStreamApplicationFramework API. For example, the SIL/PIL
application does not define imported data storage for data associated with:

• Internal signals (not on the I/O boundary)

• Local data stores

39-77

39 Verifying Generated Code With SIL and PIL Simulations

Unsupported Custom Storage Classes
SIL/PIL does not support the following non-addressable custom storage
classes:

• BitField— The software generates a compilation error. For example:

pil_interface.c: In function 'pilGetUIOData':

pil_interface.c:103: error: expected expression before ')' token

pil_interface.c:104: error: cannot take address of bit-field 'In1'

pil_interface.c: In function 'pilGetYIOData':

pil_interface.c:226: error: expected expression before ')' token

pil_interface.c:227: error: cannot take address of bit-field 'Out1'

pil_interface.c:287: error: expected expression before ')' token

pil_interface.c:288: error: cannot take address of bit-field 'Out1'

pil_interface.c:348: error: expected expression before ')' token

pil_interface.c:349: error: cannot take address of bit-field 'Out1'

• GetSet— The software generates the following error:

An unsupported imported grouped custom storage class (e.g. a user-defined

custom storage class) has been detected. Signals and parameters with imported

grouped custom storage classes are not supported by SIL or PIL. Check the

storage classes of signals and parameters at the SIL or PIL component boundary."

SIL/PIL also does not support signals and parameters with imported grouped
custom storage classes.

Unsupported Implementation Errors
If you use a data store, signal, or parameter implementation that SIL/PIL
does not support, you may see errors like the following:

The following data interfaces have

implementations that are not supported by SIL or PIL.

data interfaces may be global data stores, inports, outports or
parameters.

You see this error message because the model output port has been optimized
through virtual output port optimization. See “Using Virtualized Output
Ports Optimization” on page 21-24. The error occurs because the properties

39-78

SIL and PIL Simulation Support and Limitations

(for example, data type, dimensions) of the signal or signals entering the
virtual root output port have been modified by routing the signals in one
of the following ways:

• Through a Mux block

• Through a block that changes the signal data type. To check the
consistency of data types in the model, display Port Data Types by selecting
Format > Port/Signal Displays > Port Data Types.

• Through a block that changes the signal dimensions. To check the
consistency of data types in the model, display dimensions by selecting
Format > Port/Signal Displays > Signal Dimensions.

Note Dimension changes from scalar (1) to matrix [1x1], and, matrix
[1x1] to scalar (1), can lead to this error. Furthermore, it is difficult to
inspect the model for such changes because the Format > Port/Signal
Displays > Signal Dimensions feature does not distinguish between (1)
and [1x1] dimensions. The software shows both signals as scalar signals.
Check your model and workspace objects carefully to ensure that scalar
dimensions are specified consistently.

The following example illustrates a model that causes this error due to
changing the output port signal data type.

39-79

39 Verifying Generated Code With SIL and PIL Simulations

Variable-Size Signals and SIL/PIL
SIL/PIL treats variable-size signals at the I/O boundary of the SIL/PIL
component as fixed-size signals, which can lead to errors during propagation
of signal sizes. To avoid such errors, use only fixed-size signals at the I/O
boundary of the SIL/PIL component.

There may be cases where no error occurs during propagation of signal sizes.
In these cases, the software treats variable-size input signals as zero-size
signals.

Fixed-Point Tool Data Type Override
SIL/PIL does not support signals with data types overridden by the
Fixed-Point Tool Data type override parameter at the SIL/PIL component
boundary.

You may see an exception message like the following:

Simulink.DataType object 'real_T' is not in scope

39-80

SIL and PIL Simulation Support and Limitations

from 'mpil_mtrig_no_ic_preread/TmpSFcnForModelReference_unitInTopMdl'.

This error message is related to a hidden S-Function block.

There is no resolution for this issue.

Data Type Overrides Unavailable for Most Blocks in Embedded
Targets and Desktop Targets
When you attempt to perform a datatype override on a block, you may get an
error message similar to the following example:

Error reported by S-function 'sfun_can_frame_splitter' in
'c2000_host_CAN_monitor/CAN Message Unpacking/CAN Message
Unpacking': Incompatible DataType or Size specified.

Data type overrides using the Fixed point tool are not available for those
blocks in Simulink Coder > Desktop Targets and Embedded Coder >
Embedded Targets libraries that support fixed-point.

There is no resolution for this issue.

Data Type Replacement Limitation
The software does not support replacement data type names that you define
for the built-in data type boolean if these names map to either the int or
uint built-in data type.

Top-Model SIL/PIL Bus Limitations
The software does not support grounded or unconnected signals at the outputs
of a top model.

You must enable the strict bus mode for top-model SIL/PIL:

1 In the model window, select Simulation > Configuration
Parameters > Diagnostics > Connectivity.

2 Set Mux blocks used to create bus signals to error.

39-81

39 Verifying Generated Code With SIL and PIL Simulations

PIL Block Virtual Bus Support Limitations
The PIL block supports virtual buses except for the following cases:

• You see an error if the PIL component is a top model with a root level
outport that is configured to output a virtual bus. A root level outport
outputs a virtual bus, regardless of the type of the bus that drives it, if
it specifies a bus object and the Output as nonvirtual bus in parent
model check box is not selected.

• You see an error if a right-click subsystem build expands the bus into
individual signals.

• For right-click subsystem builds only, the PIL block changes the output
of outports driven by virtual buses (with associated bus objects) into
nonvirtual buses. You do not see an error message in this case.

To avoid these limitations, use nonvirtual buses at the PIL component
boundary.

PIL Block MUX Support Limitations
The PIL block supports mux signals, except mixed data-type mux signals that
expand into individual signals during a right-click subsystem build. You
see an error for unsupported cases.

Incremental Build for Top-Model SIL/PIL
When you start a top-model SIL/PIL simulation, the software regenerates
code if it detects changes to your model. The software detects changes by
using a checksum for the model. However, the software does not detect
changes that you make to:

• The HeaderFile property of a Simulink.AliasType object

• Legacy S-functions

Therefore, if you make these changes, you must build (Ctrl-B) your model
again before starting the next PIL simulation.

39-82

SIL and PIL Simulation Support and Limitations

Top-Model SIL/PIL Logging Limitations

Signal Logging. Top-model SIL/PIL supports signal logging for signals
connected to root-level inports and outports with the following limitations.

• The characteristics of the logged data such as data type and dimensions
match the characteristics of the root-level inports and outports rather than
the characteristics of the connected signal.

In some cases, there may be differences in data type and dimensions
between the signal being logged and the root inport or outport that the
signal is connected to. Consider the following examples.

- If a signal being logged has matrix dimensions [1x5] but the outport
connected to the signal has vector dimensions (5), then the data logged
during a SIL or PIL simulation has vector dimensions (5).

- If a signal being logged has scalar dimensions but the outport connected
to the signal has matrix dimensions [1x1], then the data logged during
a SIL or PIL simulation has matrix dimensions [1x1].

• The software adds the suffix _wrapper to the block path for signals in
logsout. See “Running a Top Model as a SIL or PIL Simulation” on page
39-41.

Output Logging. If the save format is Structure or Structure with time,
the software adds the suffix _wrapper to the block name for signals in yout.
See “Running a Top Model as a SIL or PIL Simulation” on page 39-41.

Exported Functions in Feedback Loops
If your model has function-call subsystems and you export a subsystem that
has context-dependent inputs (for example, feedback signals), then the results
of a SIL/PIL simulation with the generated code may not match the results
of the Normal mode simulation of your model. One approach to ensure
that SIL/PIL and Normal mode simulations yield identical results is to use
Function-Call Feedback Latch blocks in your model. This approach allows
you to make context-dependent inputs become context-independent.

39-83

39 Verifying Generated Code With SIL and PIL Simulations

Note The software generates a warning identifying context-dependent
inputs of exported function-call subsystems, regardless of your setting
for the Context-dependent inputs field in the Configuration
Parameters > Diagnostics > Connectivity pane. See also
“Context-dependent inputs” in the Simulink Reference documentation.

Hardware Implementation Support

Hardware
Implementation

Embedded Coder Embedded Targets

Different host and target
data-type size

Not at PIL component
boundary. See “Hardware
Implementation Settings” on
page 39-84.

Not at PIL component boundary.
See “Hardware Implementation
Settings” on page 39-84.

Word-addressable targets No Yes

Multiword data type word
order different to target
byte order

No Yes

Multiword No No

Size of target 'long' > 32
bits

No No

Hardware Implementation Settings
PIL requires that, in the Simulink Configuration Parameters dialog box,
you correctly configure the Hardware Implementation settings for the target
environment.

Specify byte ordering for non-8-bit targets.

For more information, see the following sections:

• “Host/Target Data Type Size Mismatch” on page 39-85

• “Data Type Size Mismatch Issues (Embedded Coder)” on page 39-85

39-84

SIL and PIL Simulation Support and Limitations

• “Data Type Size Mismatch Issues (Embedded Targets)” on page 39-86

Host/Target Data Type Size Mismatch. PIL supports only data types that
have the same size on the host and the target at the PIL I/O boundary.

The data types used at the PIL I/O boundary are restricted based on the
following rule: PIL supports the data type only if the data-type size on the
host (Simulink) is the same as the data-type size on the target.

• For boolean, uint8, and int8, the size is 8-bits.

• For uint16 and int16, the size is 16-bits.

• For uint32 and int32, the size is 32-bits.

• For single, the size is 32-bits.

• For double, the size is 64-bits.

Examples of unsupported data types are:

• single and double on targets with 24-bit floating-point types

• double on targets with 32-bit double, that is, the same size as single

Warning PIL does not always detect unsupported data types (see
“Data Type Size Mismatch Issues (Embedded Coder)” on page 39-85
and “Data Type Size Mismatch Issues (Embedded Targets)” on page
39-86). In such cases, data transfer between host and target is
incorrect and unexpected data transfer errors occur during the PIL
simulation.

To resolve issues with Simulink data types that have different sizes on the
host and target, do not use them at the PIL I/O boundary. Instead, use a
Simulink data type that maps directly onto a target data type. This resolution
is more efficient.

Data Type Size Mismatch Issues (Embedded Coder). PIL mode makes
the following assumptions about the target environment:

• The target is byte addressable.

• Sizes of data types on the host and target match.

39-85

39 Verifying Generated Code With SIL and PIL Simulations

• Word order of multiword data types on the target is the same as the target
byte order.

Warning PIL does not detect violations of these assumptions. If the
settings for the target environment violate any of these assumptions,
unexpected data transfer errors occur during the PIL simulation.

To resolve issues with Simulink data types that have different sizes on the
host and target, do not use them at the PIL I/O boundary. Instead, use a
Simulink data type that maps directly onto a target data type. This resolution
is more efficient.

Some known violations with predefined hardware implementation settings
are:

• Unsupported word addressable targets: TI’s C2000™, Freescale™
DSP563xx

• Unsupported data types owing to word order: TASKING® Infineon® C166®

(single and double have reversed word order)

• Unsupported data types owing to size mismatch: TASKING 8051 (double >
is only 4 bytes)

Data Type Size Mismatch Issues (Embedded Targets). The embedded
targets registers the following information about the target environment
to Simulink:

• Whether the target is byte addressable.

• The sizes of data types on the target.

• The word order of multiword data types on the target.

This allows PIL to support target environments with unusual hardware
characteristics.

PIL can detect data types used at the PIL component boundary that have a
host/target data type size mismatch. In such cases, an error indicates that an
unsupported data type is being used. This avoids unexpected data transfer
errors during simulation.

39-86

SIL and PIL Simulation Support and Limitations

To resolve issues with Simulink data types that have different sizes on the
host and target, do not use them at the PIL I/O boundary. Instead, use a
Simulink data type that maps directly onto a target data type. This resolution
is more efficient.

Some target compilers allow the sizes of target data types to be changed from
their default size. For example, an IEEE® double data type is most likely 8
bytes by default, but an optimization option may be provided to treat it as a 4
byte IEEE single precision type instead. The registration of target data type
sizes done by the embedded targets features is typically statically defined to
match the compiler’s default data type size, and therefore does not support
changing the data type size from that default size.

Warning If you use a nondefault compiler configuration, the target
data type sizes registered by the embedded targets features and the
actual target data type sizes may differ. In such cases, data transfer
between host and target is incorrect and unexpected data transfer
errors occur during the PIL simulation.

To resolve this issue, either:

• Do not use compiler options that change the default size of target data
types.

• Use the single data type in Simulink rather than double, if your aim is to
treat double-precision floating-point types (8 bytes) as single-precision
floating-point types (4 bytes).

39-87

39 Verifying Generated Code With SIL and PIL Simulations

Other Feature Support

Other
Features

Top-Model SIL/PIL Model Block
SIL/PIL

SIL Block PIL Block

Multiplatform
support (such
as Linux)

Yes Yes Yes Yes

Execution
profiling

Yes Yes No Yes

Stack profiling SIL: No.
PIL: Depends on
target connectivity
configuration and
third-part product
support.

SIL: No.
PIL: Depends on
target connectivity
configuration and
third-party product
support.

No Depends
on target
connectivity
configuration
and third-party
product support.

C code coverage
report

SIL: Yes,
BullseyeCoverage.
PIL: Yes,
BullseyeCoverage
(host file-system
restriction). Also,
other coverage
metrics may
be available
depending on
target connectivity
configuration and
third-party product
support.

SIL: Yes,
BullseyeCoverage.
PIL: Yes,
BullseyeCoverage
(host file-system
restriction). Also,
other coverage
metrics may
be available
depending on
target connectivity
configuration and
third-party product
support.

No Depends
on target
connectivity
configuration
and third-party
product support.

39-88

40

Verifying a Component in
the Target Environment

• “About Component Verification in the Target Environment” on page 40-2

• “Goals of Component Verification in the Target Environment” on page 40-3

• “Maximizing Code Portability and Configurability” on page 40-4

• “Simplifying Code Integration and Maximizing Code Efficiency” on page
40-5

• “Running Component Tests in the Target Environment” on page 40-7

40 Verifying a Component in the Target Environment

About Component Verification in the Target Environment
After you generate production code for a component design, you need to
integrate, compile, link, and deploy the code as a complete application on the
embedded system. One approach is to manually integrate the code into an
existing software framework that consists of an operating system, device
drivers, and support utilities. The algorithm can include externally written
legacy or custom code.

An easier and more recommended approach to verifying a component in a
target environment, is to use processor-in-the-loop (PIL) simulation. For
details on applying PIL simulations, see Chapter 39, “Verifying Generated
Code With SIL and PIL Simulations”.

40-2

Goals of Component Verification in the Target Environment

Goals of Component Verification in the Target Environment
Assuming that you have generated production quality source code and
integrated necessary externally written code, such as drivers and a scheduler,
you can verify that the integrated software operates correctly by testing
it in the target environment. During testing, you can achieve either of the
following goals, depending on whether you export code that is strictly ANSI
C/C++ or mixes ANSI C/C++ with code optimized for a target environment.

Goal Type of Code Export

Maximize code portability and configurability ANSI C/C++

Simplify integration and maximize use of processor
resources and code efficiency

Mixed code

Regardless of your goal, you must integrate any required external driver and
scheduling software. To achieve real-time execution, you must integrate the
necessary real-time scheduling software.

40-3

40 Verifying a Component in the Target Environment

Maximizing Code Portability and Configurability
To maximize code portability and configurability, limit the application code to
ANSI/ISO C or C++ code only, as the following figure shows.

Special
interfaces

Actuators
Communication

interfaces
Comm
drivers

Input
drivers

Output
drivers

Special
device
drivers

Scheduler/operating system
and support utilities

Sensors

Tuning

Algorithm model

Generated
algorithm

code

Included
legacy
code

40-4

Simplifying Code Integration and Maximizing Code Efficiency

Simplifying Code Integration and Maximizing Code
Efficiency

To simplify code integration and maximize code efficiency for a target
environment, use Embedded Coder features for:

• Controlling code interfaces

• Exporting subsystems

• Including target-specific code, including compiler optimizations

The following figure shows a mix of ANSI C/C++ code with code that is
optimized for a target environment.

40-5

40 Verifying a Component in the Target Environment

Special
interfaces

Actuators
Communication

interfaces
Comm
drivers

Input
drivers

Output
drivers

Special
device
drivers

Scheduler/operating system
and support utilities

Sensors

Tuning

Controller model

Generated
algorithm

code

Included
target

optimized
code

40-6

Running Component Tests in the Target Environment

Running Component Tests in the Target Environment
The workflow for running software component tests in the target environment
is:

1 Integrate external code, for example, for device drivers and a scheduler,
with the generated C or C++ code for your component model. For more
information, see Integrating External Code and Generated C and C++
Code on page 1 and “Integrating External Code With Generated C and C++
Code” in the Simulink Coder documentation. For more specific references
depending on your verification goals, see the following table.

For... See...

ANSI C/C++ code
integration

“Integrating Existing C Functions into
Simulink Models with the Legacy Code
Tool” in the Simulink documentation. Also,
open rtwdemos and navigate to the Custom
Code folder.

Mixed code integration • Chapter 27, “Exporting
Function-Call Subsystems” and
examplertwdemo_export_functions

• Chapter 29, “Controlling Generation
of Function Prototypes”, Chapter 30,
“Controlling Generation of Encapsulated
C++ Model Interfaces”, and example
rtwdemo_fcnprotoctrl

• Chapter 31, “Replacing Math
Functions and Operators Using
Target Function Libraries” and example
rtwdemo_tfl_script

2 Simulate the integrated component model.

3 Generate code for the integrated component model.

4 Connect to data interfaces for the generated C code data structures.
See “Interacting with Target Application Data Using the C API” and
“Generating Model Information for Host-Based ASAP2 Data Measurement

40-7

40 Verifying a Component in the Target Environment

and Calibration” in the Simulink Coder documentation. Also see examples
rtwdemo_capi and rtwdemo_asap2.

5 Customize and control the build process, as necessary. See “Customizing
Code Generation and the Build Process”, in the Simulink Coder
documentation, and example rtwdemo_buildinfo .

6 Create a zip file that contains generated code files, static files, and
dependent data to build the generated code in an environment other
than your host computer. See “Relocating Code to Another Development
Environment”, in the Simulink Coder documentation, and example
rtwdemo_buildinfo.

40-8

41

Verifying a Component
by Building a Complete
Real-Time Target
Environment

• “About Component Verification With a Complete Real-Time Target
Environment” on page 41-2

• “Goals of Component Verification With a Complete Real-Time Target
Environment” on page 41-4

• “Testing a Component as Part of a Complete Real-Time Target
Environment” on page 41-5

41 Verifying a Component by Building a Complete Real-Time Target Environment

About Component Verification With a Complete Real-Time
Target Environment

One approach to verifying a software component is to build the component
into a complete software system that can execute in real time in the target
environment. A complete software system includes:

• Algorithm for the software component

• Scheduling algorithms

• Calls to drivers for board-specific devices

This single build approach is more time consuming to set up, but makes it
easier to get the complete application running in the target environment.

The following figure shows code generated for an algorithm being built into a
complete system executable for the target environment.

41-2

About Component Verification With a Complete Real-Time Target Environment

Special
interfaces

Actuators
Communication

interfaces
Comm
drivers

Input
drivers

Output
drivers

Special
device
drivers

Scheduler/operating system
and support utilities

Sensors

Tuning

Algorithm model

Generated
algorithm

code

Optional
target

optimized
code

41-3

41 Verifying a Component by Building a Complete Real-Time Target Environment

Goals of Component Verification With a Complete
Real-Time Target Environment

Assuming that you have generated production quality source code and
integrated necessary externally written code, such as drivers and a scheduler,
you can verify that component software operates correctly in the context of a
complete system for testing in the target environment.

41-4

Testing a Component as Part of a Complete Real-Time Target Environment

Testing a Component as Part of a Complete Real-Time
Target Environment

The workflow for testing component software as part of a complete real-time
target environment is:

1 Develop a component model and generate source code for production.

For information on building in scheduling and real-time system support,
see:

• “Scheduling Considerations” in the Simulink Coder documentation. For
an example, open rtwdemos and navigate to the Multirate Support
folder.

• “Handling Asynchronous Events” in the Simulink Coder documentation
and example rtwdemo_async

• “Interfacing With a Real-Time Operating System ” in the Simulink
Coder documentation and Chapter 35, “Wind River Systems VxWorks
Example Main Program”

• Chapter 34, “Interfacing With Hardware That is Not Running an
Operating System (Bare Board)”

• Chapter 24, “Generating Code for AUTOSAR Software
Components” and examples rtwdemo_autosar_legacy_script,
rtwdemo_autosar_mulitrunnables_script, and
rtwdemo_autosar_clientserver_script

• Example rtwdemo_osek

2 Optimize generated code for a specific run-time environment, using
specialized function libraries. For more information, see Chapter 31,
“Replacing Math Functions and Operators Using Target Function
Libraries” and example rtwdemo_tfl_script.

3 Customize post code generation build processing to accommodate
third-party tools and processes, as necessary. See “Customizing Code
Generation and the Build Process” in the Simulink Coder documentation
and example rtwdemo_buildinfo.

41-5

41 Verifying a Component by Building a Complete Real-Time Target Environment

4 Integrate external code, for example, for device drivers and a scheduler,
with the generated C or C++ code for your component model. For more
information, see Integrating External Code and Generated C and C++
Code on page 1 and “Integrating External Code With Generated C and C++
Code” in the Simulink Coder documentation. For more specific references
depending on your verification goals, see the following table.

For... See...

ANSI C/C++ code
integration

“Integrating Existing C Functions into
Simulink Models with the Legacy Code
Tool” in the Simulink documentation. Also,
open rtwdemos and navigate to the Custom
Code folder.

Mixed code integration • Chapter 27, “Exporting
Function-Call Subsystems” and
examplertwdemo_export_functions

• Chapter 29, “Controlling Generation
of Function Prototypes”, Chapter 30,
“Controlling Generation of Encapsulated
C++ Model Interfaces”, and example
rtwdemo_fcnprotoctrl

• Chapter 31, “Replacing Math
Functions and Operators Using
Target Function Libraries” and example
rtwdemo_tfl_script

5 Simulate the integrated model.

6 Generate code for the integrated model.

7 Connect to data interfaces for the generated C code data structures.
See “Interacting with Target Application Data Using the C API” and
“Generating Model Information for Host-Based ASAP2 Data Measurement
and Calibration” in the Simulink Coder documentation. Also see examples
rtwdemo_capi and rtwdemo_asap2.

41-6

Testing a Component as Part of a Complete Real-Time Target Environment

8 Customize and control the build process, as necessary. See “Customizing
Code Generation and the Build Process”, in the Simulink Coder
documentation, and example rtwdemo_buildinfo .

9 Create a zip file that contains generated code files, static files, and
dependent data to build the generated code in an environment other
than your host computer. See “Relocating Code to Another Development
Environment”, in the Simulink Coder documentation, and example
rtwdemo_buildinfo.

41-7

41 Verifying a Component by Building a Complete Real-Time Target Environment

41-8

42

Verifying Numerical
Equivalence of Results
with Code Generation
Verification API

42 Verifying Numerical Equivalence of Results with Code Generation Verification API

Verifying Numerical Equivalence with Code Generation
Verification

In this section...

“Code Generation Verification API Overview” on page 42-2

“Verifying Numerical Equivalence with CGV Workflow” on page 42-2

“Example of Verifying Numerical Equivalence Between Two Modes of
Execution of a Model” on page 42-3

“Example of Plotting Output Signals” on page 42-10

Code Generation Verification API Overview
When you execute a model in different modes of execution, you can use
the Code Generation Verification (CGV) API to verify the numerical
equivalence of results. CGV supports executing the model in simulation,
Software-In-the-Loop (SIL), and Processor-In-the-Loop (PIL). For more
information about SIL and PIL, see Chapter 39, “Verifying Generated Code
With SIL and PIL Simulations”. The CGV demo, rtwdemo_cgv_script, shows
CGV configuration, execution, and comparison support.

Note CGV helps you verify the numerical equivalence of results for a given
set of inputs. CGV can detect numerical deviations for the given set of inputs
only. CGV by itself cannot prove the numerical correctness of the generated
code. The completeness of the input data that you provide to CGV determines
the validity of the results.

Verifying Numerical Equivalence with CGV Workflow
Before verifying numerical equivalence:

• Configure your model for SIL or PIL simulation. For more information, see
“Configuring a SIL or PIL Simulation” on page 39-16.

• Use the cgv.Config class of the CGV API to verify the model configuration
for SIL or PIL simulation. For more information, see “Verifying a SIL or
PIL Configuration” on page 39-22.

42-2

Verifying Numerical Equivalence with Code Generation Verification

• Configure your model for code generation. For more information, see
Preparing Models for Code Generation on page 1.

• Save your model. If you modify a model without saving it, CGV might
issue an error.

To verify numerical equivalence:

• Set up the tests for the first execution environment. For example,
simulation.

• Use cgv.CGV.run to run the tests for the first execution environment.

• Set up the tests for the second execution environment. For example,
top-model PIL.

• Use cgv.CGV.run to run the tests for the second execution environment.

• Use cgv.CGV.getOutputData to get the output data for each execution
environment.

• Use cgv.CGV.getSavedSignals to display the signal names in the output
data. (optional)

• Build a list of signal names for input to other cgv.CGV methods. (optional)

• Use cgv.CGV.createToleranceFile to create a file correlating tolerance
information with output signal names. (optional)

• Use cgv.CGV.compare to compare the output signals of the first and second
execution environments for numerical equivalence.

Example of Verifying Numerical Equivalence
Between Two Modes of Execution of a Model
The following example describes configuring, executing, and comparing the
results of the rtwdemo_cgv model in simulation and SIL modes.

This example contains the following tasks:

• “Configuring the Model” on page 42-4

• “Executing the Model” on page 42-5

• “Comparing All Output Signals” on page 42-6

42-3

42 Verifying Numerical Equivalence of Results with Code Generation Verification API

• “Comparing Individual Output Signals” on page 42-9

Configuring the Model
The first task for verifying numerical equivalence is to check that your model
is configured correctly.

1 Open the rtwdemo_cgv model.

cgvModel = 'rtwdemo_cgv';

load_system(cgvModel);

2 Save the model to a working directory.

save_system(cgvModel, fullfile(pwd, cgvModel));

close_system(cgvModel); % avoid original model shadowing saved model

3 Use the cgv.Config to create a cgv.Config object. Specify parameters that
check and modify configuration parameter values and save the model for
top-model SIL mode of execution.

cgvCfg = cgv.Config('rtwdemo_cgv', 'connectivity', 'sil', 'SaveModel', 'on');

4 Use the cgv.Config.configModel method to review your model configuration
and to change the settings to configure your model for SIL. When
'connectivity' is set to 'sil', the system target file is automatically set
to 'ert.tlc'. If you specified the parameter/value pair, ('SaveModel',
'on') when you created the cgvCfg object, the cgv.Config.configModel
method saves the model.

Note CGV runs on models that are open. If you modify a model without
saving it, CGV might issue an error.

cgvCfg.configModel(); % Evaluate, change, and save your model for SIL

5 Display a report of the changes that cgv.Config.configModel makes to
the model.

cgvCfg.displayReport(); % In this example, this reports no changes

42-4

Verifying Numerical Equivalence with Code Generation Verification

Executing the Model
Use the CGV API to execute the model in two modes. The two modes in this
example are normal mode simulation and SIL mode. In each execution of the
model, the CGV object for each mode captures the output data and writes
the data to a file.

1 If you have not already done so, follow the steps described in “Configuring
the Model” on page 42-4.

2 Create a cgv.CGV object that specifies the rtwdemo_cgv model in normal
mode simulation.

cgvSim = cgv.CGV(cgvModel, 'connectivity', 'sim');

Note When the top model is set to Normal simulation mode, any
referenced models set to PIL mode will be changed to Accelerator mode.

3 Provide the input file to the cgvSim object.

cgvSim.addInputData(1, [cgvModel '_data']);

4 Before execution of the model, specify the MATLAB files to execute or
MAT-files to load. This step is optional.

cgvSim.addPostLoadFiles({[cgvModel '_init.m']});

5 Specify a location where the object writes all output data and metadata
files for execution. This step is optional.

cgvSim.setOutputDir('cgv_output');

6 Execute the model.

result1 = cgvSim.run();

*** handling PostLoad file rtwdemo_cgv_init.m

Start CGV execution of model rtwdemo_cgv, ComponentType topmodel, ...

connectivity sim, InputData rtwdemo_cgv_data.mat

End CGV execution: status completed

42-5

42 Verifying Numerical Equivalence of Results with Code Generation Verification API

7 Get the output data associated with the input data.

outputDataSim = cgvSim.getOutputData(1);

8 For the next mode of execution, SIL, repeat steps 2–7.

cgvSil = cgv.CGV(cgvModel, 'Connectivity', 'sil');

cgvSil.addInputData(1, [cgvModel '_data']);

cgvSil.addPostLoadFiles({[cgvModel '_init.m']});

cgvSil.setOutputDir('cgv_output');

result2 = cgvSil.run();

At the MATLAB command line, the result is:

*** handling PostLoad file rtwdemo_cgv_init.m

Start CGV execution of model rtwdemo_cgv, ComponentType topmodel, ...

connectivity sil, InputData rtwdemo_cgv_data.mat

Starting build procedure for model: rtwdemo_cgv

Successful completion of build procedure for ...

model: rtwdemo_cgv

Preparing to start SIL simulation ...

Starting SIL simulation for model: rtwdemo_cgv

Stopping SIL simulation for model: rtwdemo_cgv

End CGV execution: status completed

Comparing All Output Signals
After setting up and running the test, compare the outputs by doing the
following:

1 If you have not already done so, configure and test the model, as described
in “Configuring the Model” on page 42-4 and “Executing the Model” on
page 42-5.

2 Test that the execution of the model ran successfully:

if ~result1 || ~result2

error('Execution of model failed.');

end

42-6

Verifying Numerical Equivalence with Code Generation Verification

3 Use the cgv.CGV.getOutputData method to get the output data from the
cgv.CGV objects.

simData = cgvSim.getOutputData(1);

silData = cgvSil.getOutputData(1);

4 Display a list of signals by name using the cgv.CGV.getSavedSignals
method.

cgvSim.getSavedSignals(simData);

At the MATLAB command line, the result it:

simData.hi0.Data(:,1)

simData.hi0.Data(:,2)

simData.Vector.Data(:,1)

simData.Vector.Data(:,2)

simData.Vector.Data(:,3)

simData.Vector.Data(:,4)

simData.BusOutputs.hi0.Data(:,1)

simData.BusOutputs.hi0.Data(:,2)

simData.BusOutputs.hi1.mid0.lo0.Data(1,1,:)

simData.BusOutputs.hi1.mid0.lo0.Data(1,2,:)

simData.BusOutputs.hi1.mid0.lo0.Data(2,1,:)

simData.BusOutputs.hi1.mid0.lo0.Data(2,2,:)

simData.BusOutputs.hi1.mid0.lo1.Data

simData.BusOutputs.hi1.mid0.lo2.Data

simData.BusOutputs.hi1.mid1.Data(:,1)

simData.BusOutputs.hi1.mid1.Data(:,2)

simData.ErrorsInjected.Data

5 Using the list of signals, build a list of signals in a cell array of strings. The
signal list can contain any number of signals.

signalList = {'simData.ErrorsInjected.Data'};

6 Use the cgv.CGV.createToleranceFile method to create a file, in this
example, 'localtol', correlating tolerance information with output signal
names.

toleranceList = {{'absolute', 0.5}};

42-7

42 Verifying Numerical Equivalence of Results with Code Generation Verification API

cgv.CGV.createToleranceFile('localtol', signalList, toleranceList);

7 Compare the output data signals. By default, the cgv.CGV.compare method
looks at all signals which have a common name between both executions. If
a tolerance file is present, cgv.CGV.compare uses the associated tolerance
for a specific signal during comparison; otherwise the tolerance is zero. In
this example, the 'Plot' parameter is set to 'mismatch'. Therefore, only
mismatched signals produce a plot.

[matchNames, ~, mismatchNames, ~] = ...

cgv.CGV.compare(simData, silData, 'Plot', 'mismatch', ...

'Tolerancefile', 'localtol');

fprintf('%d Signals match, %d Signals mismatch\n', ...

length(matchNames), length(mismatchNames));

disp('Mismatched Signal Names:');

disp(mismatchNames);

At the MATLAB command line, the result is:

14 Signals match, 1 Signals mismatch

Mismatched Signal Names:

'simData.ErrorsInjected.Data'

A plot results from the mismatch on signal simData.ErrorsInjected.Data.

42-8

Verifying Numerical Equivalence with Code Generation Verification

The lower plot displays the numeric difference between the results.

Comparing Individual Output Signals
After setting up and running the test, compare the outputs of individual
signals by doing the following:

1 If you have not already done so, configure and test the model, as described
in “Configuring the Model” on page 42-4 and “Executing the Model” on
page 42-5.

2 Use the cgv.CGV.getOutputData method to get the output data from the
cgv.CGV objects.

simData = cgvSim.getOutputData(1);

silData = cgvSil.getOutputData(1);

42-9

42 Verifying Numerical Equivalence of Results with Code Generation Verification API

3 Use the cgv.CGV.getSavedSignals method to display the output data signal
names. Build a list of specific signal names in a cell array of strings. The
signal list can contain any number of signals.

cgv.CGV.getSavedSignals(simData);

signalList = {'simData.BusOutputs.hi1.mid0.lo1.Data', ...

'simData.BusOutputs.hi1.mid0.lo2.Data', 'simData.Vector.Data(:,3)'};

4 Use the specified signals as input to the cgv.CGV.compare method to
compare the signals from separate runs.

[matchNames, ~, mismatchNames, ~] = ...

cgv.CGV.compare(simData, silData, 'Plot', 'mismatch', ...

'signals', signalList);

fprintf('%d Signals match, %d Signals mismatch\n', ...

length(matchNames), length(mismatchNames));

if ~isempty(mismatchNames)

disp('Mismatched Signal Names:');

disp(mismatchNames);

end

At the MATLAB command line, the result is:

3 Signals match, 0 Signals mismatch

Example of Plotting Output Signals
After setting up and running the test, use the cgv.CGV.plot method to plot
output signals.

1 If you have not already done so, configure and test the model, as described
in “Configuring the Model” on page 42-4 and “Executing the Model” on
page 42-5.

2 Use the cgv.CGV.getOutputData method to get the output data from the
cgv.CGV objects.

simData = cgvSim.getOutputData(1);

3 Use the cgv.CGV.getSavedSignals method to display the output data signal
names. Build a list of specific signal names in a cell array of strings. The
signal list can contain any number of signals.

42-10

Verifying Numerical Equivalence with Code Generation Verification

cgv.CGV.getSavedSignals(simData);

signalList = {'simData.Vector.Data(:,1)'};

4 Use the specified signal list as input to the cgv.CGV.plot method to compare
the signals from separate runs.

[signalNames, signalFigures] = cgv.CGV.plot(simData, ...

'Signals', {'simData.Vector.Data(:,1)'});

42-11

42 Verifying Numerical Equivalence of Results with Code Generation Verification API

42-12

Embedded IDEs and Embedded
Targets

• Chapter 43, “Project and Build Configurations”

• Chapter 44, “Verification and Profiling”

• Chapter 45, “Processor-Specific Optimizations”

• Chapter 46, “Working with Altium TASKING IDE”

• Chapter 47, “Working with Analog Devices™ VisualDSP++ IDE”

• Chapter 48, “Working with Eclipse IDE”

• Chapter 49, “Working with Freescale MPC5xx Processors”

• Chapter 50, “Working with Green Hills® MULTI IDE”

• Chapter 51, “Working with Infineon C166 Processors”

• Chapter 52, “Working with Linux Target”

• Chapter 53, “Working with Microsoft Windows Target”

• Chapter 54, “Working with Texas Instruments Code Composer
Studio IDE”

• Chapter 55, “Working with Texas Intruments C2000 Processors”

• Chapter 56, “Working with Texas Instruments C6000 Processors”

• Chapter 57, “Working with Wind River VxWorks Target”

43

Project and Build
Configurations

• “Model Setup” on page 43-2

• “IDE Projects” on page 43-18

• “Makefiles” on page 43-24

43 Project and Build Configurations

Model Setup

In this section...

“Block Selection” on page 43-2

“Target Preferences” on page 43-4

“Configuration Parameters” on page 43-7

“Model Reference” on page 43-17

Block Selection
You can create models for targeting the same way you create other Simulink
models—by combining standard blocks and C-MEX S-functions.

You can use blocks from the following sources:

• The Embedded Targets library (embeddedtargetslib) in the Embedded
Coder product.

• Blocks from the DSP System Toolbox product

• The Discrete-time Integrator block from the Simulink® product

• Blocks that provide functions you need from any available blockset

• Custom blocks

In general, avoid using blocks that do not work in the generated code,
such as the scope, source, and sink blocks. These blocks waste time in the
generated code. They cause the executable to send data to, or wait for data
from, your MATLAB workspace. They slow your application without adding
instrumentation value.

Specifically, avoid using the following blocks in models from which you will be
generating code.

43-2

Model Setup

Block
Name/Category Library Description

Scope Simulink, DSP
System Toolbox
software

Provides oscilloscope view of
your output. Do not use the
Save data to workspace
option on the Data history
pane in the Scope Parameters
dialog box.

To Workspace Simulink Return data to your MATLAB
workspace.

From Workspace Simulink Send data to your model from
your MATLAB workspace.

Spectrum Scope DSP System
Toolbox

Compute and display the
short-time FFT of a signal.
It has internal buffering that
can slow your process without
adding value.

To File Simulink Send data to a file on your host
machine.

From File Simulink Get data from a file on your host
machine.

Triggered to
Workspace

DSP System
Toolbox

Send data to your MATLAB
workspace.

Signal To
Workspace

DSP System
Toolbox

Send a signal to your MATLAB
workspace.

Signal From
Workspace

DSP System
Toolbox

Get a signal from your MATLAB
workspace.

Triggered Signal
From Workspace

DSP System
Toolbox

Get a signal from your MATLAB
workspace.

To Wave device DSP System
Toolbox

Send data to a .wav device.

From Wave device DSP System
Toolbox

Get data from a .wav device.

43-3

43 Project and Build Configurations

Target Preferences
This topic contains the following subtopics:

• “Supported IDEs” on page 43-4

• “What is a Target Preferences Block?” on page 43-4

• “Adding a Target Preferences Block to Your Model” on page 43-5

• “Creating a Library of Customized Target Preferences Blocks” on page 43-7

Supported IDEs
This “Target Preferences” on page 43-4 section applies to the following IDEs:

• Analog Devices VisualDSP++®

• Eclipse™ IDE

• Green Hills MULTI®

• Texas Instruments Code Composer Studio™

• Texas Instruments Code Composer Studio v4 (makefile generation only)

• Wind River Diab/GCC (makefile generation only)

For information about using Target Preferences with Altium TASKING, see
“Setting Target Preferences for Altium TASKING” on page 46-8.

What is a Target Preferences Block?
To prepare a model for code generation, add a Target Preferences block
to the model. This block describes the target environment for which you
are generating code. The block includes information about the processor,
hardware settings, operating system, memory mapping, and code generation
features. Simulink Coder, Embedded Coder, and Simulink products use this
information to generate code from your model.

For detailed information about the Target Preference block parameters and
options, consult the Target Preferences block reference topic.

43-4

Model Setup

Key Points

• To generate code, the model must contain a Target Preferences block.

• Use one Target Preferences block per model. Exceptions to this rule are
noted in the documentation for specific features, such as “Model Block
PIL” on page 44-4.

• Changing Target Preferences block settings can change tabs, panes,
parameters, and options visible when you open the block.

• Adding a Target Preferences block to a model changes the values of
that model’s Configuration Parameters. If you need to preserve the
Configuration Parameters of a specific model, make a backup copy of the
model before adding a Target Preferences block to it.

Adding a Target Preferences Block to Your Model
To generate code, your model must contain only one Target Preferences block.

• When you are generating code for a model, place the Target Preferences
block at the top level of your model.

• When you are generating code for a subsystem in your model, place the
Target Preferences block at the subsystem level of your model.

Note Adding a Target Preferences block to a model changes the values
of that model’s Configuration Parameters. If you need to preserve the
Configuration Parameters of a specific model, make a backup copy of the
model before adding a Target Preferences block to it.

To add a Target Preferences block to your model:

1 Open the Simulink library browser.

2 Copy the Target Preferences block from the Embedded Coder >
Embedded Targets library to your model

43-5

43 Project and Build Configurations

3 The software dislays the Initialize Configuration Parameters dialog
box. For example.

Set the following parameters, and click Yes:

• IDE/Tool Chain

• Board

• Processor

When you click Yes, the software automatically sets the model
Configuration Parameters to the proper values for the IDE/Tool Chain,
Board, and Processor you selected. In this case, you have completed the
process of adding a Target Preferences block to your model.

If you click No, the software leaves the values of the Configuration
Parameters unchanged. The model cannot simulate or generate code
correctly unless you configure the Configuration Parameters with the
proper values. Setting these values manually can be difficult.

Note The following actions update the appropriate model Configuration
Parameters with new values:

• Adding a Target Preferences block to your model and clicking Yes in the
Initialize Configuration Parameters dialog box.

• Opening the Target Preferences block in your model and selecting a
new IDE/Tool Chain.

• Opening the Target Preferences block in your model and applying
changes to the Board and Processor parameters.

43-6

Model Setup

Note The Initialize Configuration Parameters dialog box uses your
previous selections as default values the next time you copy a Target
Preference block to a model.

Creating a Library of Customized Target Preferences Blocks
If you work regularly with a variety of IDEs, tool chains, boards and
processors, you can save time by creating a library of customized Target
Preferences blocks. Later, you reuse these preconfigured Target Preferences
blocks instead repeating the customization process on a new Target
Preferences block.

To create a library of customized Target Preferences blocks:

1 In Simulink, select File > New > Library. This action creates a new
untitled library.

2 Save the library to a folder included in your MATLAB search paths.

Note Click File > Set Path to see a list of MATLAB search paths and
add new ones.

3 Copy or drag configured Target Preferences blocks from your models to
the library.

4 Edit the label of each block to describe that block’s configuration.

5 After the new blocks are added and labeled, save the library.

To copy a Target Preferences block from your library to a model, type the
library name at the MATLAB command line. When the library appears, copy
the block to your model.

Configuration Parameters

• “What are Configuration Parameters?” on page 43-8

43-7

43 Project and Build Configurations

• “Setting Model Configuration Parameters” on page 43-8

What are Configuration Parameters?
To see the model configuration parameters, open the Configuration
Parameters dialog box. You can do this in the model editor by selecting
Simulation > Configuration Parameters , or by pressing Ctrl+E on your
keyboard.

The Configuration Parameters dialog box specifies the values for a model’s
active configuration set. These parameters determine the type of solver used,
the import and export settings, and other values that determine how the
model runs.

To set the configuration parameters to the correct values for you to generate
code from your model, add a Target Preferences block to your model. This
action initializes the model Configuration Parameters to the appropriate
default values for you to generate code. You can then use the Configuration
Parameters dialog box to make further modifications to the values.

For more information, see “Configuration Parameters Dialog Box” and
“Managing Configuration Sets”.

Setting Model Configuration Parameters
To apply the appropriate default values in Configuration Parameters,
add a Target Preferences block to your model and select the Initialize
Configuration Parameters, as described in “Adding a Target Preferences
Block to Your Model” on page 43-5. You can generate buildable code using
these default values.

To make further changes, select Simulation > Configuration Parameters
in the Model Editor, or press Ctrl+E. This action opens the Configuration
Parameters dialog box.

Note You can generate buildable code after adding a Target Preferences
block to your model and initializing the Configuration Parameters.

43-8

Model Setup

The following subsections provide a quick overview of the panes and
parameters with which you are most likely to interact.

Code Generation Pane. When you set System target file to
idelink_ert.tlc or idelink_grt.tlc, the dialog box displays a IDE Link
at the bottom of the select tree.

Setting the System target file to idelink_ert.tlc requires an Embedded
Coder license.

Leave Language set to C. The idelink_ert.tlc and idelink_grt.tlc
system target files do not support C++ code generation.

43-9

43 Project and Build Configurations

Disregard theMakefile configuration options. To generate makefiles, use a
separate feature to automatically generate makefiles. For more information,
see “Makefiles” on page 43-24.

If you generate code from a model that uses custom storage classes (CSC),
leave Ignore custom storage classes unselected.

To use a system target file that does not support CSCs, without reconfiguring
your parameter and signal objects, select Ignore custom storage classes.
(For example, idelink_grt.tlc does not support CSCs.) When you select
Ignore custom storage classes:

• The software treats objects with CSCs as if you set their storage class
attribute to Auto.

• The storage class of signals that have CSCs does not appear on the signal
line, even when you select Storage class from Format > Port/Signals
Display in your Simulink menus.

43-10

Model Setup

IDE Link Pane Parameters.

On the select tree, the IDE Link entry provides options in these areas:

• Run-Time— Set options for run-time operations, like the build action

• Vendor Tool Chain— Set compiler, linker, and system stack size options

• Code Generation— Configure your code generation requirements

• Link Automation — Export an IDE handle object, such as IDE_Obj, to
your MATLAB workspace

• Diagnostics— Determine how the code generation process responds when
you use source code replacement in the Custom Code pane.

For comprehensive detailed information, see IDE Link Pane.

43-11

43 Project and Build Configurations

Build format

Select Project to create an IDE project, or select Makefile to create a
makefile build script.

Build action

Your selection for Build action determines what happens when you click
Build or press Ctrl+B. Your selection tells Simulink Coder software when to
stop the code generation and build process.

To run your model on the processor, select Build_and_execute. This selection
is the default build action; Simulink Coder software automatically downloads
and runs the model on your board.

The actions are cumulative—each action performs an additional step relative
to the preceding action on the list.

If you set Build format to Project, select one of the following options:

• Create_Project— Directs Simulink Coder software to start the IDE and
populate a new project with the files from the build process. This option
offers a convenient way to build projects in the IDE.

• Archive_library— Directs Simulink Coder software to create an archive
library for this model. Use this option when you plan to use the model in
a model reference application. Model reference requires that you archive
your the IDE projects for models that you use in model referencing.

• Build— Builds the executable file, but does not download the file to the
target.

• Build_and_execute — Directs Simulink Coder software to build,
download, and run your generated code as an executable on your target.

• Create_processor_in_the_loop_project — Directs code generation
process to create PIL algorithm object code as part of the project build. This
option requires an Embedded Coder license.

If you set Build format to Makefile, select one of the following options:

43-12

Model Setup

• Create_makefile — Creates a makefile.

• Archive_library — Creates a makefile and the generated output will
be an archive library.

• Build — Creates a makefile and an executable.

• Build_and_execute — Creates a makefile and an executable. Then it
evaluates the execute instruction in the current configuration.

Overrun notification

To enable the overrun indicator, choose one of three ways for the target to
respond to an overrun condition in your model:

• None— Ignore overruns encountered while running the model.

• Print_message — When the target encounters an overrun condition, it
prints a message to the standard output device, stdout.

• Call_custom_function — Respond to overrun conditions by calling the
custom function you identify in Function name.

Function name

When you select Call_custom_function from the Overrun notification
list, you enable this option. Enter the name of the function the target should
use to notify you that an overrun condition occurred. The function must exist
in your code on the target.

Configuration

The Configuration parameter defines sets of build options that apply to all
of the files generated from your model.

The Release and Debug option apply build settings that are defined by your
compiler. For more information, refer to your compiler documentation.

Custom has the same default values as Release, but:

43-13

43 Project and Build Configurations

• Leaves Compiler options string empty.

Compiler options string

To determine the degree of optimization provided by the optimizing compiler,
enter the optimization level to apply to files in your project. For details about
the compiler options, refer to your IDE documentation. When you create new
projects, the coder software does not set any optimization flags.

For certain IDEs, if you have an active project open in the IDE, you can click
Get From IDE to import the compiler option setting from the current project
in the IDE. To reset the compiler option to the default value, click Reset.

Linker options string

To specify the options provided by the linker during link time, you enter the
linker options as a string. For details about the linker options, refer to your
IDE documentation. When you create new projects, the coder software does
not set any linker options.

If you have an active project open in the IDE, you can click Get From IDE to
import the linker options string from the current project in the IDE. To reset
the linker options to the default value of no options, click Reset.

System stack size (MAUs)

Enter the number of minimum addressable units (MAU) to use for the
stack. For more information, refer to Enable local block outputs on
the Optimization > Signals and Parameters pane of the Configuration
Parameters dialog box. Block output buffers are placed on the stack until the
stack memory is fully allocated. After that, the output buffers go in global
memory. An MAU is typically 1 byte, but its size can vary by target processor.

43-14

Model Setup

System heap size (MAUs)

Enter the amount of minimum addressable units (MAU) to use for the heap.
An MAU is typically 1 byte, but its size can vary by target processor.

Profile real-time execution

To enable the real-time execution profile capability, select Profile real-time
execution. With this selected, the build process instruments your code to
provide performance profiling at the task level or for atomic subsystems.
When you run your code, the executed code reports the profiling information
in an HTML report.

Link Automation

When you build a model for a target, the coder software automatically creates
or uses an existing IDE handle object (named IDE_Obj, by default) to connect
to your IDE.

Although IDE_Obj is a handle for a specific instance of the IDE, it also
contains information about the IDE instance to which it refers, such as the
board and target the IDE accesses. In this pane, the Export IDE link
handle to base workspace option lets you instruct the coder software to
export the object to your MATLAB workspace, giving it the name you assign
in IDE link handle name.

You can also use the IDE handle object to interact with the IDE using
Automation Interface commands.

Maximum time allowed to build project (s)

Specifies how long the software waits for the IDE to build the software.

43-15

43 Project and Build Configurations

Maximum time allowed to complete IDE operations (s)

Specifies how long the software waits for IDE functions, such as read or
write, to return completion messages. If you do not specify a timeout

Export IDE link handle to base workspace

Directs the software to export the IDE_Obj object to your MATLAB workspace.

IDE link handle name

Specifies the name of the IDE_Obj object that the build process creates.

Source file replacement

Selects the diagnostic action to take if the software detects conflicts when you
replace source code with custom code. The diagnostic message responds to
both source file replacement in the Configuration Parameters under Code
Generation > IDE link parameters and under Code Generation > Custom
Code.

The following settings define the messages you see and how the code
generation process responds:

• none— Does not generate warnings or errors when it finds conflicts.

• warning— Displays a warning. warn is the default value.

• error— Terminates the build process and displays an error message that
identifies which file has the problem and suggests how to resolve it.

The build operation continues if you select warning and the software detects
custom code replacement problems. You see warning messages as the build
progresses.

Select error the first time you build your project after you specify custom
code to use. The error messages can help you diagnose problems with your

43-16

Model Setup

custom code replacement files. Use none when the replacement process is
correct and you do not want to see multiple messages during your build.

Model Reference
The idelink_ert.tlc and idelink_grt.tlc system target files provide
support for generating code from models that use Model Reference. A
referenced model will generate an archive library.

To enable Model Reference builds:

1 Open your referenced model.

2 Select Simulation > Configuration Parameters from the model menus.

3 From the Select tree, choose IDE Link.

4 In the right pane, under Runtime, select Archive_library from the Build
action list.

If your top model uses a reference model that does not have the Build action
set to Archive_library, the build process automatically changes the Build
action to Archive_library and issues a warning about the change.

Target Preferences Blocks in Reference Models
Each referenced model and the top model must include a Target Preferences
block for the correct processor. You must configure all the Target Preferences
blocks for the same processor. This allows the code generation be consistent
across the model hierarchy. This also ensures that consistent tools – compiler,
linker and archivers, are used during the build process.

By design, model reference does not allow information to pass from the
top model to the referenced models. Referenced models must contain all
the necessary information. Target Preferences provides all the necessary
information for the referenced models.

43-17

43 Project and Build Configurations

IDE Projects

In this section...

“Third Party Product Setup” on page 43-18

“Installation of MathWorks Products on 64-bit Host Computers” on page
43-20

“IDE Link Configuration” on page 43-20

“Code Generation and Build” on page 43-21

“Automation of IDE Tasks and Processes” on page 43-22

Third Party Product Setup
Install your third party IDE or software build tool chain according to the
vendors instructions.

For more information about Embedded Coder support for third-party IDEs
and targets, see the following links, organized by vendor:

• Analog Devices™ VisualDSP++ IDE and Blackfin® processors —
http://www.mathworks.com/products/embedded-coder/adi-adaptor.html

• Altium® TASKING IDE —
http://www.mathworks.com/products/embedded-coder/altium-adaptor.html

• Eclipse IDE —
http://www.mathworks.com/products/embedded-coder/eclipse-adaptor.html

• Green Hills® MULTI® —
http://www.mathworks.com/products/embedded-coder/ghs-adaptor.html

• Texas Instruments’ Code Composer Studio™ IDE,
and C2000™, C5000™, C6000™ processors —
http://www.mathworks.com/products/embedded-coder/ti-adaptor.html

• ARM® —
http://www.mathworks.com/products/embedded-coder/arm-adaptor/

• Freescale MPC5xx processors —
http://www.mathworks.com/products/embedded-coder/freescale-adaptor/

43-18

http://www.mathworks.com/products/embedded-coder/adi-adaptor.html
http://www.mathworks.com/products/embedded-coder/altium-adaptor.html
http://www.mathworks.com/products/embedded-coder/eclipse-adaptor.html
http://www.mathworks.com/products/embedded-coder/ghs-adaptor.html
http://www.mathworks.com/products/embedded-coder/ti-adaptor.html
http://www.mathworks.com/products/embedded-coder/arm-adaptor/
http://www.mathworks.com/products/embedded-coder/freescale-adaptor/

IDE Projects

• Infineon® C166® processors —
http://www.mathworks.com/products/embedded-coder/infineon-adaptor/

• Wind River VxWorks —
http://www.mathworks.com/products/embedded-coder/windriver-adaptor/

For Code Composer Studio

Before you use Embedded Coder with Code Composer Studio (CCS IDE) for
the first time, use the checkEnvSetup function to check for third-party tools
and set environment variables. Run checkEnvSetup again whenever you
configure CCS IDE to interact with a new board or processor, or upgrade
any of the related third-party tools.

To verify that CCS is installed on your machine and has at least one board
configured, enter

ccsboardinfo

at the MATLAB software command line. With CCS installed and configured,
MATLAB software returns information about the boards that CCS recognizes
on your machine, in a form similar to the following listing.

Board Board Proc Processor Processor

Num Name Num Name Type

--- -------------------------------- --- -------------

1 C6xxx Simulator (Texas Instrum .0 6701 TMS320C6701

0 C6x13 DSK (Texas Instruments) 0 CPU TMS320C6x1x

If MATLAB software does not return information about any boards, open
your CCS installation and use the Setup Utility in CCS to configure at least
one board.

As a final test, start CCS to ensure that it starts up successfully. For
Embedded Coder to operate with CCS, the CCS IDE must be able to run on
its own.

For Eclipse

To install Eclipse, complete the instructions in “Installing Third-Party
Software for Eclipse” on page 48-4.

43-19

http://www.mathworks.com/products/embedded-coder/infineon-adaptor/
http://www.mathworks.com/products/embedded-coder/windriver-adaptor/

43 Project and Build Configurations

Installation of MathWorks Products on 64-bit Host
Computers
For 64-bit host computers, install the 32-bit version of your MathWorks
products. The 64-bit version of your MathWorks products does not support
the Embedded IDEs and Embedded Targets-related features.

IDE Link Configuration
After completing “Third Party Product Setup” on page 43-18, if you are
using the one of the following IDEs, perform additional configuration of your
MathWorks software:

Analog Devices VisualDSP++ IDE

Use the adivdspsetup command to complete the configuration and install a
plug-in in VisualDSP++. The reference page provides a brief example. Also
see Chapter 47, “Working with Analog Devices™ VisualDSP++ IDE”.

Eclipse IDE

Complete the process in “Configuring Your MathWorks Software to Work
with Eclipse” on page 48-10.

Green Hills MULTI IDE

Use the ghsmulticonfig command to complete the configuration for MULTI.
Also see Chapter 50, “Working with Green Hills® MULTI IDE”.

Texas Instruments Code Composer Studio IDE

Use the checkEnvSetup command to complete the configuration for Code
Composer Studio. Also see Chapter 54, “Working with Texas Instruments
Code Composer Studio IDE”.

43-20

IDE Projects

Code Generation and Build

Building Your Model
In your model, click the build button or enter Ctrl+B. The software performs
the actions you selected for Build action in the model Configuration
Parameters, under Code Generation > IDE Link.

Green Hills MULTI Output Folder

With Green Hills MULTI, Embedded Coder outputs the derived files in the
<builddir> folder. For example, in model_ghsmulti.

Project Generator Features
The Project Generator component provides or supports the following features
for developing IDE projects and generating code:

• Automatically create IDE projects for your generated code during the code
generation process.

• Customize code generation using model “Configuration Parameters” on
page 43-7 and “Target Preferences” on page 43-4 block options

• Configure the automatic project build process

• Automatically download and run your generated projects on your target

IDE Handle Objects
Project Generator uses an IDE handle object to connect to the IDE you
selected in the Target Preferences block. If a handle doesn’t exist when you
generate code, Project Generator automatically creates a handle object for
your IDE. Project Generator uses a constructor function to create a handle
object for the your IDE:

• altiumtasking for Altium TASKING

• adivdsp for Analog Devices™ VisualDSP++®

• eclipseide for Eclipse IDE

• ghsmulti for Green Hills MULTI

43-21

43 Project and Build Configurations

• ticcs for Texas Instruments’ Code Composer Studio

Automation of IDE Tasks and Processes
The Automation Interface component provides a powerful API for automating
IDE tasks via MATLAB scripts. For example, with Automation Interface,
your script can automatically:

• Automate project creation, including adding source files, include paths, and
preprocessor defines

• Configure batch building of projects

• Launch a debugging session

Getting Started with Automation Interface
For your reference, consult the list of the supported functions and methods for
your IDE, located in the Embedded Coder reference under “IDE Automation
Interface”.

The implementation of Automation Interface for TASKING is different from
the implementation for other IDEs. For TASKING, use the “Automation
Interface” on page 46-37 topic in the TASKING appendix instead of this
section.

Introducing the Automation Interface Tutorial. To help you become
familiar with Automation Interface, you can use the “Automation Interface
Tutorial” demo for the following IDEs:

• Altium TASKING

• Green Hills MULTI

• Eclipse IDE

• Analog Devices VisualDSP++

• Texas Instruments Code Composer Studio

The tutorial shows you how to:

1 Configure and create an IDE handle object.

43-22

IDE Projects

2 Create and query objects in an IDE.

3 Use MATLAB software to load files into your IDE.

4 Work with your IDE project from MATLAB software.

5 Close connections you the IDE.

43-23

43 Project and Build Configurations

Makefiles

In this section...

“Using XMakefile to Generate and Build Software” on page 43-24

“Making an XMakefile Configuration Operational” on page 43-31

“Example: Creating a New XMakefile Configuration” on page 43-31

“XMakefile User Configuration Dialog Box” on page 43-38

Using XMakefile to Generate and Build Software

• “Overview” on page 43-24

• “Feature Support” on page 43-25

• “Configuring Your Model to Use Makefiles” on page 43-26

• “Choosing an XMakefile Configuration” on page 43-27

• “Building Your Model” on page 43-30

Overview
You can use the XMakefile feature to generate and build your software using
makefiles.

Scenarios for using makefiles include:

• Building software without opening an IDE

• Automating the build process for testing and continuous build environments

• Fine-tuning and customizing the build process

In addition to this chapter, see the Makefile Generator Tutorial demo for more
information about using makefiles to generate code.

You can use makefiles with the following toolchain and target combinations.

43-24

Makefiles

Tool Chain Processor
Family/Target
Operating System

Host Operating
System

Analog Devices™
VisualDSP++®

Blackfin™, SHARC™,
and TigerSHARC™

Windows

Green Hills® MULTI® ARM®, Analog
Devices™ Blackfin®,
PowerPC®, and NEC®
v850

Linux, Windows

GNU development tools Linux Linux

GNU development tools ARM MontaVista Linux

Texas
Instruments™Code
Composer Studio v3
and v4

Texas
InstrumentsC2000™,
C5500™, and C6000™

Windows

Wind River Diab/GCC ARM9, Host Simulator,
VxWorks, RTP and
RTP_SO

Windows

Feature Support
With XMakefile, you cannot use features that rely on direct communications
between your MathWorks software and third-party IDEs.

You cannot use the following features with makefiles:

• Automation Interface

• Processor-in-the-loop (PIL) communications via an IDE debugger

If your IDE supports them, you can use makefiles with the following features
and Embedded Coder:

• Real-Time executable

• Free-running executables

• Interrupt Block

43-25

43 Project and Build Configurations

• Idle Block

• Linker File

• TFL Operators

• TCP/IP PIL

If your target supports them, you can use makefiles with the following
features:

• Real-Time Operating Systems such as DSP/BIOS, VxWorks, or Real-Time
Linux

• Windows and Linux

• Device Drivers

• External mode

• Optimization

Note Using XMakefile with demos: You can only complete those demos or
portions of demos that rely on features that XMakefile supports.

Configuring Your Model to Use Makefiles
Update your model configuration parameters to use a makefile instead of an
IDE when you build software from the model:

1 Add a Target Preferences block to your model and configure it for your
target. For more information, see “Target Preferences” on page 43-4.

2 In your model window, select Simulation > Configuration Parameters.

3 Under Code Generation, select IDE Link.

4 Set Build format to Makefile. For more information, see Build format
on page 12.

5 Set Build action to Build_and_execute. For more information, see Build
action on page 12.

43-26

Makefiles

Choosing an XMakefile Configuration
Configure how to generate makefiles:

1 Enter xmakefilesetup on the MATLAB command line. The software opens
an XMakefile User Configuration dialog box.

2 Leave Template set to gmake.

3 For Configuration, select the option that describes your software build
toolchain and target platform.

Note With the XMakefile User Configuration dialog, if you have an
Embedded Coder license but no Simulink Coder license, the Configuration
list includes two unsupported options: gcc_target or msvs_host. Disregard
those two configurations. Choose one of the other configurations.

Note If you set Configuration to msvs_host, restart MATLAB as described
in before building your model software.

Things to consider while setting Configuration:

43-27

43 Project and Build Configurations

• Selecting Display operational configurations only hides configurations
that do not work. For a configuration to be operational, the vendor tool
chain must be installed, and the configuration must have the correct path
for the vendor tool chain. For more information, see “Making an XMakefile
Configuration Operational” on page 43-31.

• To display all of the configurations, including non-operational
configurations, deselect Display operational configurations only.

• The list of configurations can include non-editable configurations defined in
the software and editable configurations defined by you.

• To create a new editable configuration, use the New button.

• For more information, see “XMakefile User Configuration Dialog Box” on
page 43-38.

Available XMakefile Configurations. The following list provides a
description each configuration available in the XMakefile dialog box:

• adivdsp_blackfin: Analog Devices VisualDSP++ & Analog Devices
Blackfin

• adivdsp_sharc: Analog Devices VisualDSP++ & Analog Devices SHARC

• adivdsp_tigersharc: Analog Devices VisualDSP++ & Analog Devices
TigerSHARC

• gcc_target: GNU Compiler Collection & Host Operating System or
Embedded Operating System

• ghsmulti_arm: Green Hills MULTI & ARM

• ghsmulti_blackfin: Green Hills MULTI & Analog Devices Blackfin

• ghsmulti_ppc: Green Hills MULTI & PowerPC

• ghsmulti_v850: Green Hills MULTI & NEC V850

• mingw_host: Minimalist GNU for Windows & Host Operating System

• msvs_host: Microsoft Visual Studio & Host Operating System

• ticcs_c2000_ccsv3: Texas Instruments Code Composer Studio v3 &
Texas Instruments C2000

43-28

Makefiles

• ticcs_c2000_ccsv4: Texas Instruments Code Composer Studio v4 &
Texas Instruments C2000

• ticcs_c5500_ccsv3: Texas Instruments Code Composer Studio v3 &
Texas Instruments C5500

• ticcs_c5500_ccsv4: Texas Instruments Code Composer Studio v4 &
Texas Instruments C5500

• ticcs_c6000_ccsv3: Texas Instruments Code Composer Studio v3 &
Texas Instruments C6000

• ticcs_c6000_ccsv4: Texas Instruments Code Composer Studio v4 &
Texas Instruments C6000

• ticcs_c6000_dspbios_ccsv3: Texas Instruments Code Composer Studio
v3 & Texas Instruments DSP/BIOS on C6000

• ticcs_c6000_dspbios_ccsv4: Texas Instruments Code Composer Studio
v4 & Texas Instruments DSP/BIOS on C6000

• wrsdiab_arm9_rtp: Wind River Systems DIAB Compiler & ARM 9 &
real-time process applications

• wrsdiab_arm9_rtp_so: Wind River Systems DIAB Compiler & ARM 9 &
real-time process applications with shared object

• wrsdiab_hostsim_rtp: Wind River Systems DIAB Compiler & VxWorks
Host Simulator & real-time process applications

• wrsdiab_hostsim_rtp_so: Wind River Systems DIAB Compiler &
VxWorks Host Simulator & real-time process applications with shared
object

• wrsgnu_arm9_vxworks_rtp: Wind River Systems GNU Compiler &
VxWorks Host Simulator & real-time process applications

• wrsgnu_hostsim_vxworks_rtp: Wind River Systems GNU Compiler &
VxWorks Host Simulator & real-time process applications with shared
object

Understanding Naming Conventions for the XMakefile
Configurations. The names of XMakefile configurations consist of
abbreviations and underscores in the following sequence:

43-29

43 Project and Build Configurations

Vendor + Tool Chain + Underscore + Processor Family + Underscore +
Relevant Modifier

For example:

Name Vendor Tool Chain Processor
Family

Modifier

adivdsp_tigersharcAnalog
Devices (adi)

VisualDSP++
(vdsp)

TigerSharc
(tigersharc)

ghsmulti_arm Green Hills
(ghs)

MULTI
(multi)

ARM (arm)

ticcs_c6000_ccsv3Texas
Instruments
(ti)

Code
Composer
Studio (ccs)

C6000
(c6000)

CCS version
3 (ccsv3)

mingw_host Minimalist
GNU for
Windows
(mingw)

Host
Operating
System
(host)

msvs_host Microsoft
(ms)

Visual
Studio (vs)

Host
Operating
System
(host)

wrsdiab_arm9_rtp_soWind River
Systems
(wrs)

DIAB
Compiler
(diab)

ARM9 (arm
9)

Real-time
process
applications
with shared
object
(rtp_so)

wrsgnu_hostsim_rtpWind River
Systems
(wrs)

GNU
Compiler
(gnu)

VxWorks
Host
Simulator
(hostsim)

Real-time
process
applications
(rtp)

Building Your Model
In your model, click the build button or enter Ctrl+B. This action creates a
makefile and performs the other actions you specified in Build action.

43-30

Makefiles

By default, this process outputs files in the
<builddir>/<buildconfiguration> folder. For example, in
model_name/CustomMW.

Green Hills MULTI Output Folder

With Green Hills MULTI, Embedded Coder outputs the derived files in the
<builddir> folder. For example, in model_ghsmulti.

Making an XMakefile Configuration Operational
When the XMakefile utility starts, it checks each factory default configuration
to verify that the specified toolchain paths exist. If the paths are invalid,
the configuration is non-operational. Typically, the cause of this problem is
a difference between the path in the configuration and the actual path of
the vendor toolchain.

To make a configuration operational:

1 Deselect Display operational configurations only to display
non-operational configurations.

2 Select the non-operational configuration from the Configuration options.

3 When you click Apply, a new dialog box prompts you for the folder path of
any missing resources the configuration requires.

Use mapped network drives instead of UNC paths to specify directory
locations. Using UNC paths with compilers that do not support them
causes build errors.

Example: Creating a New XMakefile Configuration

• “Overview” on page 43-32

• “Create a Configuration” on page 43-32

• “Modify the Configuration” on page 43-33

• “Test the Configuration” on page 43-36

43-31

43 Project and Build Configurations

Overview
This example shows you how to add support for a software development
toolchain to the XMakefile utility. This example uses the Intel Compiler and
Eclipse IDE, which provides an open framework and allows for otherwise
unsupported toolchains.

Note To specify directory locations, use mapped network drives instead of
UNC paths. UNC paths cause build errors with compilers that do not support
them.

Create a Configuration
When you click New, the new configuration inherits values and behavior
from the current configuration. To create a configuration for the Intel
Compiler, clone a configuration from any of these configurations: msvs_host,
mingw_host, montavista_arm and gcc_target.

Open the XMakefile User Configuration UI by typing xmakefilesetup at the
MATLAB prompt. This action displays the following dialog box.

Select an existing configuration, such as msvs_host, mingw_host,
montavista_arm or gcc_target. Click the New button.

43-32

Makefiles

A pop-up dialog prompts you for the name of the new configuration. Enter
intel_compiler and click OK.

The dialog box displays a new configuration called intel_compiler based on
msvs_host.

Modify the Configuration
Adjust the compiler, linker, and archiver settings of the newly created
configuration. This example assumes the location of the Intel compiler is
C:\Program Files\Intel\Compiler\.

Make Utility. You do not need to make any changes. This configuration uses
the gmake tool that ships with MATLAB.

43-33

43 Project and Build Configurations

Compiler. For Compiler, enter the location of icl.exe in the Intel
installation.

Linker. For Linker, enter the location of the linker executable, xilink.exe.

For Arguments, add the /LIBPATH path to the Intel libraries.

43-34

Makefiles

Archiver. For Archiver, enter the location of the archiver, xilib.exe.
Confirm that File extensions for library files includes .lib.

Other tabs. For this example, ignore the remaining tabs. In other
circumstances, you can use them to configure additional build actions. In a
later step of this example, you will configure the software to automatically
build and run the generated code.

43-35

43 Project and Build Configurations

Test the Configuration
Open the “sumdiff” model by entering sumdiff on the MATLAB prompt.

Use a Target Preferences block to configure the model for use with the Eclipse
IDE. First enter idelinklib_common at the MATLAB prompt. Then drag and
drop the Target Preferences block onto the summdiff model.

43-36

Makefiles

Open the Target Preferences block, and set Processor to Intel x86/Pentium.
Set Operating System to None or select Windows. Click OK.

Open the Configuration Parameters for the summdiff model by
pressing Ctrl+E. Set Build format to Makefile and Build action to
Build_and_execute.

Save the model to a temporary location, such as C:\Temp\IntelTest\.

43-37

43 Project and Build Configurations

Set that location as a Current Folder by typing cd C:\temp\IntelTest\ at
the MATLAB prompt.

Build the model by pressing Ctrl+B. The MATLAB Command Window
displays something like:

TLC code generation complete.
Creating HTML report file sumdiff_codegen_rpt.html
Creating project: c:\temp\IntelTest\sumdiff_eclipseide\sumdiff.mk
Project creation done.
Building project...
Build done.
Downloading program: c:\temp\IntelTest\sumdiff_eclipseide\sumdiff
Download done.

A command window comes up showing the running model. Terminate the
generated executable by pressing Ctrl+C.

XMakefile User Configuration Dialog Box

• “Active” on page 43-39

• “Make Utility” on page 43-40

• “Compiler” on page 43-41

• “Linker” on page 43-42

• “Archiver” on page 43-42

• “Pre-build” on page 43-43

• “Post-build” on page 43-43

• “Execute” on page 43-44

• “Tool Directories” on page 43-44

43-38

Makefiles

Active

Template. Select the template that matches your toolchain and processor.
The template defines the syntax rules for writing the contents of the makefile
or buildfile. The factory default template is gmake, which works with the
GNU make utility.

To add templates to this parameter, save them as .mkt files to the location
specified by the User Templates parameter. For more information, see “User
Templates” on page 43-40.

Configuration. Select the configuration that best describes your toolchain
and target.

You cannot edit or delete the factory default configurations provided by
MathWorks. You can, however, edit and delete the configurations that you
create.

Use the New button to create an editable copy of the currently selected
configuration.

Use the Delete button to delete a configuration you created.

43-39

43 Project and Build Configurations

Note You cannot edit or delete the factory default configurations provided
by MathWorks.

Note Use mapped network drives instead of UNC paths to specify directory
locations. Using UNC paths with compilers that do not support them causes
build errors.

Display operational configurations only. When you open the XMakefile
User Configuration dialog box, the software verifies that each factory default
configuration contains valid paths to the executable files it uses.

To display valid factory default configurations, select “Display operational
configurations only”. This option does not apply to configurations you create.

To display all of the configurations, including non-operational configurations,
deselect Display operational configurations only. The software
categorizes a configuration as non-operational if a required resource is
missing. For more information, see “Making an XMakefile Configuration
Operational” on page 43-31.

User Templates. Set the path of the folder to which you can add template
files. Saving templates files with the .mkt extension to this folder adds them
to the Templates options.

User Configurations. Set the location of configuration files you create with
the New button.

Make Utility

43-40

Makefiles

Make utility. Set the path and filename of the make utility executable.

Arguments. Define the command-line arguments to pass to the make utility.
For more information, consult the third-party documentation for your make
utility.

Optional include. Set the path and file name of an optional makefile to
include.

Compiler

Compiler. Set the path and file name of the compiler executable.

Arguments. Define the command-line arguments to pass to the compiler. For
more information, consult the third-party documentation for your compiler.

Source. Define the file name extension for the source files. Use commas
to separate multiple file extensions.

Header. Define the file name extension for the header files. Use commas
to separate multiple file extensions.

Object. Define the file name extension for the object files.

43-41

43 Project and Build Configurations

Linker

Linker. Set the path and file name of the linker executable.

Arguments. Define the command-line arguments to pass to the linker. For
more information, consult the third-party documentation for your linker.

File extensions for library files. Define the file name extension for the file
library files. Use commas to separate multiple file extensions.

Generated output file extension. Define the file name extension for the
generated libraries or executables.

Archiver

Archiver. Set the path and file name of the archiver executable.

Arguments. Define the command-line arguments to pass to the archiver. For
more information, consult the third-party documentation for your archiver.

Generated output file extension. Define the file name extension for the
generated libraries.

43-42

Makefiles

Pre-build

Enable Prebuild Step. Select this check box to define a prebuild tool that
runs before the compiler.

Prebuild tool. Set the path and file name of the prebuild tool executable.

Arguments. Define the command-line arguments to pass to the prebuild
tool. For more information, consult the third-party documentation for your
prebuild tool.

Post-build

Enable Postbuild Step. Select this check box to define a postbuild tool
that runs after the compiler or linker.

Postbuild tool. Set the path and file name of the postbuild tool executable.

Arguments. Define the command-line arguments to pass to the postbuild
tool. For more information, consult the third-party documentation for your
postbuild tool.

43-43

43 Project and Build Configurations

Execute

Use Default Execute Tool. Select this check box to use the generated
derivative as the execute tool when the build process is complete. Uncheck it
to specify a different tool. The default value, echo, simply displays a message
that the build process is complete.

Note On Linux, multirate multitasking executables require root privileges to
schedule POSIX threads with real-time priority. If you are using makefiles to
build multirate multitasking executables on your Linux development system,
you cannot use Execute tool to run the executable. Instead, use the Linux
command, sudo, to run the executable.

Execute tool. Set the path and file name of the execute tool executable or
built-in command.

Arguments. Define the command-line arguments to pass to the execute
tool. For more information, consult the third-party documentation for your
execute tool.

Tool Directories

43-44

Makefiles

Installation. Use the Tool Directories tab to change the toolchain path of
an operational configuration.

For example, if you installed two versions of a vendor build tool in separate
folders, you can use the Installation path to change which one the
configuration uses.

43-45

43 Project and Build Configurations

43-46

44

Verification and Profiling

• “What Is Verification?” on page 44-2

• “Processor-in-the-Loop (PIL) Simulation” on page 44-3

• “Execution Profiling” on page 44-14

• “Stack Profiling” on page 44-21

Verify and profile generated code executing on processors

44 Verification and Profiling

What Is Verification?
Verification consists broadly of running generated code on a processor and
verifying that the code does what you intend. The coder software provides
tools that help you verify your code during development by letting you run
portions of simulations on your hardware and profiling the executing code.

Using the Automation Interface and Project Generator components, the coder
software offers the following verification functions:

• Processor-in-the-Loop — A technique to help you evaluate how your process
runs on your processor.

• Real-Time Task Execution Profiling — A tool that lets you see how the
tasks in your process run in real-time on your processor hardware.

44-2

Processor-in-the-Loop (PIL) Simulation

Processor-in-the-Loop (PIL) Simulation

In this section...

“Overview” on page 44-3

“Approaches” on page 44-4

“Communications” on page 44-9

“Definitions” on page 44-11

“PIL Issues and Limitations” on page 44-13

Overview
You can use processor-in-the-loop (PIL) simulation to verify your generated
code as compiled object code. PIL helps you evaluate the behavior of a
candidate algorithm on the target platform selected for the deployment of
your application. In PIL simulation, the candidate algorithm runs on the
target platform as a part of the Simulink simulation loop.

You can use PIL simulation to verify your generated code on a target
processor or instruction set simulator. In PIL simulation, the target
processor participates fully in the simulation loop — hence the term
processor-in-the-loop simulation. To verify your generated code, you can
compare the output of regular simulation modes, such as Normal or
Accelerator, with the output of PIL simulation mode. You can easily switch
between simulation and PIL modes. This flexibility allows you to verify
the generated code by executing the model as compiled code in the target
environment. You can model and test your embedded software component
in Simulink and then reuse your regression test suites across simulation
and compiled object code. This process avoids the time-consuming process of
leaving the Simulink software environment to run tests again on object code
compiled for the production hardware.

Embedded Coder supports the following PIL approaches:

• Top-model PIL

• PIL block

• Model Block PIL

44-3

44 Verification and Profiling

For more information about PIL, see Chapter 39, “Verifying Generated Code
With SIL and PIL Simulations”

Processor-in-the-Loop (PIL) builds and uses a MEX function to run the
PIL simulation block. Before using PIL, set up a compiler for MATLAB to
build the MEX files. Run the command |mex -setup| to select a compiler
configuration. For more information, read “Building MEX-Files”

Approaches

Model Block PIL
Use Model block PIL to:

• Verify code generated for referenced models (model reference code
interface).

• Provide a test harness model (or a system model) to generate test vector or
stimulus inputs.

• Switch a Model block between normal, SIL, or PIL simulation modes.

To perform a model block PIL simulation, start with a top model that contains
a Model block. The top model serves as a test harness, providing inputs and
outputs for the Model block. The Model block references the model you plan
to run on a target. During PIL simulation, the referenced model runs on the
target platform.

For more information about using the Model block, see Model Variants and
“Referencing a Model”.

By default, your MathWorks software uses the IDE debugger for PIL
communications with the target platform. To achieve faster communications,
you can configure your MathWorks software to use a TCP/IP network
connection, as described in “TCP/IP” on page 44-9.

To use model block PIL:

1 Right-click the Model block, and selectModelReference Parameters.

44-4

Processor-in-the-Loop (PIL) Simulation

2 When the software displays the Function Block Parameters: Model
dialog box, set Simulation mode to Processor-in-the-loop (PIL) and
click OK.

3 Open the Model block.

4 In the referenced model (Model block) Configuration Parameters
(Ctrl+E), under Code Generation>IDE Link, set Build action set
to Archive_library. This action avoids a warning when you start the
simulation.

5 Add a Target Preferences block to either model, and configure it for the
target platform.

6 Copy the Target Preferences block from one model to the other. The top
model and the Model block now contain identical Target Preference blocks.

7 Save the changes to both models.

8 In the top model menu bar, select Simulation > Start. This action builds
the referenced model in the Model block, downloads it to your target
platform, and runs the PIL simulation.

Note In the top model Configuration Parameters (Ctrl+E), under Code
Generation > IDE Link, leave Build action set to Build_and_execute. Do
not change Build action to Create_Processor_In_the_Loop_Project.

For more information, see Chapter 39, “Verifying Generated Code With SIL
and PIL Simulations”

Top Model PIL
Use top-model PIL to:

• Verify code generated for a top model (standalone code interface).

• Load test vectors or stimulus inputs from the MATLAB workspace.

• Switch the entire model between normal and SIL or PIL simulation modes.

44-5

44 Verification and Profiling

For more information, see Chapter 39, “Verifying Generated Code With SIL
and PIL Simulations”

Setting Model Configuration Parameters to Generate the PIL
Application. Configure your model to generate the PIL executable from
your model:

1 Add a Target Preferences block in to your model. The Target Preferences
block is located in the Simulink library browser under Embedded Coder >
Embedded Targets.

2 Open the Target Preferences block and select your processor from the list of
processors.

3 From the model window, select Simulation > Configuration
Parameters.

4 In Configuration Parameters, select Code Generation.

5 Set System Target File to idelink_ert.tlc.

6 On the Select tree, choose IDE Link.

7 Set Build format to Project.

8 Set Build action to Create_processor_in_the_loop_project.

9 Click OK to close the Configuration Parameters dialog box.

Running the Top Model PIL Application. To create a PIL block, perform
the following steps:

1 In the model window menu, select Simulation > Processor-in-the-loop.

2 In the model toolbar, click the Start simulation button.

A new model window opens and the new PIL model block appears in it. The
third-party IDE compiles and links the PIL executable file. Follow the
progress of the build process in the MATLAB command window.

44-6

Processor-in-the-Loop (PIL) Simulation

PIL Block
Use the PIL Block to:

• Use a compiler and target environment supported by the Embedded Coder
product.

• Verify code generated for a top model (standalone code interface) or
subsystem (right-click build standalone code interface).

• Change the model and insert a PIL block to represent a component running
in SIL or PIL mode. The test harness model or a system model provides
test vector or stimulus inputs.

For more information, see Chapter 39, “Verifying Generated Code With SIL
and PIL Simulations”.

Preparing Your Model to Generate a PIL Block
Start with a model that contains the algorithm blocks you want to verify on
the processor as compiled object code. To create a PIL application and PIL
block from your algorithm subsystem, follow these steps:

1 Identify the algorithm blocks to cosimulate.

2 Convert those blocks into an unmasked subsystem in your model.

For information about how to convert your process to a subsystem, refer to
Creating Subsystems in Using Simulink or in the online Help system.

3 Open the newly created subsystem and copy a Target Preferences block to
it. The Target Preferences block is located in the Simulink library browser
under Embedded Coder > Embedded Targets.

Open the Target Preferences block and select your processor from the list of
processors.

Setting Model Configuration Parameters to Generate the PIL
Application
After you create your subsystem, set the configuration parameters for your
model to enable the model to generate a PIL block.

44-7

44 Verification and Profiling

Configure your model to enable it to generate PIL algorithm code and a PIL
block from your subsystem:

1 From the model menu bar, select Simulation > Configuration
Parameters. This action opens the Configuration Parameters dialog box.

2 On the Select tree, choose Code Generation.

3 Set System Target File to idelink_ert.tlc.

4 On the Select tree, choose IDE Link.

5 Set Build format to Project.

6 Set Build action to Create_processor_in_the_loop_project.

7 Click OK to close the Configuration Parameters dialog box.

Creating the PIL Block Application from a Model Subsystem
To create a PIL block, perform the following steps:

1 Right-click the masked subsystem in your model and select Code
Generation > Build Subsystem from the context menu.

A new model window opens and the new PIL block appears in it. The
third-party IDE compiles and links the PIL executable file.

This step builds the PIL algorithm object code and a PIL block that
corresponds to the subsystem, with the same inputs and outputs. Follow
the progress of the build process in the MATLAB command window.

2 Copy the new PIL block from the new model to your model. To simulate
the subsystem processes concurrently, place it parallel to your masked
subsystem. Otherwise, replace the subsystem with the PIL block.

To see a PIL block in a parallel masked subsystem, search the product
help for Getting Started with Application Development and select the demo
that matches your IDE.

44-8

Processor-in-the-Loop (PIL) Simulation

Note Models can have multiple PIL blocks for different subsystems. They
cannot have more than one PIL block for the same subsystem. Including
multiple PIL blocks for the same subsystem causes errors and incorrect
results.

Running Your PIL Application to Perform Simulation and
Verification
After you add your PIL block to your model, click Simulation > Start to run
the PIL simulation and view the results.

Communications
Chose one of the following communication methods for transferring code and
data during PIL simulations:

• TCP/IP: Faster. Requires an IP stack on the target.

• Debugger: Slower. Requires a supported IDE. Does not require an IP
stack on the target.

TCP/IP
Using TCP/IP with PIL requires an implementation of the Internet Protocol
(IP) stack on the target platform. Therefore, you can only use TCP/IP with
one of the following targets:

• Linux

• Texas Instruments DSP/BIOS

• Wind River VxWorks

If your target supports TCP/IP, use TCP/IP instead of using an IDE debugger.
Using TCP/IP for PIL communications is typically faster than using a
debugger, particularly for large data sets, such as with video and audio
applications.

It also works well when you build an application on a remote Linux target
using the remoteBuild function.

44-9

44 Verification and Profiling

You can use TCP/IP with all three PIL approaches:

• Top-model PIL

• Model block PIL

• Subsystem PIL

To enable and configure TCP/IP with PIL:

1 Set up PIL simulation according to the PIL approach you have chosen.

2 At the MATLAB command line, use setpref to specify the IP address of
the PIL server (servername).

If you are running the PIL server on a remote target, specify the IP address
of the target. For example:

>> setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','servername','144.212.109.114');

If you are running PIL server locally, on your host Windows or Linux
system, enter 'localhost' instead of an IP address:

>> setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','servername','localhost');

3 Specify the TCP/IP port number to use for PIL data communication. Use
one of the free ports in your system. For example:

>> setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','portnum', 17025);

4 Enable PIL communications over TCP/IP:

>> setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enabletcpip', true);

To disable PIL communications over TCP/IP, change the value to false.
This action automatically enables PIL communications over an IDE
debugger, if an IDE is available.

5 Open the Target Preferences block in your model, then set the Operating
System parameter to an operating system.

44-10

Processor-in-the-Loop (PIL) Simulation

Note You cannot use TCP/IP for PIL when the value of Operating
System is None.

Additional Steps for TI C6000 Processors

Add an IP Config block to the following location in your model:

• For Top Model PIL, add it at the top level of your model.

• For Model Block PIL, add it to the referenced model to which you are
pointing.

• For Subsystem PIL, place it in the subsystem.

Configure the IP Config block settings as described in C6000 IP Config.

To determine the IP address assigned to the PIL server on the C6000 target:

1 Enter an arbitrary IP address the first time you specify the IP address.

2 Build and run the code for your model.

3 In the CCS command window, observe the actual IP address assigned to
the C6000 processor by the DHCP server.

4 Enter the actual IP address the second time you specify the IP address.

Debugger
If you disable PIL communications over “TCP/IP” on page 44-9, and an IDE is
available, PIL uses the IDE debugger to communicate with the application
running on target.

To enable PIL communications over an IDE debugger, disable PIL
communications over TCP/IP by entering:

>> setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enabletcpip', false);

Definitions
Simulation

44-11

44 Verification and Profiling

The division of model simulation activities between a host and a target. The
test harness runs on a host, such as a development workstation, and drives
the inputs to the generated code running on the target.

PIL Algorithm

The algorithmic code, which corresponds to a subsystem or portion of a model,
to test during the PIL simulation. The PIL algorithm is in compiled object
form to enable verification at the object level.

PIL Application

The executable application that runs on the processor platform. The coder
software creates a PIL application by augmenting your algorithmic code with
the PIL execution framework. The PIL execution framework code compiles as
part of your embedded application.

The PIL execution framework code includes the string.h header file so that the
PIL application can use the memcpy function. The PIL application uses memcpy
to exchange data between the Simulink model and the simulation processor.

PIL Block

When you build a subsystem from a model for PIL, the process creates a PIL
block optimized for PIL simulation. When you run the simulation, the PIL
block acts as the interface between the model and the PIL application running
on the processor. The PIL block inherits the shape and signal names from
the source subsystem in your model, as shown in the following example.
Inheritance is convenient for copying the PIL block into the model to replace
the original subsystem for simulation.

44-12

Processor-in-the-Loop (PIL) Simulation

PIL Issues and Limitations
Consider the following issues when you work with PIL blocks.

Constraints
When using PIL in your models, keep the following constraints in mind:

• A model can contain a single subsystem PIL block.

• A model can contain a single model block running PIL mode.

• A model can contain a subsystem PIL block or a model block in PIL mode,
but not both.

Generic PIL Issues
Refer to the Support Table section in the Embedded Coder documentation for
general information about using the PIL block with embedded link products.
Refer to PIL Feature Support and Limitations.

With Texas Instruments CCS, PIL with DSP/BIOS Enabled Does
Not Support System Stack Profiling
Enabling DSP/BIOS for Texas Instruments™ processors disables the stack
profiling option. To use stack profiling with PIL, disable DSP/BIOS™ in the
model Target Preferences block and rebuild your project.

Simulink Coder grt.tlc-Based Targets Not Supported
PIL does not support grt.tlc system target files.

To use PIL, set System target file in the Configuration Parameters > Code
Generation pane to idelink_ert.tlc.

Execution Profiling During PIL Simulation and Standalone
Execution Not Supported for Desktop Targets
Execution profiling is not supported for Desktop Targets during PIL
simulations and during Standalone Exection. For more information, see the
“Execution Profiling” on page 44-14 section in the Embedded Coder product
documentation.

44-13

44 Verification and Profiling

Execution Profiling

In this section...

“What Is Execution Profiling?” on page 44-14

“Execution Profiling during Standalone Execution Mode” on page 44-15

“Execution Profiling during PIL Simulation” on page 44-19

What Is Execution Profiling?
You can measure the execution performance of the generated code running
on your target processor with Execution Profiler. This feature can be used
to measure CPU utilization during standalone target processor execution or
processor-in-the-loop (PIL) simulation.

Your software includes a set of utilities for profiling execution of generated
code on a target. The utilities profile execution times for synchronous
tasks, asynchronous tasks, and atomic subsystems. You can perform
execution profiling during standalone execution or processor-in-the-loop (PIL)
simulation. The following table summarizes execution profiler applicability.

Execution Mode Desktop IDEs and
Desktop Targets

Embedded IDEs and
Embedded Targets

Standalone Execution N/A Tasks (Synchronous
and Asynchronous) or
Atomic Subsystems

PIL Simulation N/A Tasks (Synchronous
only)

Note To profile by atomic subsystems, your model must include at least one
atomic subsystem. To learn more about creating atomic subsystems, refer to
"Creating Subsystems" in the online help for Simulink software.

44-14

Execution Profiling

Execution Profiling during Standalone Execution
Mode
In standalone execution mode, instrumented code in the generated code
collects a user-specified number of execution time samples and stores in
target processor memory. Once target processor execution is halted the profile
function can be called to transfer profiling data from target processor memory
to the MATLAB workspace for viewing and analysis.

The following Targets do not support execution profiling in standalone mode:

• VxWorks Target

• Windows Target

• Linux Target

By Tasks
To configure a model to use task execution profiling, perform the following
steps:

1 Ensure your model is configured with Target Preferences block.

2 Open the Configuration Parameters dialog box for your model.

3 Select IDE Link from the Select tree.

4 Set Build format to Project and set Build action to Build_and_execute.

5 Select Profile real-time execution.

6 In the Profile by list, select Tasks to enable profiling by tasks.

7 Set the Number of profiling samples to collect. This is number of
execution sample times to be measured.

8 By default, the Export IDE link handle to base workspace is enabled,
and the IDE link handle name is set to IDE_Obj.

9 Click OK to close the Configuration Parameters dialog box.

To view the execution profile for your model:

44-15

44 Verification and Profiling

1 Click Incremental build on the model toolbar to generate, build, load,
and run your code on the processor.

2 To stop the running program, select Debug > Halt in the IDE or use
IDE_obj.halt from the MATLAB command prompt. Gathering profiling
data from a running program may yield incorrect results.

3 At the MATLAB command prompt, enter

profile(IDE_Obj, execution , report)

to view the MATLAB software graphic of the execution report and the
HTML execution report.

For more information about other reporting options, see the product help
for the profile function.

The following figure shows the profiling plot from running an application
that has three rates—the base rate and two slower rates. The gaps in the
Sub-Rate2 task bars indicate preempted operations.

44-16

Execution Profiling

By Subsystems
When your models use atomic subsystems, you have the option of profiling
your code based on the subsystems.

To configure a model to use subsystem execution profiling, perform the
following steps:

1 Ensure your model is configured with a Target Preferences block.

2 Open the Configuration Parameters dialog box for your model.

3 Select IDE Link from the Select tree.

4 Set Build format to Project and set Build action to Build_and_execute.

5 Select Profile real-time execution.

6 In the Profile by list, select Atomic subsystems to enable profiling by
atomic subsystems.

7 Set the Number of profiling samples to collect. This is number of
execution sample times to be measured.

8 By default, Export IDE link handle to base workspace is enabled, and
the IDE link handle name is set to IDE_Obj.

9 Click OK to close the Configuration Parameters dialog box.

To view the execution profile for your model:

1 Click Incremental build on the model toolbar to generate, build, load,
and run your code on the processor.

2 To stop the running program, select Debug > Halt in the IDE or use
IDE_obj.halt from the MATLAB command prompt. Gathering profiling
data from a running program may yield incorrect results.

3 At the MATLAB command prompt, enter:

At the MATLAB command prompt, enter:

profile(IDE_Obj, execution , report)

44-17

44 Verification and Profiling

to view the MATLAB software graphic of the execution report and the
HTML execution report.

For more information, see the product help for the profile function.

The following figure shows the profiling plot from running an application that
has three subsystems—For Iterator Subsystem, For Iterator Subsystem1, and
Idle Task Subsystem.

The following figure presents the model that contains the subsystems reported
in the profiling plot.

44-18

Execution Profiling

Atomic Subsystem Profiling

To Workspace

simout

Rate Transition 3

Rate Transition 2

Rate Transition 1

Rate Transition

IdleTask
Subsystem

function ()Idle Task1
Idle Task

f()

Gain

.9

For Iterator
Subsystem1

for { ... } In 1Out 1

For Iterator
Subsystem

for { ... }In 1 Out 1

Feedback Gain

0.8

Constant

1

Execution Profiling during PIL Simulation
You can also invoke Execution Profiler during processor-in-the-loop (PIL)
simulation to measure CPU utilization of each synchronous task. Once
PIL simulation is halted, the collected profiler statistics is available in the
MATLAB workspace for viewing and analysis.

Configure the model for PIL simulation as described in “Processor-in-the-Loop
(PIL) Simulation” on page 44-3.

Then perform the following steps:

1 Select Simulation > Configuration Parameters > Code Generation > SIL
and PIL Verification.

2 Select the Collect execution time measurements check box.

3 In the Workspace edit box, specify a valid MATLAB variable name. When
you run the simulation, the software generates a variable with this name.

44-19

44 Verification and Profiling

The variable contains the profiler statistics, and is an object of type
rtw.pil.ExecutionProfile.

4 Click OK. You can view or analyze the measurements stored in the
workspace in MATLAB.

See "Viewing and Analyzing Code Execution Profiles" in Embedded Coder
documentation.

44-20

Stack Profiling

Stack Profiling

In this section...

“What is Stack Profiling?” on page 44-21

“Profiling System Stack Use” on page 44-22

What is Stack Profiling?
The coder software enables you to determine how your application uses the
processor system stack. This is available only on systems that do not use
operating systems. Using the profile method, you can initialize and test the
size and usage of the stack. This information can help you optimize both the
size of the stack and how your code uses the stack.

To provide stack profiling, profile writes a known pattern to the addresses
in the stack. After you run your application for a while, and then stop your
application, profile examines the contents of the stack addresses. profile
counts each address that no longer contains the known pattern as used. The
total number of address that have been used, compared to the total number of
addresses you allocated, becomes the stack usage profile. This profile process
does not tell you how often any address was changed by your application.

You can profile the stack with both the manually written code in a project and
the code you generate from a model.

When you use profile to initialize and test the stack operation, the software
returns a report that contains information about stack size, usage, addresses,
and direction. With this information, you can modify your code to use the
stack efficiently. The following program listing shows the stack usage results
from running an application on a simulator.

profile(IDE_Obj,'stack','report')

Maximum stack usage:

System Stack: 532/1024 (51.95%) MAUs used.

44-21

44 Verification and Profiling

name: System Stack
startAddress: [512 0]

endAddress: [1535 0]
stackSize: 1024 MAUs

growthDirection: ascending

The following table describes the entries in the report:

Report Entry Units Description

System Stack Minimum Addressable
Unit (MAU)

Maximum number of
MAUs used and the
total MAUs allocated
for the stack.

name String for the stack
name

Lists the name assigned
to the stack.

startAddress Decimal address and
page

Lists the address of
the stack start and the
memory page.

endAddress Decimal address and
page

Lists the address of the
end of the stack and the
memory page.

stackSize Addresses Reports number of
address locations, in
MAUs, allocated for the
stack.

growthDirection Not applicable Reports whether the
stack grows from
the lower address to
the higher address
(ascending) or from
higher to lower
(descending).

Profiling System Stack Use
To profile the system stack operation, perform these tasks in order:

44-22

Stack Profiling

1 Load an application.

2 Set up the stack to enable profiling.

3 Run your application.

4 Request the stack profile information.

Follow these steps to profile the stack as your application interacts with
it. This particular example uses a IDE handle object, IDE_Obj, for Texas
Instruments’ Code Composer Studio. However, you can generalize from this
example to any IDE that supports profiling.

1 Load the application to profile.

2 Use the profile method with the setup input keyword to initialize the
stack to a known state.

profile(IDE_Obj,'stack','setup')

With the setup input argument, profile writes a known pattern into the
addresses that compose the stack. For example, the pattern for C6000
processors is A5, and for C2000 and C5000 processors is A5A5 (to account
for their address size). As long as your target application does not write
the same pattern to the system stack, profile can report the stack usage
correctly.

3 Run your application.

4 Stop your running application. Stack use results gathered from an
application that is running may be incorrect.

5 Use the profile method to capture and view the results of profiling the
stack.

profile(IDE_Obj,'stack','report')

The following example demonstrates setting up and profiling the stack. The
IDE handle object, IDE_Obj, must exist in your MATLAB workspace and your
application must be loaded on your processor. This example comes from a
TI C6713 simulator.

44-23

44 Verification and Profiling

profile(IDE_Obj,'stack','setup') % Set up processor stack--write A5 to t

Maximum stack usage:

System Stack: 0/1024 (0%) MAUs used.

name: System Stack
startAddress: [512 0]

endAddress: [1535 0]
stackSize: 1024 MAUs

growthDirection: ascending

run(IDE_Obj)
halt(IDE_Obj)
profile(IDE_Obj,'stack','report') % Request stack use report.

Maximum stack usage:

System Stack: 356/1024 (34.77%) MAUs used.

name: System Stack
startAddress: [512 0]

endAddress: [1535 0]
stackSize: 1024 MAUs

growthDirection: ascending

44-24

45

Processor-Specific
Optimizations

45 Processor-Specific Optimizations

Target Function Library (TFL)

In this section...

“About Target Function Libraries and Optimization” on page 45-2

“Using a Processor-Specific Target Function Library to Optimize Code”
on page 45-4

“Process of Determining Optimization Effects Using Real-Time Profiling
Capability” on page 45-5

“Reviewing Processor-Specific Target Function Library Changes in
Generated Code” on page 45-5

“Reviewing Target Function Library Operators and Functions” on page 45-8

“Creating Your Own Target Function Library” on page 45-8

About Target Function Libraries and Optimization
A target function library is a set of one or more function tables that define
processor- and compiler-specific implementations of functions and arithmetic
operators. The code generation process uses these tables when it generates
code from your Simulink model.

The coder software registers processor-specific target function libraries
during installation. To use one of the libraries, select the set of tables that
correspond to functions implemented by intrinsics or assembly code for your
processor from the Target function library list in the model configuration
parameters. To do this, complete the following steps:

1 In your model, select Simulation > Configuration Parameters.

2 In the Configuration Parameters dialog box, select Code Generation
and Interface.

3 Set the Target function library parameter to the appropriate library for
your processor.

After you select the processor-specific library, the model build process uses
the library contents to optimize generated code for that processor. The
generated code includes processor-specific implementations for sum, sub, mult,

45-2

Target Function Library (TFL)

div, and various functions, such as tan or abs, instead of the default ANSI
C instructions and functions. The optimized code enables your embedded
application to run more efficiently and quickly, and in many cases, reduces
the size of the code. For more information about target function libraries,
refer to “Introduction to Target Function Libraries” on page 31-2 in the
Embedded Coder documentation.

For a list of supported TFLs, see “Reviewing Target Function Library
Operators and Functions” on page 45-8

Code Generation Using the Target Function Library
The build process begins by converting your model and its configuration set to
an intermediate form that reflects the blocks and configurations in the model.
Then the code generation phase starts.

During code generation for your model, the following process occurs:

1 Code generation encounters a call site for a function or arithmetic operator
and creates and partially populates a target function library entry object.

2 The entry object queries the target function library database for an
equivalent math function or operator. The information provided by the code
generation process for the entry object includes the function or operator
key, and the conceptual argument list.

3 The code generation process passes the target function library entry object
to the target function library.

4 If there is a matching table entry in the target function library, the query
returns a fully-populated target function library entry to the call site,
including the implementation function name, argument list, and build
information

5 The code generation process uses the returned information to generate code.

Within the target function library that you select for your model, the software
searches the tables that comprise the library. The search occurs in the order
in which the tables appear in either the Target Function Library Viewer or
the Target function library tool tip. For each table searched, if the search
finds multiple matches for a target function library entry object, priority

45-3

45 Processor-Specific Optimizations

level determines the match to return. The search returns the higher-priority
(lower-numbered) entry.

For more information about target function libraries in the build process,
refer to “Introduction to Target Function Libraries” on page 31-2 in the
Embedded Coder documentation.

Using a Processor-Specific Target Function Library to
Optimize Code
As a best practice, you should select the appropriate target function library
for your processor after you verify the ANSI C implementation of your project.

Perform the following steps to select the target function library for your
processor:

1 Select Simulation > Configuration Parameters from the model menu
bar. The Configuration Parameters dialog box for your model opens.

2 On the Select tree in the Configuration Parameters dialog box, choose
Code Generation.

3 Use Browse to select idelink_ert.tlc as the System target file.

4 On the Select tree, choose Interface.

5 On the Target function library list, select the processor family that
matches your processor. Then, click OK to save your changes and close
the dialog box.

With the target function library selected, your generated code uses the specific
functions in the library for your processor.

To stop using a processor-specific target function library, open the Interface
pane in the model configuration parameters. Then, select the C89/C90
(ANSI) library from the Target function library list.

45-4

Target Function Library (TFL)

Process of Determining Optimization Effects Using
Real-Time Profiling Capability
You can use the real-time profiling capability to examine the results of
applying the processor-specific library functions and operators to your
generated code. After you select a processor-specific target function library,
use the real-time execution profiling capability to examine the change in
program execution time.

Use the following process to evaluate the effects of applying a processor-specific
target function library when you generate code:

1 Enable real-time profiling in your model. Refer to “Execution Profiling” on
page 44-14.

2 Generate code for your project using the default target function library
C89/C90 ANSI.

3 Profile the code, and save the report.

4 Rebuild your project using a processor-specific target function library
instead of the C89/C90 ANSI library.

5 Profile the code, and save the second report.

6 Compare the profile report from running your application with the
processor-specific library selected to the profile results with the ANSI
library selected in the first report.

For a demonstration of verifying the code optimization, search the product
help for the "Optimizing Embedded Code via Target Function Library" and
select the demo that matches your IDE.

Reviewing Processor-Specific Target Function Library
Changes in Generated Code
Use one of the following techniques or tools to see the target function library
elements where they appear in the generated code:

• “Reviewing Code Manually” on page 45-6.

45-5

45 Processor-Specific Optimizations

• “Using Model-to-Code Tracing” on page 45-6 to navigate from blocks in
your model to the code generated from the block.

• “Using a File Differencing Scheme” on page 45-7 to compare projects that
you generate before and after you select a processor-specific target function
library.

Reviewing Code Manually
To see where the generated code uses target function library replacements,
review the file modelname.c . Look for code similar to the following examples.

For example, with CCS:

codeopt_tfl_B.Sum6[j] = ldexp((real_T)Sum[j], -11) + ldexp((real_T)

c62x_mul_s32_s32_s32_sr_sat(codeopt_tfl_P.Gain5_Gain, UnitDelay[j], 6),

For example, with MULTI:

j = mul_s32_s32_s32_sr6_sat(codeopt_tfl_P.Gain1_Gain, rtb_SineWave[i]);

tmp_0 = mul_s32_s32_s32_sr6_sat(codeopt_tfl_P.Gain2_Gain, rtb_UnitDelay[i]);

tmp_1 = j + tmp_0;

For example, with VisualDSP++:

codeopt_tfl_B.UnitDelay3[j] = sharc_mul_s32_s32_s32_sr_sat

(codeopt_tfl_P.Gain4_Gain, codeopt_tfl_B.UnitDelay2[j], 6);

The functions shown are the multiply implementation functions registered
in the target function library. In these examples, the function performs an
optimized multiplication operation. Similar functions appear for add, and
sub. For more information about the arguments in the function, refer to
“Introduction to Target Function Libraries” on page 31-2 in the online Help
system.

Using Model-to-Code Tracing
You can use the model-to-code report options in the configuration parameters
to trace the code generated from any block with target function library. After
you create your model and select a target function library, follow these steps
to use the report options to trace the generated code:

45-6

Target Function Library (TFL)

1 Open the model configuration parameters.

2 Select Report from the Select tree.

3 In the Report pane, select Create code generation report and
Model-to-code, and then save your changes.

4 Press Ctrl+B to generate code from your model.

The Code Generation Report window opens on your desktop. For more
information about the report, refer to the Chapter 20, “Generating Reports
for Code Reviews and Traceability Analysis” topic in the Embedded Coder
documentation.

5 Use model-to-code highlighting to trace the code generated for each block
with target function library applied:

• Right-click on a block in your model and select Code
Generation > Navigate to code from the context menu.

• Select Navigate-to-code to highlight the code generated from the block
in the report window.

Inspect the code to see the target function operator in the generated code.
For more information, refer to “Tracing Code Generated Using Your Target
Function Library” on page 31-143 in the Embedded Coder documentation
in the online Help system.

If a target function library replacement did not occur as you expected, use the
techniques described in “Examining and Validating Function Replacement
Tables” on page 31-139 in the Embedded Coder documentation to help you
determine why the build process did not use the function or operator.

Using a File Differencing Scheme
You can also review the target function library induced changes in your
project by comparing projects that you generate both with and without the
processor-specific target function library.

1 Generate your project with the default C89/C90 ANSI target function
library. Use Create Project, Archive Library, or Build for the Build
action in the IDE Link options.

45-7

45 Processor-Specific Optimizations

2 Save the project to a new name—newproject1.

3 Go back to the configuration parameters for your model, and select a target
function library appropriate for your processor.

4 Regenerate your project.

5 Save the project with a new name—newproject2

6 Compare the contents of the modelname.c files from newproject1 and
newproject2. The differences between the files show the target function
library induced code changes.

Reviewing Target Function Library Operators and
Functions
Embedded Coder software provides the Target Function Library viewer to
enable you to review the arithmetic operators and functions registered in
target function library tables.

To open the viewer, enter the following command at the MATLAB prompt.

RTW.viewTfl

For details about using the target function library viewer, refer to “Selecting
and Viewing Target Function Libraries” in the online Help system.

Creating Your Own Target Function Library
For details about creating your own library, refer to the following sections in
your Embedded Coder documentation:

• “Introduction to Target Function Libraries” on page 31-2

• “Creating Function Replacement Tables” on page 31-16

• “Examining and Validating Function Replacement Tables” on page 31-139

45-8

46

Working with Altium
TASKING IDE

• “Getting Started” on page 46-2

• “Components” on page 46-27

• “Verification” on page 46-50

• “Optimization” on page 46-69

• “Tutorials” on page 46-75

• “Code Generation Pane — IDE Link” on page 46-83

• “Limitations and Tips” on page 46-95

Note Support for the Altium TASKING integrated development environment
will be removed in a future release of your MathWorks software.

Note The information in this chapter describes Embedded Coder features
and user interfaces that are unique to Altium TASKING. Do not generalize
this information to Embedded Coder support for other IDEs.

46 Working with Altium TASKING IDE

Getting Started

In this section...

“Overview” on page 46-2

“Supported Altium TASKING Toolsets” on page 46-6

“Using This Guide” on page 46-7

“Setting Target Preferences for Altium TASKING” on page 46-8

“Working with Configuration Sets” on page 46-13

“Accessing Utilities for TASKING” on page 46-20

“Option Sets” on page 46-24

Overview

• “Introduction” on page 46-2

• “Project Generator” on page 46-3

• “Automation Interface” on page 46-4

• “Verification” on page 46-4

• “Optimization” on page 46-5

Introduction

Note Support for the Altium TASKING integrated development environment
will be removed in a future release of your MathWorks software.

Embedded Coder software lets you build, test, and verify automatically
generated code using the MATLAB, Simulink, and Simulink Coder
products, and the Altium TASKING integrated development environment.
Embedded Coder software makes it easy to verify code executing within
the TASKING environment using a test harness model in Simulink. This
processor-in-the-loop testing environment uses code automatically generated
from Simulink models by the Embedded Coder product. A wide range of DSPs

46-2

Getting Started

and 8-, 16- and 32-bit microprocessors and microcontrollers are supported
including devices from the Infineon, Renesas®, and Freescale product families.
Embedded Coder software provides customizable templates for configuring
hardware variants, automating MISRA C code checking, and controlling the
build process.

With Embedded Coder software, you can use MATLAB and Simulink to
interactively analyze, profile and debug target-specific execution behavior
within TASKING software. In this way, Embedded Coder software automates
deployment of the complete embedded software application and makes it easy
for you to assess possible differences between the results from the model
simulation and the results from code running on the target.

Embedded Coder software consists of a Project Generator component, an
Automation Interface component, and features for code verification and
optimization. The following sections summarize these components and
features.

Project Generator

• Automated project-based build process

Automatically create and build projects for code generated by the Simulink
Coder or Embedded Coder products.

• Highly customizable code generation

Use System Target Files (STF) to generate target-specific and optimized
code.

• Highly customizable build process

Support for multiple TASKING Toolsets provides a route to a large number
of different target hardware platforms. Further customization is possible
by using custom project templates, giving access to all options supported
by the TASKING Toolset.

• Automated download and debugging

Rapidly and effortlessly debug generated code in the CrossView Pro
debugger, using either the instruction set simulator or real hardware.

46-3

46 Working with Altium TASKING IDE

Automation Interface

• MATLAB API for TASKING EDE (IDE)

Automate complex tasks in the TASKING EDE by writing MATLAB scripts
to communicate with the EDE.

For example, you could

- Automate project creation, including adding source files, include paths,
and preprocessor defines.

- Configure batch building of projects.

- Launch a debugging session.

- Execute CodeWright API Library commands.

• MATLAB API for TASKING CrossView Pro (Debugger)

Automate complex tasks in the TASKING CrossView Pro debugger
by writing MATLAB scripts to communicate with the CrossView Pro
application, or debug and analyze interactively in a live MATLAB session.

For example, you could

- Automate debugging by executing commands from the powerful
CrossView Pro command language.

- Exchange data between MATLAB and the target running in the
CrossView Pro application.

- Set breakpoints, step through code, set parameters and retrieve profiling
reports

Verification

• Processor-in-the-loop (PIL) simulation

Use simulation techniques to verify generated code running in an
instruction set simulator or real target environment.

• C Code Coverage

Use C code instruction coverage metrics from the CrossView Pro instruction
set simulator during PIL simulation to refine test cases.

46-4

Getting Started

• Execution Profiling

Use execution profiling metrics from the CrossView Pro instruction set
simulator during PIL simulation to establish the timing requirements of
your algorithm.

• Stack Profiling

Use stack profiling metrics for PIL simulation or real-time applications to
verify the amount of memory allocated for stack usage is sufficient.

• Bi-Directional Traceability Between Model and Code

Navigate to the generated code for a given Simulink block or, vice versa, to
the Simulink block corresponding to a section of generated code.

• MISRA Checker

Use the TASKING compiler generated MISRA report to check for an
appropriate level of MISRA compliance for your application.

Optimization

• Compiler / Linker Optimization Settings

Use Template Projects to fully control compiler and linker optimization
settings.

• Target Memory Placement / Mapping

Use Template Projects to fully configure the target memory map.

• Execution Profiling

Use execution profiling metrics from the CrossView Pro instruction set
simulator during PIL simulation to guide optimization of your algorithms.

• Stack Profiling

Use stack profiling metrics for PIL simulation or real-time applications to
optimize the amount of stack memory required for an application.

46-5

46 Working with Altium TASKING IDE

Supported Altium TASKING Toolsets

Supported Versions
Embedded Coder software includes at least one reference template project
for each supported toolset. The reference projects were created for specific
versions of each Altium TASKING toolset and were used by MathWorks for
qualification testing. The supported toolset versions are:

• Infineon® TriCore®: TASKING VX-toolset for TriCore v2.5 r2

See also “Regenerate Template Projects to Use Selected Toolset Versions”
on page 46-7.

• Infineon C166: TASKING Tools for C166/ST10 v8.7 r1

• Renesas M16C: TASKING Tools for M16C v3.1 r1 patch 2

• ARM: TASKING C Compiler for ARM v2.0 r2

Simulator only, see “On-Chip Debugging/On-Chip PIL Not Supported on
ARM Hardware” on page 46-98.

• Freescale DSP563xx: TASKING Tools for DSP563xx v3.5 r3 patch 2

• 8051: TASKING Tools for 8051 v7.2 r1

The Renesas R8C family is supported by the Renesas M16C TASKING
Toolset.

The Freescale DSP566xx family is supported by the Freescale DSP563xx
Toolset.

Support for Other Versions
For minor release increments it may be sufficient to create new default
template projects. To do this,

1 Specify the location of your TASKING toolset in the Target Preferences (see
“Setting Target Preferences for Altium TASKING” on page 46-8).

2 Close all projects/project spaces in the EDE, and close the EDE.

3 Move to a clean work folder or clean out the existing one.

46-6

Getting Started

4 Run the tasking_generate_templates command. You must specify your
configuration description string, e.g.:

tasking_generate_templates('C166', true)

or

tasking_generate_templates('TriCore', true)

Note Make sure you check the Product Support webpage for the latest
information about toolchains qualified with the product. You may be able to
obtain patches in order to use other toolsets.

Regenerate Template Projects to Use Selected Toolset Versions. The
following toolsets should work after regenerating the template projects:

• TASKING VX-toolset for TriCore and PCP v2.5 r2

• As TASKING VX-toolset for TriCore v2.5 r2 but without On-Chip Debug
Support (OCDS)

• "TASKING C/C++ Compiler for ARM v2.0 r2"

Some TASKING packages do not include On-Chip Debug Support (OCDS).
For example, "TASKING C/C++, CrossView Pro SIM" does not include OCDS
support, but "TASKING VX-Toolset" does. To use a package without OCDS
support you must regenerate the template projects as previously described.

Using This Guide
To get started with Embedded Coder software:

1 Follow the instructions in “Setting Target Preferences for Altium
TASKING” on page 46-8.

2 After you set target preferences, follow the instructions in “Working with
Configuration Sets” on page 46-13 to see how to set up configurations using
an example model.

3 Try the demos to gain experience using Embedded Coder software.

46-7

46 Working with Altium TASKING IDE

4 See “Accessing Utilities for TASKING” on page 46-20 for a quick guide to
the functionality available in the menus, with links to more information.

See the following chapters to learn about Embedded Coder software features:

• “Components” on page 46-27 explains the Embedded Coder software
components: the Project Generator build process, and the Automation
Interface objects.

• “Verification” on page 46-50 describes how to use PIL simulation and other
product features for verification.

• “Optimization” on page 46-69 describes how to use product features for
optimization.

• “Tutorials” on page 46-75 contains instructions to show you how to create
new configurations and template projects, how to use Embedded Coder
software with existing models, and how to use different build actions.

Setting Target Preferences for Altium TASKING
This information only applies to using Embedded Coder with the Altium
TASKING IDE. To set target preferences when you are using other IDEs, see
“Target Preferences” on page 43-4.

Procedure
You must configure your target preferences to use Embedded Coder software.

Note Target preferences are persistent across MATLAB sessions. If you
have used a previous version of Embedded Coder software, click Reset to
Default before setting up your new preferences, to ensure you use the latest
values for all fields.

1 Enter taskingutils in the Command Window.

The IDE Link Utilities for Use with TASKING dialog box appears.

2 Select Target Preferences from the list in the dialog box, and click OK.

The Target Preferences Configuration Selection dialog box appears.

46-8

Getting Started

3 Select or create a configuration:

• Choose a predefined configuration from the list that matches your target.

• Alternatively, select Create new configuration to create a new
configuration, and click OK. For new configurations, see the tutorial
section “Creating a New Configuration” on page 46-80.

The Target Preferences dialog box appears. You can use this dialog box
to configure the location of your Altium TASKING toolchain executable
and other files.

4 Click the plus to expand Configuration Options. Similarly, expand
CrossView_Pro_Configuration and EDE_Configuration. This example is
set up for the Infineon C166 Simulator configuration.

5 Replace the string <ENTER_TASKING_PATH> to complete the path to the
CrossView_Pro_Executable, the DOL_File, and the EDE_Executable. See
the next section, “Target Preference Fields” on page 46-10, for details on
each field. The following example is set up for the Infineon TriCore
Simulator configuration.

46-9

46 Working with Altium TASKING IDE

If you have multiple configurations, you have to set them up in your target
preferences only once, and then it is simple to switch between them. See
the tutorial example “Working with Configuration Sets” on page 46-13.

6 Click OK to dismiss the IDE Link Target Preferences dialog box.

The next section explains each target preference field.

Target Preference Fields
Enter tasking_edit_prefs in the Command Window.

• Configuration

Select a configuration from the drop-down list. There are preconfigured
configurations for

- C166

- TriCore

- M16C

- ARM

- DSP563xx

- 8051

If you have multiple configurations, you have to set them up in your target
preferences only once, and then it is simple to switch between them. You
can switch between them using this target preference field.

Select a free configuration number to set up a new configuration from
scratch. See “Creating a New Configuration” on page 46-80.

• Configuration_Description

The title of the configuration. After it is created, this title is the name that
appears in the Target Preferences Configuration drop-down list in the
Configuration Parameters dialog box. Edit this field to change the name
of the configuration. These names are predefined for the preconfigured
configurations. For a new configuration enter a descriptive name (do not
include spaces).

• CrossView_Pro_Executable

46-10

Getting Started

Enter the full path to your TASKING CrossView Pro installation to replace
the string <ENTER_TASKING_PATH>. For example, for Configuration_1 for
Infineon C166 Simulator:

D:\Applications\TASKING\c166\bin\xfw166.exe

• Initialization

This setting determines what the CrossView Pro Debugger executes when
it first starts. There are three options.

- Use .st Initialization_File This option is the default setting.
“.st” files are in an internal file format used by MathWorks to provide
initialization options to CrossView Pro software during debugger
start up. For example, a .st file may specify a CrossView Pro
configuration file (.cfg) and target type for CrossView Pro to use. Each
of the option sets shipped with Embedded Coder software specifies a
corresponding .st file. For example, the c166_sim option set specifies
the c166_default.st file, which includes basic initialization commands
for the C166 CrossView Pro Simulator. See “Option Sets” on page 46-24
for related information. To customize your CrossView Pro configuration,
you should use one of the .ini initialization options.

- Use .ini Initialization_File Use this option if you have a
custom .ini initialization file. The file should be a valid CrossView Pro
initialization file for your custom configuration. Refer to your CrossView
Pro application documentation for details.

- Use CrossView Pro Default .ini File Use this option if you want
to run CrossView Pro Default .ini file when launching the CrossView
Pro Debugger. When launching CrossView Pro software you may be
prompted to make configuration selections. Refer to your CrossView Pro
application documentation to find the location of this .ini file, and for
details of CrossView Pro initialization files.

• Initialization_File

Full path of the initialization file corresponding to the Initialization
field.

• DOL_File

The full path to the TASKING EDE DOL file. For example, the
Infineon_C166_Simulator Configuration has the <ENTER_TASKING

46-11

46 Working with Altium TASKING IDE

PATH>_\etc\c166.dol as the dol file. You need to replace
<ENTER_TASKING_PATH> with your real TASKING installation path.

• EDE_Executable

Enter the full path to your TASKING EDE installation to replace the
string <ENTER_TASKING_PATH>. For example, for Configuration_1 for
Infineon C166 Simulator, enter

D:\Applications\TASKING\c166\bin\ede.exe

• Target_Project_Space

When you build models, new projects in the TASKING EDE will be created.
These projects belong to the project space defined in this entry. The default
setting is $(DEFAULT_LOCATION)\projspace.psp. The code generation
process expands the $(DEFAULT_LOCATION) token based on the build folder
of the model, the model name, and model configuration settings, including
the name of the template application project. You should avoid changing
this default setting.

• Template_Application_Project

When you build a Simulink model with Embedded Coder software, the
generated projects for your application in the TASKING EDE have the
same project settings as the template application project. This template
project provides a centric place to manage the project options (e.g., compiler
settings, linker settings, etc.) your Simulink models use during code
generation. You can modify the project settings of the default template
projects or create new ones. See “Accessing Utilities for TASKING” on page
46-20 for information on creating or opening template projects, and see
“Tutorial: Creating New Template Projects” on page 46-76.

• Template_Library_Project

The same as the Template_Application_Project field, but this is
applicable for Library projects.

• Use_State_File

Opens the TASKING EDE in its last saved state. For more information,
refer to your TASKING EDE documentation.

46-12

Getting Started

Working with Configuration Sets

• “Adding the Embedded Coder Configuration Set Component” on page 46-13

• “Configuration Set Options” on page 46-13

• “Using Configuration Sets to Specify Your Target” on page 46-16

• “Setting Build Action” on page 46-18

Adding the Embedded Coder Configuration Set Component
To add Embedded Coder configuration options to a model, select the menu
item Tools > IDE Link > Add IDE Link Configuration to Model.

Similarly, you can use the menu item Remove IDE Link Configuration
from Model to remove the configuration set component.

The following sections explain how to use the configuration set component.

See also “Setting Up Configuration Sets” in the Simulink documentation
for more information.

Configuration Set Options
To see Embedded Coder configuration options, navigate to the configuration
parameters by any of the following paths:

• Simulation > Configuration Parameters in a model

• Tools > IDE Link > Options in a model

• View > Model Explorer in a model

Click IDE Link to see the following options.

The following options are available under Build Configuration:

• Build action

Set what action to take after the Simulink Coder build process. You can
create application and library projects in the Altium TASKING EDE and

46-13

46 Working with Altium TASKING IDE

then stop, or you can also choose to build, execute, or debug. See “Setting
Build Action” on page 46-18 for more details.

• Target Preferences Configuration

Select target preference configurations. The names correspond to the
Configuration Description for each configuration in the Target
Preferences dialog box. Click Edit Configuration to open the Target
Preferences dialog box for the currently selected configuration. See “Using
Configuration Sets to Specify Your Target” on page 46-16.

46-14

Getting Started

• Add build subdirectory suffix

Select the check box to specify a model-specific suffix to be added the regular
Simulink Coder build folder suffix. This setting is useful to avoid shared
utility function code generation errors which occur because of conflicts over
Simulink Coder utility functions shared between different models.

Clear this check box to use the default Simulink Coder build folder suffix.
Not using an additional suffix may result in rebuilding shared libraries
unnecessarily. See “Shared Libraries” on page 46-31 and particularly
“Supporting Multiple Shared Utility Function Locations: Build Folder
Suffix” on page 46-32 for details.

• Build subdirectory suffix

Enter in the edit box a model-specific suffix to be added the regular
Simulink Coder build folder suffix.

The following options are available under Export Handles:

• Export EDE handle to MATLAB base workspace

Select this check box to export the EDE object handle to the workspace.

• EDE handle name

Enter a MATLAB variable name for the exported handle.

• Export CrossView Pro handle to MATLAB base workspace

Select this check box to export the CrossView Pro object handle to the
workspace.

• CrossView Pro handle name

Enter a MATLAB variable name for the exported handle.

See “Automation Interface” on page 46-37 for information on using these
object handles.

The following option is available under Processor-in-the-Loop (PIL)
Verification:

• Configure model to build PIL algorithm object code

Select this box to build PIL algorithm code.

46-15

46 Working with Altium TASKING IDE

Using Configuration Sets to Specify Your Target
Follow the steps in this example to see where to find and change Embedded
Coder software settings. These steps are described to help you find the
settings you need to get started using the demo models. To use the demos,
you need to specify your target by working with configuration sets.

This example describes how to use Embedded Coder software to build a
project from a demo model using two different toolchains. The instructions
refer to C166 and TriCore® TASKING toolchains; adapt the instructions to
your toolchain as appropriate.

Finding the Embedded Coder Software Settings.

1 Open the model tasking_demo_enginewc.

2 Double-click the Active Configuration Set block to open the Model
Explorer (or select View > Model Explorer).

Under TASKING_demo_enginewc is a list of configuration sets you can
review. The currently selected set is labeled (Active).

Reviewing and Changing the Configuration Settings. Inspect the active
configuration set.

1 The default active configuration set for this model is C166. If you want to
use a different target, right-click the configuration set that matches your
target, and select Activate.

2 Click IDE Link to see the configuration settings.

3 The Target Preferences Configuration drop-down list shows all
available target preference configurations. After you have set up target
preferences for particular configurations, you can switch between them
here (or in the Target Preferences dialog box).

a Click Edit Configuration to inspect your current target preferences.

b Before building, you must replace the string <ENTER TASKING
PATH> to set up the correct paths to the target preferences
CrossView_Pro_Executable, the DOL_File, and the EDE_Executable.
See “Setting Target Preferences for Altium TASKING” on page 46-8.

46-16

Getting Started

c Click OK to dismiss the Target Preferences dialog box.

In the Embedded Coder demos, when you activate a configuration
(e.g., C166), the appropriate Target Preferences Configuration is
automatically selected. You may want to select a different target preference
configuration description, e.g., if you have set up a custom configuration
(such as C167_user_hardware). For an example, see “Creating a New
Configuration” on page 46-80.

See “Adding the Embedded Coder Configuration Set Component” on page
46-13 for information on other Embedded Coder software settings in the
Configuration Parameters.

4 Click Code Generation to see the selected system target file.

Note You can use a configuration set specifying any system target file
with Embedded Coder software.

5 Click Hardware Implementation to see the C166 settings. If you
are using a different target, make sure the settings match your device.
Select from the Device type list. There are custom configurations and
preconfigured settings that include the following processors:

• Infineon C16x, XC16x

• Infineon TriCore

• ARM 7/8/9

• Renesas M16C

• 8051 Compatible

• Freescale DSP563xx (16-bit mode)

Close the Model Explorer.

6 In the model tasking_demo_enginewc, right-click the t_eng_speed
subsystem, and select Code Generation > Build Subsystem. Click
Build in the dialog box to continue.

46-17

46 Working with Altium TASKING IDE

Watch the output messages in the MATLAB Command Window as code is
generated, your TASKING toolchain EDE is launched, and a new project
created.

Switching Target Preference Configurations. If you have multiple
toolchains, you only have to set up your target preferences once. After this
initial setup, it is simple to switch between different configurations. For
example, to switch configurations from C166 to TriCore targets:

1 In the model tasking_demo_enginewc, double-click the Active
Configuration Set block to open the Model Explorer.

2 Right-click TriCore and select Activate. Close the Model Explorer.

3 To rebuild the subsystem with the new settings, right-click the t_eng_speed
subsystem, and select Code Generation > Build Subsystem.

Watch the output in the MATLAB Command Window as code is generated,
the TASKING C166 EDE is closed, the TASKING TriCore EDE is launched,
and the new project created.

You can follow similar steps to specify your target in the other demo models.

To switch between simulator and hardware implementations for the same
target configuration, you can use option sets. See “Option Sets” on page 46-24.

The next section describes using the build action setting in this example.

Setting Build Action
In this example, the model tasking_demo_enginewc is set up so the project is
created but not built in the TASKING EDE.

To view this setting:

1 In the model tasking_demo_enginewc, select
Simulation > Configuration Parameters.

2 Click IDE Link to see the Build Configuration parameters.

3 Look at the Build Action drop-down list.

46-18

Getting Started

Using this drop-down list, you can set what action to take after the
Simulink Coder build process completes. You can create application and
library projects in the TASKING EDE and then stop, or you can also choose
to build, execute, or debug.

If you choose to build, execute, or debug, the CrossView Pro application
will be launched.

Note The first time you build this model it will take a few minutes to
compile the required Simulink Coder floating point library. This library is
not rebuilt on subsequent builds unless necessary.

You can use the Build Action setting to do the following:

• Create Application Project

Generates code for the model or subsystem, creates a TASKING
application project for the selected TASKING configuration, connects to
the TASKING EDE, and opens the application project (in addition to the
required Simulink Coder and DSP System Toolbox Library projects, if
required) in the TASKING EDE. This option does not build or execute
the application.

An EDE_Obj object handle is exported to the MATLAB workspace (if
the option Export EDE handle to MATLAB base workspace is
selected). This object allows you to interact with the TASKING EDE
from MATLAB. For more information, see the section on using object
handles, “Automation Interface” on page 46-37.

Note To manually build the generated project in the TASKING EDE,
right-click on the application project (starts with the same name as the
model name), and select Build.

• Create Library Project

Performs the same actions as Create Application Project, but this
option archives the generated code into a library in the TASKING EDE.
No main.c file is generated.

46-19

46 Working with Altium TASKING IDE

• Create and Build Application Project

Performs the same actions as Create Application Project, but also
instructs theTASKING EDE to build the application project.

Note To manually debug the executable from the application project,
click the Debug Application icon in the TASKING EDE.

• Create and Build Library Project

Performs the same actions as Create Library Project, but also
instructs the TASKING EDE to build the Library project.

• Create, Build and Execute Application Project

Performs the same actions as Create and Build Application Project
and also downloads the executable file to your CrossView Target and
runs the executable. No debugging information is downloaded into the
target with this option.

A CrossView Pro object handle is exported to the MATLAB workspace
(if the option Export CrossView Pro handle to MATLAB base
workspace is selected). This object allows you to interact with the
CrossView Pro debugger from MATLAB. For more information, see the
section on using object handles, “Automation Interface” on page 46-37.

• Create, Build and Debug Application Project

Performs the same actions as Create, Build and Execute
Application Project but also downloads debugging information to the
target. This option behaves the same way as the Debug Application
icon in the TASKING EDE.

Accessing Utilities for TASKING

• “IDE Link Utilities for Use with TASKING dialog” on page 46-21

• “Tools Menu Items” on page 46-23

46-20

Getting Started

IDE Link Utilities for Use with TASKING dialog
Open the IDE Link Utilities for Use with TASKING dialog box by entering
taskingutils in the Command Window or double-clicking Launch TASKING
Utilities in the Simulink block library.

You see the following options:.

• Target Preferences

Opens the Target Preferences Configuration Selection dialog box, and after
you choose a configuration to match your target (e.g., TriCore), you can
edit the Target Preferences dialog box. In this dialog box, you can modify
your TASKING preferences configurations. You can also open this dialog
box from the MATLAB prompt by typing tasking_edit_prefs.

You must set up your target preferences before you can use Embedded
Coder software. See “Setting Target Preferences for Altium TASKING”
on page 46-8.

• Select Preconfigured Target Preference Settings

Opens the Target Preferences Configuration Selection dialog box. Choose
a configuration to match your target and click OK. Then you can select
a preconfigured option set. Your target preferences are automatically
updated according to the option set you select, for example, specifying
either hardware or simulator settings. See “Option Sets” on page 46-24.

• Launch and Test Communication with TASKING EDE

Opens the Target Preferences Configuration Selection dialog box. Choose a
configuration and click OK, and Embedded Coder software tests whether
MATLAB can communicate successfully with the Altium TASKING EDE
for the selected configuration. You see messages at the command line to
confirm whether communication is successful.

46-21

46 Working with Altium TASKING IDE

• Create a New Model (configured for use with TASKING)

Creates a new untitled Simulink model, with Embedded Coder
configuration set options already added. You can also configure an existing
model by selecting the Simulink model menu item Tools > Utilities for
Use with TASKING(R) IDE > Add IDE Link Configuration to Model.

• View, Modify, and Copy Configuration Sets via Model Explorer

Opens the Model Explorer where you can edit all configuration sets
available for each currently open model.

• Create New Template Projects

The Embedded Coder product ships with preconfigured application and
library template projects for the default configurations in the Target
Preferences dialog box. You might, however, create your own template
projects (using preconfigured options as a starting point), and use them
with any configuration. See “Tutorial: Creating New Template Projects” on
page 46-76 for an example.

This option opens the Target Preferences Configuration Selection dialog
box. Choose a configuration and click OK, and Embedded Coder software
launches the appropriate TASKING EDE and creates new template
projects for a specific Tasking Configuration. When you are prompted,
choose a project folder, a template name, and an option set. See “Option
Sets” on page 46-24 for more details. app_template_name.pjt and
lib_template_name.pjt are created for the configuration you selected.

• Open Existing Template Projects

Opens existing application and library template projects in the TASKING
EDE for the selected Tasking Configuration. You can modify these
options; however, it is preferable to do this by first creating new template
projects, which avoids overwriting the default template projects. If
you modify the default template projects, you can use the following
function to recreate the defaults: tasking_generate_templates.
You must specify your configuration description string, e.g.:
tasking_generate_templates('C166', true).

46-22

Getting Started

Note Opening or editing template projects causes the regeneration of
application and library projects. When making any changes to template
projects, it is important to make sure your changes are saved. To do this,
remove the project from the project space; otherwise the changes may not
be applied immediately. To remove a current project from the project space,
right-click on it and choose Remove from Project Space.

• Demos

Opens the Embedded Coder Demos page in the Help browser.

Tools Menu Items
In a Simulink model, you can access Embedded Coder menu items in the
Tools menu. Select Tools > Utilities for Use with TASKING(R) IDE
to see the following submenu items.

• Target Preferences

As it does in the Startmenu, this menu choice opens the Target Preferences
Configuration Selection dialog box. After you choose a configuration, you
can edit the Target Preferences Setup dialog box. You must set up your
target preferences before you can use Embedded Coder software. See
“Setting Target Preferences for Altium TASKING” on page 46-8.

• Add IDE Link Configuration to Model

Adds Embedded Coder configuration options to the model configuration
parameters.

To see exactly which configuration parameter settings are changed, refer to
tasking_addto_configset.m. Enter edit tasking_addto_configset.

• Remove IDE Link Configuration from Model

Removes Embedded Coder configuration options from the model’s
configuration parameters.

• Options

Opens the Configuration Parameters dialog box to show Embedded Coder
software options. See “Configuration Set Options” on page 46-13.

46-23

46 Working with Altium TASKING IDE

Option Sets

• “What Are Option Sets?” on page 46-24

• “Supported DAS Software” on page 46-26

What Are Option Sets?
Option sets are preconfigured settings to specify the target configuration
for the Altium TASKING tools. For example, after you set up your target
preferences for a TriCore configuration, you can use option sets to switch
between using an instruction set simulator configuration, two hardware board
configurations, or a simulator with some MISRA C rule checking.

You can use option sets either:

• To switch between default target configurations, or

• When creating new template projects, to set up an initial configuration
that you can choose to modify later

See “Tutorial: Using Option Sets” on page 46-75 for instructions.

The following preconfigured option sets are available.

A notation of “*” indicates the default in the Target Preferences. The
processor type for the default configurations below is defined by your
TASKING toolchain.

• Infineon TriCore:

- * tricore_sim: Default instruction set simulator configuration.

- tricore_sim_misra: As tricore_sim, but with some example MISRA
C rule checking enabled. See also the TriCore MISRA C demo example,
tasking_demo_misra.m, with instructions under Embedded Coder
Demos.

- tricore_1796b: Infineon TriCore 1796b hardware configuration.

- tricore_1766b: Infineon TriCore 1766b hardware configuration.

• Infineon C166:

46-24

Getting Started

- c166_sim : Default instruction set simulator configuration.

- c167cr : Phytec kitCON-C167CR serial connection to hardware (_hw)
and simulator (_sim) configurations.

- *c167cs : Phytec phyCORE-C167CS serial connection to hardware (_hw)
and simulator (_sim*) configurations.

- st10f252 : STMicrolectronics MB449 ST10F25x EVA Board serial
connection to hardware (_hw) and simulator (_sim) configurations.

- st10f269 : Phytec phyCORE-ST10F269 serial connection to hardware
(_hw) and simulator (_sim) configurations.

- xc164cm : Infineon XC164CM U CAN start kit USB connection to
hardware (_hw_u_can) and simulator (_sim_u_can) configurations. See
“Supported DAS Software” on page 46-26.

- xc167ci: On-board parallel port wiggler connection to the Infineon
XC167CI Starter Kit hardware (_hw) and simulator (_sim) configurations.

xc167ci_hw_usb : USB wiggler connection to the XC167CI

Note For xc167ci targets, you must change jumper 501 when switching
between USB wiggler and on-board parallel port wiggler. See your board
manual for details.

• Renesas M16C

- * m16c_sim: Default instruction set simulator configuration.

- r8ctiny_sim: Renesas R8C Tiny instruction set simulator configuration.

• ARM:

- * arm_sim: Default instruction set simulator configuration.

- arm_sim_big_endian: As arm_sim, but in big-endian mode.

• Freescale DSP563xx:

- * dsp563xx_sim: DSP563xx Family, 16-bit memory model, instruction
set simulator configuration.

46-25

46 Working with Altium TASKING IDE

- dsp566xx_sim: DSP566xx Family instruction set simulator
configuration.

• 8051:

- * i8051_sim: Default, large memory model, no language extensions,
floating point, instruction set simulator configuration.

Supported DAS Software
For the XC164CM and certain TriCore hardware like TC1766 and TC1796,
you need to download and install the supported DAS software. If your
installation of the TASKING toolset did not come with DAS, then you can
download the latest DAS software from this URL:

http://www.infineon.com/das.

At the time of writing, the latest tested DAS versions are:

• DAS Edition v2.6.2

• JTAG JDRV LPT Server v2.4.0

Make sure you restart your computer as instructed after DAS installation.

46-26

http://www.infineon.com/das

Components

Components

In this section...

“Project Generator” on page 46-27

“Automation Interface” on page 46-37

Project Generator

• “Overview of the Project Generator Component” on page 46-27

• “Project-Based Build Process” on page 46-29

• “Template Projects” on page 46-29

• “Shared Libraries” on page 46-31

• “Build Process — Folder Structure” on page 46-33

Overview of the Project Generator Component
The Embedded Coder Project Generator Component provides a customizable
build process that is designed to work with the highly customizable code
generation process provided by Simulink Coder. See “Project Generator”
on page 46-3 for a summary.

To explain the separation of duties between Simulink Coder and Embedded
Coder, the following sections discuss the terms code generation process and
build process.

Code Generation Process. The code generation process is performed by
the Simulink Coder family of products and is the process of translating a
Simulink model into C code.

Customized code generation, perhaps to create target-specific device drivers
or target-optimized code, is often a key requirement for users who want to
generate code from Simulink models.

Simulink Coder and Embedded Coder provide a variety of mechanisms
for users to customize the code generation process. For example, the
standard code generation process, using the regular system target files

46-27

46 Working with Altium TASKING IDE

(like grt.tlc and ert.tlc) can be customized by making changes to the
model’s configuration parameters. Alternatively, for an even greater level of
customization, including the ability to define custom Simulink Coder options,
you can use a user created system target file.

The demos that come with Embedded Coder make use of the first type of
customization with regular system target files. That is, the standard code
generation process has been tailored for the appropriate target platform
simply by changing the model’s configuration parameters.

For greater flexibility, you should use a custom system target file. For further
details on customizing the code generation process, see the Simulink Coder
and Embedded Coder documentation.

Build Process. The build process is performed by Embedded Coder and is
the process of taking the C code produced by the code generation process and
building (assembling, compiling, and linking) it for the target platform.

A customized build process, perhaps to use optimized compiler and linker
settings, or perhaps to produce a MISRA compliance report, is often a key
requirement for users wishing to build code produced from Simulink models.

Embedded Coder provides access to the full build process customization
capabilities of the TASKING tools by allowing the user to set up the exact
required configuration in TASKING. Embedded Coder then uses this
configuration as a template for the build process.

Memory Placement Example. As an example, to consolidate the
descriptions above of code generation and the build process, consider the
common task of placing program data into a particular area of memory on a
target platform.

Usually, this is achieved by using compiler-specific notations (like #pragmas)
to define special memory sections and to assign data definitions to those
sections. Additionally, a linker command file defines the different available
memory regions on the target, and where in these regions the different
memory sections should be located.

Splitting this task between the processes of code generation and building
could be done as follows:

46-28

Components

1 Customized code generation defines memory sections and assigns data.

2 Customized build process defines memory regions and assigns memory
sections.

Project-Based Build Process
The Embedded Coder build process automatically creates TASKING EDE
projects representing the application and libraries to be built.

A Simulink Coder application usually consists of some application code that
makes references to modules that are part of libraries like the Simulink
Coder library.

Embedded Coder creates separate projects for the main application code
and each required library. The required libraries are included in the main
application projects as subprojects.

Although the build process is project-based, underlying the projects are
“makefiles” that can be used independently of the EDE. For an example of
how to obtain the appropriate make command, see the demo instructions
in tasking_demo_objects .

Target Project Space. Embedded Coder places projects in a project space
known as the target project space. The location of the target project space is
controlled by the Target_Project_Space setting in the Target Preferences,
and usually depends on the $(DEFAULT_LOCATION) token, which is expanded
based on the current folder at the time the build process is invoked, the model
name, and model configuration settings, including the name of the template
application project.

Template Projects
Template projects are regular TASKING EDE projects that are used by
Embedded Coder to allow customization of the build process. Template
projects are tied to particular TASKING Configurations as set up in the
Target Preferences.

There are two types of template projects: application, and library template
projects.

46-29

46 Working with Altium TASKING IDE

The application template project is used as the template for application
projects and the library template project is used as the template for library
projects.

Relocation of Template Projects. During the build process, the template
project is copied to a target project location, and is then populated with the
information relating to how to build the generated code.

Therefore, the project options of the template project become the project
options of the target project, and hence the build process is customized
according to the template project.

On subsequent build processes, Embedded Coder determines whether the
template project has been updated since it was last copied to the target
project location. If it has, then the target project is updated with a new copy
of the template project. Otherwise, the target project is not updated from
the template project.

Note Project options should be updated in the template project and not in
the target project.

How the Build Process Modifies the Relocated Template Project. The
Embedded Coder build process determines if any changes (preprocessor
defines, include paths and source files) to the target project are required to
build the code associated with a particular model, and updates the target
project only if required. Thus, unnecessary project rebuilding is avoided.

Any include paths and preprocessor defines in the template project are always
maintained in the target project. Maintaining this information is useful for
keeping the include path to the compiler’s standard header files, and setting
global defines.

Additionally, the optional startup code file automatically generated by the
EDE is also maintained.

46-30

Components

Note Adding any other source files to your template project is not supported
and will result in errors. Instead, you should add source files to the project
by adding them to the Build Info object by using either the Code Generation
> Custom Code settings in the configuration parameters, the rtwmakecfg.m
mechanism, or by writing your own post code generation command (taking
care not to overwrite any existing commands). See the Simulink Coder
documentation for details.

Shared Libraries
Embedded Coder models that share the same target project space share
required libraries such as the Simulink Coder library. Sharing of libraries
means that a library is only built the first time a model that requires it is built.

The advantages of this shared library approach are

• No unnecessary per-model building of libraries; models with similar library
requirements (e.g., integer code only) can share libraries.

• Libraries are built with the project options specified in the corresponding
template project.

• Multiple sets of libraries, each with custom model, project options, or both
can coexist.

Utility code generation: Shared Location. The shared library approach
uses the Simulink Coder “Utility code generation” feature.

By setting Utility code generation to use a shared location, rather than the
model-specific default, you can ensure that the library projects created have
no dependence on model-specific generated code. This feature is the key to
allowing library projects to be shared between models.

As an example, consider the generated header file, rtwtypes.h, that contains
the set of Simulink Coder data types available for compiling code modules,
including any libraries.

With the Utility code generation set to the default, individual rtwtypes.h
files are generated into each code generation folder. Therefore, multiple

46-31

46 Working with Altium TASKING IDE

definitions of rtwtypes.h would exist for a library shared between these
models. The problem is, how can one of these rtwtypes.h files be chosen
to build the library?

Setting the Utility code generation to use a shared location provides a
solution. In this case, a single rtwtypes.h file is generated into a folder
shared between a set of models. This single file can be used to build the
library without any dependence on the model-specific generated code.

Supporting Multiple Shared Utility Function Locations: Build Folder
Suffix. The approach outlined in the previous section works well for a single
set of models that have the same shared utility requirements.

However, what happens if you have two sets of models, each set with different
shared utility requirements?

Normally, the Simulink Coder code generation process uses the current
working folder as the location for generated files. In this location, it supports
only a single shared utilities folder for each system target file. Therefore, it is
possible for conflicts over the contents of the shared utility folder to occur.

Example 1

For example, conflicts would occur if the Hardware Implementation settings
were different for two models using the same system target file. If the
standard grt.tlc or ert.tlc code generation process is customized by
changing configuration set parameters, this situation is highly likely to occur.

To work around this problem, when using a Target_Project_Space (specified
in the Target Preferences) containing the $(DEFAULT_LOCATION) token,
Embedded Coder automatically appends the name of the current template
application project to the regular Simulink Coder build folder suffix. This
creates code generation and project folders that are specific to the current
template application project, and so also specific to the current Hardware
Implementation settings. Different Hardware Implementation settings
always have different template projects.

46-32

Components

Example 2

Another common example of this conflict, for two models sharing the
same system target file, would be if one model was configured to support
floating-point numbers and the other was configured to support integer code
only.

To work around this conflict, use the Embedded Coder options Add build
subdirectory suffix and Build subdirectory suffix.

If you select the Add build subdirectory suffix check box, then the Build
subdirectory suffix you enter is appended to the regular Simulink Coder
build folder suffix (before the name of the template application project
discussed earlier, see “Tutorial: Creating New Template Projects” on page
46-76). This creates code generation and project folders that are specific to
both the Build subdirectory suffix setting and the template projects.

For example, you can add fp for floating point models and int for
non-floating-point models.

Note Using the same build subfolder suffix for a similar set of models allows
them to generate code into their own working folder, avoiding conflict with
other models, while still allowing a shared utilities folder.

This feature of Embedded Coder removes the need for the user to manually
manage changing folders to avoid shared utility folder conflicts.

For examples of using this setting, look at the models included in the product
help demos for Altium TASKING.

Build Process — Folder Structure
The following table shows the typical folders that are created, relative to the
current working folder, during the Simulink Coder code generation process
and the Embedded Coder build process.

46-33

46 Working with Altium TASKING IDE

Folder Contents

$(REG_SUFFIX)_$(MODEL_SUFFIX)_$(TEMPLATE_NAME)\pjt_$(MODEL)
e.g,
ert_rtw_int_tricore_sim\pjt_fuelsys0

Main project:
$(MODEL).pjt
and associated
files.

$(REG_SUFFIX)_$(MODEL_SUFFIX)_$(TEMPLATE_NAME)\pjt_rtwlib Simulink Coder
library project:
rtwlib.pjt
and associated
files.

$(REG_SUFFIX)_$(MODEL_SUFFIX)_$(TEMPLATE_NAME)\pjt_rtwshared
(if required)

Shared utilities
library project:
rtwshared.pjt
and associated
files.

$(MODEL)_$(REG_SUFFIX)_$(MODEL_SUFFIX)_$(TEMPLATE_NAME)
e.g.,
fuelsys0_ert_rtw_int_tricore_sim

Simulink Coder
code generation
folder.

Key

$(MODEL) Simulink Coder code generation model name (e.g.,
fuelsys0).

$(TEMPLATE_NAME) Token expanded from the name of the template application
project in the target preferences (e.g., tricore_sim). If the
project name is prefixed with “app_” this token is removed.

$(REG_SUFFIX) Regular Simulink Coder build folder suffix (e.g., ert_rtw).

$(MODEL_SUFFIX) Model-specific build folder suffix (e.g., int).

See the next section, “Command Line Project Information” on page 46-35, for
details about finding file names, paths, and other build information.

46-34

Components

Command Line Project Information. When you build an application you
can see information containing links at the MATLAB command line. You can
use these links to get further details such as paths to projects, preprocessor
defines, include paths, added files and their locations.

The following example shows a typical output:

Building the PIL Application...
Updating EDE projects according to BuildInfo object.
Please wait...
Creating project: t_shift_alg_ert_rtw_pil.pjt
Updating preprocessor defines in project:
t_shift_alg_ert_rtw_pil.pjt
Updating include paths in project:
t_shift_alg_ert_rtw_pil.pjt
Adding source files to project:
t_shift_alg_ert_rtw_pil.pjt

You can click the hyperlinks within these messages to get more information.
The build messages are more readable with this information hidden, and the
links provide access when you require more details.

Click the project file name (e.g., t_shift_alg_ert_rtw_pil.pjt) to see the
full path to the project being built, like the following example:

Project path: D:\MATLAB\\work\tricore_fp\tricore_sim\
pjt_t_shift_alg_ert_rtw_pil\t_shift_alg_ert_rtw_pil.pjt

Click preprocessor defines to see a list of preprocessor defines similar
to the one in the following example:

t_shift_alg_ert_rtw_pil.pjt preprocessor defines:

INTEGER_CODE=0
MAT_FILE=0
MODEL=t_shift_alg
MT=0
MULTI_INSTANCE_CODE=0
NCSTATES=0
NUMST=1
ONESTEPFCN=1

46-35

46 Working with Altium TASKING IDE

TERMFCN=1
TID01EQ=0

Click include paths to see a list of include paths similar to the one in the
following example:

t_shift_alg_ert_rtw_pil.pjt include paths:

$(PRODDIR)\include
D:\MATLAB\work\tricore_fp\t_shift_alg_ert_rtw
D:\MATLAB\work\tricore_fp
D:\MATLAB\matlab\toolbox\rtw\targets\tasking\taskingdemos
D:\MATLAB\matlab\extern\include
D:\MATLAB\matlab\simulink\include
D:\MATLAB\matlab\rtw\c\src
D:\MATLAB\matlab\rtw\c\libsrc
D:\MATLAB\matlab\rtw\c\ert
D:\MATLAB\work\tricore_fp\slprj\ert_sharedutils
D:\MATLAB\matlab\toolbox\rtw\targets\tasking\tasking\pil
D:\MATLAB\work\tricore_fp\t_shift_alg_ert_rtw_pil

Click source files to see a list of files added and their full paths.

t_shift_alg_ert_rtw_pil.pjt added files:

D:\MATLAB\toolbox\rtw\targets\tasking\tasking\pil\
pil_interface.h
D:\MATLAB\toolbox\rtw\targets\tasking\tasking\pil\
pil_interface_common.h
D:\MATLAB\toolbox\rtw\targets\tasking\tasking\pil\
pil_interface_lib.c
D:\MATLAB\toolbox\rtw\targets\tasking\tasking\pil\
pil_interface_lib.h
D:\MATLAB\toolbox\rtw\targets\tasking\tasking\
tasking_pil_main.c
D:\MATLAB\work\tricore_fp\t_shift_alg_ert_rtw_pil\
pil_interface.c
D:\MATLAB\work\tricore_fp\t_shift_alg_ert_rtw_pil\
pil_interface_data.h
D:\MATLAB\work\tricore_fp\tricore_sim\

46-36

Components

pjt_exp_t_shift_alg_ert_rtw\exp_t_shift_alg_ert_rtw.pjt
D:\MATLAB\work\tricore_fp\tricore_sim\pjt_rtwlib\rtwlib.pjt

Automation Interface

• “Overview of Automation Interface Component” on page 46-37

• “Classes” on page 46-38

• “Using Objects” on page 46-38

• “List of Methods” on page 46-46

• “Details of Particular Methods” on page 46-49

Overview of Automation Interface Component
The Embedded Coder Automation Interface Component provides powerful
MATLAB API’s for automating interaction with the TASKING EDE and
CrossView Pro Debugger. See “Automation Interface” on page 46-4 for a
summary.

Objects for Embedded Coder. Embedded Coder uses object-oriented
programming techniques and requires a basic knowledge of some
object-oriented terminology. The following are some fundamental terms you
should understand:

• Object — Something you can operate on. An object is an instance of a class,
created by calling the class constructor.

• Class — A class defines the properties and methods common to all objects
of the class.

• Constructor — A function that creates an object, based on the class
definition, and initializes it.

• Method — An operation on an object, defined as part of the class definition.

• Property — Part of an object, treated as a variable at times, that is defined
as part of the class definition.

• Handle — A mechanism to access any object that Embedded Coder creates.
Used in this guide to refer to the object. Often the handle is the name you
assign when you create the object.

46-37

46 Working with Altium TASKING IDE

The following sections describe how to use and get help for Embedded
Coder objects. See “Objects Demo Example” on page 46-46 for an example
demonstrating some basic capabilities of Embedded Coder objects.

Classes
The following table shows the different classes that are provided with
Embedded Coder for use with Altium TASKING.

Class Description

tasking.edeapi Represents the TASKING EDE.

tasking.edeprojectspace Represents a project space in the TASKING
EDE.

tasking.edeproject Represents a project in the TASKING EDE.

tasking.xviewapi Represents the TASKING CrossView Pro
debugger.

tasking.Tasking_Configuration Property of a tasking.edeapi class
representing TASKING configuration
details.

tasking.EDE_Configuration Property of a
tasking.tasking_Configuration
representing EDE configuration details.

tasking.CrossView_Pro_Configuration Property of a
tasking.tasking_Configuration
representing CrossView Pro configuration
details.

Using Objects
The topics in this section are:

1 “Using the altiumtasking Function” on page 46-39

2 “Creating an Object Directly” on page 46-43

3 “Determining the Available Methods for a Class” on page 46-44

46-38

Components

4 “Obtaining Help for a Class Method” on page 46-44

5 “Calling a Method” on page 46-45

6 “Determining the Available Properties for a Class” on page 46-45

7 “Accessing a Property” on page 46-45

8 “Objects Demo Example” on page 46-46

Using the altiumtasking Function. You can use altiumtasking to create
Embedded Coder objects for Altium TASKING. The command

[ede,xview,projspc,proj] = altiumtasking

returns the following results:

• ede — A handle to the TASKING EDE application.

• xview— A handle to the TASKING CrossView Pro application.

• projspc— A handle to the project space currently open in the EDE.

• proj — A handle to the active project in the EDE.

Note You can only run altiumtasking after you configure your target
preferences.

When you first run altiumtasking, the Target Preferences Configuration
Selection dialog box opens. Select your required configuration (for example,
TriCore), and click OK.

• If you supplied a valid project space file when you configured the target
preferences, altiumtasking opens that project space in the EDE window
and returns a handle to it. However, if no valid project space file exists,
then altiumtasking returns an empty project space handle.

• If one or more projects are defined in the project space, and opened,
altiumtasking returns a handle to the active project. If no project is
opened, altiumtasking returns an empty project handle.

46-39

46 Working with Altium TASKING IDE

You can also run altiumtasking in the following ways:

[ede,xview,projspc] = altiumtasking does not create and return the
project handle.

[ede,xview] = altiumtasking does not create and return the project space
and project handles.

ede = altiumtasking does not create and return the CrossView Pro
application, project space and project handles.

altiumtasking(Property, Value) enables you to specify parameters that
control the behavior of the function. For example:

altiumtasking('configDesc','TriCore')

specifies the use of the TriCore configuration in the function.

Create EDE and CrossView Pro Handles

This example generates EDE and CrossView Pro handles.

>>[ede, xview] = altiumtasking;

Registering COM object: "D:\share\apps\BuildTools\win32\TASKING\apps\tricore\v2.5r2\ctc\bin\xfwtc.exe" -R

Creating COM object: xfwtc.CommandLine

Initializing COM object: -G "C:\Temp" -ini "C:\Temp\tricore_default.ini" -tcfg

"D:\share\apps\BuildTools\win32\TASKING\apps\tricore\v2.5r2\ctc\etc\tsim.cfg" -C tc1775b

Testing COM communications with CrossView Pro by sending command: "echo MATLABLinkTest"

[Test timeout is 60 seconds, to allow hardware setup - use "Ctrl-C" to terminate]

Test successful.

46-40

Components

Note You must save preferences to the CrossView Pro .ini file. The link
software overwrites the temporary file, (C:\Temp\tricore_default.ini,
when it creates a new xviewapi object.):

1 In CrossView Pro, select File > Exit. The Options dialog box opens.

2 On the Save tab, select the Save desktop and target settings check box.

3 Click Exit. CrossView Pro exits after a few moments, saving your
preferences in the .ini file.

You can view the handles CrossView Pro created.

>> ede

tasking.edeapi (handle)

configuration: [1x1 tasking.Tasking_Configuration]

"configuration" property:

Configuration_Description: 'TriCore'

EDE_Configuration: [1x1 tasking.EDE_Configuration]

CrossView_Pro_Configuration: [1x1 tasking.CrossView_Pro_Configuration]

Connected to EDE: 0

>> xview

tasking.xviewapi (handle)

configuration: [1x1 tasking.CrossView_Pro_Configuration]

"configuration" property:

CrossView_Pro_Executable: [1x76 char]

Initialization: [1x29 char]

Initialization_File: [1x107 char]

Status:

Current executable: None

Current project: None

isRunning: 0

46-41

46 Working with Altium TASKING IDE

eventReporting: 1

Create an EDE handle for TriCore

This example creates an EDE handle for TriCore.

>> obj = altiumtasking('configDesc', 'TriCore')

tasking.edeapi (handle)

configuration: [1x1 tasking.Tasking_Configuration]

"configuration" property:

Configuration_Description: 'TriCore'

EDE_Configuration: [1x1 tasking.EDE_Configuration]

CrossView_Pro_Configuration: [1x1 tasking.CrossView_Pro_Configuration]

Connected to EDE: 0

46-42

Components

Creating an Object Directly. Embedded Coder allows you to create objects
directly. To find out how to create an object of a particular class you can use
the help function to find help for the constructor. At the MATLAB command
prompt, enter

help <classname>.<constructorname>

For example, for the tasking.edeapi class, enter

help tasking.edeapi.edeapi

For the tasking.edeprojectspace class, enter

help tasking.edeprojectspace.edeprojectspace

Follow these steps to create example objects.

1 To create a tasking.edeapi object, you call the constructor as follows:

Ede = tasking.edeapi

The name on the left side of the “=” could be any valid MATLAB identifier
and is the handle to the object.

You must choose a configuration, then communication is tested with the
TASKING EDE. At the command line you see the configuration target
preferences.

2 To create a tasking.edeprojectspace object, you call the constructor as
follows:

tasking.edeprojectspace(projspace, edeapi)

where projspace is the absolute path of the TASKING Project Space this
object will relate to, and edeapi is a tasking.edeapi object.

ps = tasking.edeprojectspace('D:\MATLAB\work\
myprojspace.psp', Ede)

3 To create a tasking.edeproject object, you call the constructor as follows:

tasking.edeproject(proj, edeprojspace)

46-43

46 Working with Altium TASKING IDE

where proj is the absolute path of the TASKING Project this object relates
to, and edeapiprojspace is a tasking.edeprojectspace object, as shown
in the following example:

proj = tasking.edeproject('D:\MATLAB\work\myproj.pjt', ps)

4 To create a tasking.xviewapi object, you call the constructor as follows

xv = tasking.xviewapi

You must choose a configuration, then communication is tested with
CrossView Pro. At the command line, you see the configuration target
preferences.

Determining the Available Methods for a Class. After you create an
object, you can find the available methods by running the “methods” function.

1 For example, to find the methods available on the tasking.edeapi object
created above (in “Creating an Object Directly” on page 46-43), enter
methods(Ede).

2 To find the methods available on the tasking.edeprojectspace object
previously created, enter methods(ps).

3 To find the methods available on the tasking.edeproject object previously
created, enter methods(proj).

4 To find the methods available on the tasking.xviewapi object previously
created, enter methods(xv).

To see the methods available, refer to the tables in “List of Methods” on
page 46-46.

Obtaining Help for a Class Method. To get help for a class method, you
can use the help function.

For example, to find out more about the getProject method of the
tasking.edeapi class, you could enter the following command:

help tasking.edeapi.getProject

46-44

Components

MATLAB returns the following output:

GETPROJECT - get the active Project in the EDE
project = getProject
project: edeproject object representing the active Project
in the EDE

project will be empty if there is no open project

To see the methods available, refer to the tables in “List of Methods” on
page 46-46.

Calling a Method. When you know the details of a class method, you can
call it using dot (.) notation.

For example, to get a tasking.edeproject object representing the active
project, run the following command:

project = Ede.getProject

Determining the Available Properties for a Class. After you create an
object, you can find the available properties by running the get function.

For example, to find the properties available on the tasking.edeapi object
created above, enter

get(Ede)

Accessing a Property. You can access a property of a class using dot (.)
notation.

For example, to get the “configuration” property of the tasking.edeapi object
created above, enter:

config = Ede.configuration
tasking.Tasking_Configuration (handle)

Configuration_Description: 'C166'
EDE_Configuration: [1x1 tasking.EDE_Configuration]

CrossView_Pro_Configuration: [1x1 tasking.CrossView_Pro_
Configuration]

46-45

46 Working with Altium TASKING IDE

Objects Demo Example. For experience using objects, you can work
through the demo example, tasking_demo_objects.

This example provides step-by-step instructions for using Embedded Coder
objects to communicate with the TASKING EDE and CrossView Pro debugger
from the MATLAB command line. You can use any command available in
the powerful CrossView Pro command language. The demo illustrates using
objects during the process of building and debugging projects.

List of Methods
See the following tables for lists of available methods:

• “Methods for Class tasking.edeapi” on page 46-46

• “Methods for Class tasking.edeprojectspace” on page 46-48

• “Methods for Class tasking.edeproject” on page 46-48

• “Methods for Class tasking.xviewapi” on page 46-48

The public methods are shown in the tables (methods beginning with “p” or
“p_” are private methods and should not be used).

Methods for Class tasking.edeapi.

close getOptionSetNames

disp getProject

display getProjectSpace

edeapi getTargetProject

exec getToolchainInfo

execApiMacro newProject

execRetNumeric newProjectSpace

execRetString newProjectTemplates

getCreatedEDEProcess newProjectTemplatesViaUI

getOptionSet newTempProjectSpaceIfNoneOpen

openProjectTemplates processTemplateProject

46-46

Components

pwd validateToolchainDirectory

hilite_system connect

isconnected

46-47

46 Working with Altium TASKING IDE

Methods for Class tasking.edeprojectspace.

add deleteParentDir

getEDE isopen

checkValid disp

getOriginalPath new

checkValidProject display

getPath open

close edeprojectspace

isequal remove

Methods for Class tasking.edeproject.

add getEDE isopen

build getFiles new

checkValid getHyperlink open

close getIncludes rebuild

debug getMakeCmd remove

disp getOriginalPath run

display getPath setCDefines

edeproject getProjectSpace setIncludes

getBuildOutput getTarget setPerformToolchainName-
Check

getCDefines hasFile

getDir isequal

Methods for Class tasking.xviewapi.

addBreakpointCallback getEventReporting

getFunctionConfiguration debug

disp halt

46-48

Components

removeBreakpointCallbacks display

isRunning setEventReporting

downloadAndRun execute

xviewapi executeAndWait

getCommandResponse getExecutable

getProject hilite_system

readMemoryUnits writeMemoryUnits

reset stackProfile

stackProfileReset

Details of Particular Methods
The following methods of the tasking.xviewapi object simplify reading
from and writing to target memory units (the smallest addressable unit in
the memory of the target).

• readMemoryUnits

To see help for this function, enter

help tasking.xviewapi.readMemoryUnits

at the MATLAB command line.

• writeMemoryUnits

To see help for this function, enter

help tasking.xviewapi.writeMemoryUnits

at the MATLAB command line.

Use these functions with the MATLAB functions, typecast and swapbytes,
for reading and writing data of different datatypes.

To see examples of syntax, see the demo example, tasking_demo_objects.

46-49

46 Working with Altium TASKING IDE

Verification

In this section...

“Processor-in-the-Loop (PIL) Simulation” on page 46-50

“C Code Coverage Reports” on page 46-58

“Execution Profiling” on page 46-60

“Stack Profiling” on page 46-63

“Bidirectional Traceability Between Code and Model” on page 46-66

“MISRA C Rule Checking” on page 46-67

Processor-in-the-Loop (PIL) Simulation

• “Processor-in-the-Loop Overview” on page 46-50

• “PIL Workflow” on page 46-51

• “Creating a PIL Block” on page 46-53

• “Building, Running, and Debugging PIL Block Applications” on page 46-54

• “PIL Metrics” on page 46-57

Processor-in-the-Loop Overview
Overview of PIL Simulation

Processor-in-the-loop (PIL) simulation is a verification technique designed to
help you evaluate how well a candidate algorithm (e.g., a control system)
operates on the actual target processor selected for the application.

When using Embedded Coder software, you have the following options for
PIL simulation:

• Top-model PIL simulation mode — you can run a complete model as a PlL
simulation on your target processor or instruction set simulator.

• Model block PIL simulation mode — use PIL simulation for a model
reference component.

46-50

Verification

• PIL block — you can create a PIL block from one of several Simulink
components including a model, a subsystem in a model, or subsystem in a
library.

For information on processor-in-the-loop and how to use these different
options, seeChapter 39, “Verifying Generated Code With SIL and PIL
Simulations” in the Embedded Coder documentation:

Note All options (i.e. Top-model PIL, Model block PIL, and PIL block) are
available when you use Embedded Coder software with Altium TASKING
tools.

To learn how to use the top-model and Model block PIL simulation modes,
refer to the Embedded Coder documentation linked above.

The following sections describe demos and detailed information on using the
PIL block with Embedded Coder software and Altium TASKING tools.

PIL Workflow
You can work through the PIL block verification workflow demo for a
hands-on example illustrating using SIL and PIL for system and unit testing:
tasking_demo_system_simulation.mdl.

By running this demo you will learn how to:

• Use Software-in-the-Loop (SIL) to verify correct behavior of source code,
generated by Embedded Coder software and executing on the host processor

• Use Processor-in-the-Loop (PIL) to verify correct behavior of object code
and generate metrics; the object code is cross-compiled from source code
generated by Embedded Coder software and executes on a target.

• Create system and unit test models

• Work with multiple heterogeneous target processors

• Include existing / legacy algorithms for SIL and PIL verification

• Export a generated algorithm for inclusion in an existing project

46-51

46 Working with Altium TASKING IDE

• Generate a fully deployable model-based application

Using target_block_verify. The function target_block_verify is used in
the PIL VerificationWorkflow demo, tasking_demo_system_simulation.mdl.

You can use target_block_verify to verify a generated PIL or SIL block and
compare the results with the simulation or algorithm block.

[LOG_SIGS1, LOG_SIGS2] = target_block_verify('BLOCK1', 'BLOCK2')

turns on signal logging for the outports of BLOCK1, the model containing
BLOCK1 is simulated and the logged signals are returned in LOG_SIGS1.

Next, BLOCK1 and BLOCK2 are swapped, the same model is simulated again,
and the logged signals for BLOCK2 are returned in LOG_SIGS2.

To verify a SIL or PIL block, set BLOCK1 to the simulation or algorithm block,
and set BLOCK2 to the generated PIL or SIL block for BLOCK1.

Use full path names of Simulink blocks for BLOCK1 and BLOCK2.

BLOCK2 may be in the same model as BLOCK1, or in its own model. The
model(s) containing BLOCK1 and BLOCK2 are loaded.

LOG_SIGS1 and LOG_SIGS2 are ModelDataLogs objects containing all the
logged signals for the outports of BLOCK1 and BLOCK2 respectively. The data
returned for each outport is a Timeseries object that allows comparison and
plotting capabilities.

If BLOCK1 and BLOCK2 are in the same model, then one LOG_SIGS output is
returned containing the data for both BLOCK1 and BLOCK2.

Caution target_block_verify makes temporary changes to the model by
swapping BLOCK1 and BLOCK2 in addition to setting some logging options.
Although target_block_verify restores the original settings of the model, it
is recommended that you save a copy of your model first.

46-52

Verification

Creating a PIL Block
The PIL settings can be found in the Configuration Parameters dialog box
under the IDE Link settings.

The following options are available under Processor-in-the-Loop (PIL)
Verification

• Configure model to build PIL algorithm object code

Select this box to create PIL algorithm object code as part of the Simulink
Coder code generation process.

After you create and build a PIL block, you can either:

• Copy it into your model to replace the original subsystem (save the original
subsystem in a different model so it can be restored), or

• Add it to your model to compare with the original subsystem during
simulation.

See “Building, Running, and Debugging PIL Block Applications” on page
46-54 for more details.

46-53

46 Working with Altium TASKING IDE

Building, Running, and Debugging PIL Block Applications
This section includes the following topics:

• “Building and Downloading PIL Applications” on page 46-54

• “PIL Debugging” on page 46-56

Building and Downloading PIL Applications. After you create a PIL
block, you must build and download it before you can use it for simulation.

To build and download the PIL application manually:

1 Double-click the PIL block to open the mask.

2 Click Build. Wait until the Application name in the mask is updated and
you see the “build complete” message.

3 Click Download.

4 Wait until the output in the MATLAB command window stops and you see
the “download complete” message in the PIL block, and then click OK to
close the block mask.

The PIL Application is now ready. To cosimulate with it, you must copy
the PIL block into your model, either to replace the original subsystem
or in addition to it for comparison. Click Start Simulation to run a PIL
simulation.

After the test, Embedded Coder software returns execution profiling, code
coverage, and stack profiling reports to MATLAB for your review. See “PIL
Metrics” on page 46-57 for more information.

Note When copying PIL blocks to be used in the same model or in different
models that simulate simultaneously, you must click the Download button
in the PIL block mask in the new block after copying.

Clicking Download creates new connections (handles) to the TASKING EDE
and CrossView Pro debugger. Otherwise, the same debugger handle may be
used by multiple PIL blocks simultaneously and simulation errors or incorrect

46-54

Verification

results may occur. This concern does not apply when copying PIL blocks
created automatically as part of the build process because the untitled model
and test harness are typically not simulated together.

See the Embedded Coder demos for examples with instructions to enable you
to build and download PIL blocks and use them in simulation.

Note The Download button has been removed from the PIL block mask.

PIL Block Parameters

For generic PIL block information, see Chapter 39, “Verifying Generated Code
With SIL and PIL Simulations” in the Embedded Coder documentation.

Embedded Coder software creates PIL blocks with both the Simulink system
path and Configuration properties automatically configured.

The available Configurations correspond to the TASKING Configuration
descriptions in the Target Preferences.

Some guidelines for choosing a valid configuration:

1 The configuration must generate debugging information because Embedded
Coder software requires this information to communicate with the PIL
application.

2 The configuration must be compatible with the Target Preferences
Configuration that was used to build the PIL algorithm. The fact that
these two configurations need not match exactly allows the flexibility for
the PIL algorithm to be compiled as if for a production environment, for
example, without generating debugging information. However, you must
be careful to ensure that the configurations are compatible in terms of
linking, otherwise build errors occur when building the PIL application.
In many cases, it is appropriate to use exactly the same configuration for
building both the PIL algorithm and PIL application and therefore no
errors can ever occur because of incompatibilities between configurations.

46-55

46 Working with Altium TASKING IDE

PIL Debugging. Prior to PIL simulation you can use the CrossView Pro
debugger to set breakpoints, so that you can step through the code and
watch variables during simulation. To do this, you must set breakpoints in
CrossView Pro prior to starting the simulation as follows:

1 When the build process completes, a minimized CrossView Pro window
should appear on your Windows Start menu. Maximize the CrossView
Pro window.

2 In CrossView Pro, select File > Open Source, and choose a source file to
open. A typical choice would be to open the main generated file associated
with the algorithm, e.g. model.c.

3 Choose a location in the file to set a breakpoint and click the “breakpoint”
button to the left of the line. A typical location for setting a breakpoint in
the model.c file would be one of the step functions.

Note You can set multiple breakpoints in multiple files if you wish.

4 To add a variable to the watch, double-click the variable, and then click
Add Watch in the Expression Evaluation window. A typical variable to
add to the watch would be either the external inputs or external outputs
structures, which usually represent all of the inputs and outputs of the
algorithm.

5 Start the PIL simulation in Simulink. When the breakpoint is hit, Simulink
pauses. CrossView Pro is available for debugging, and watch variables
are updated. You can step through the code, set more breakpoints, and
analyze data.

6 When you are finished debugging, you can continue running by clicking
the “play” button in CrossView Pro. This will allow the PIL simulation
to continue. If you left the breakpoint in place then the simulation stops
at that point again. To return to uninterrupted simulation, remove the
breakpoints.

46-56

Verification

Caution Never remove the PIL synchronization breakpoint (set on
the pilDataBreakpoint function). This breakpoint is used to maintain
synchronization between Simulink and CrossView Pro.

As an alternative to manual configuration in CrossView Pro, you can obtain a
handle to the tasking.xviewapi object associated with a PIL block by using
the tasking_pil_crossview_handle command as follows:

crossview = tasking_pil_crossview_handle('block')

where block is the full Simulink system path to the PIL block. You can use
gcb to obtain the system path after clicking on the PIL block.

This handle can be used prior to PIL simulation to configure breakpoints, etc.,
by using the CrossView Pro command language.

Caution This handle should not be used during PIL simulation as this could
lead to incorrect PIL results or termination of the PIL simulation.

10-Second Pause on Termination of the CrossView Pro Debugger

When terminating an instance of the CrossView Pro debugger application
that was launched by Embedded Coder software, there is a pause of about
10 seconds before the CrossView Pro window closes. This 10-second pause
is the intended behavior of CrossView Pro when acting as a COM server;
CrossView Pro pauses for the 10 seconds to wait for clients such as MATLAB
to release their COM references.

PIL Metrics
The following metrics provide verification information to be used in
conjunction with the main “signal level” simulation results:

46-57

46 Working with Altium TASKING IDE

• C Code Coverage reports

• Execution profiling

• Stack profiling

C Code Coverage Reports
After you download a PIL application and run a simulation, you can view
reports in MATLAB. The reports available depend on the target configuration.
For the C166 Simulator, a hyperlink is provided for each report in the
MATLAB command window towards the end of the Simulink Coder build log
(as shown in the following example):

PIL reports available from CrossView Pro for block: fuelsys
Coverage ("covinfo"): Yes (pil_coverage_report)
Profiling ("proinfo"): Yes (pil_profiling_report)
Cumulative profiling ("cproinfo"): Yes
(pil_cumulative_profiling_report)

To view the C code coverage report, click the hyperlink pil_coverage_report:

pil_coverage_report =

Module: temp 0%
Module: ..\..\fuelsys1_ert_rtw_int_c167cs_sim_pil...
\pil_interface.c 74%
Function: pilInitialize 75%
Function: pilGetUDataSymbol 75%
Function: pilStep 71%
Function: pilGetYDataSymbol 75%
Function: pilTerminate 75%
Module: ..\..\..\..\..\matlab\toolbox\rtw\targets\common...
\tgtcommon\pilsrc\pil_ide_data_stream.c 93%
Function: pilDataBreakpoint 100%
Function: pilReadData 90%
Function: pilWriteData 94%
Function: pilDataInit 100%
Module: ..\..\..\..\..\matlab\toolbox\rtw\targets\common...
\tgtcommon\pilsrc\pil_interface_lib.c 97%
Function: getNextSymbol 100%
Function: processData 93%

46-58

Verification

Function: pilCommandLoop 99%
Module: ..\..\..\..\..\matlab\toolbox\rtw\targets\common...
\tgtcommon\pilsrc\pil_main.c 83%
Function: main 83%
Module: ..\..\fuelsys1_ert_rtw_int_c167cs_sim\fuelsys1.c

61%
Function: Sens_Failure_Counter 13%
Function: Fueling_Mode 24%
Function: Init_controllogic 100%
Function: controllogic 47%
Function: fuelsys1_step 79%
Function: fuelsys1_initialize 100%
Function: fuelsys1_terminate 100%
Module: MEMCPY_C 100%
Module: MEMSET_C 100%
Module: MUL 100%
Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils...
\binarysearch_s16.c 89%
Function: BINARYSEARCH_S16 89%
Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils...
\dotproduct_s32s16.c 100%
Function: DotProduct_s32s16 100%
Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils...
\interpolate_even_s16_s16_sat.c 84%
Function: INTERPOLATE_EVEN_S16_S16_SAT 84%
Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils...
\interpolate_s16_s16_sat.c 83%
Function: INTERPOLATE_S16_S16_SAT 83%
Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils...
\look2d_s16_s16_s16_sat.c 100%
Function: Look2D_S16_S16_S16_SAT 100%
Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils...
\div_s32_sat_floor.c 77%
Function: div_s32_sat_floor 77%
Module: UDIL 29%
Module: UMOL 24%
Module: fuelsys1_pil 0%
Module: CSTART 0%
Module: ..\..\fuelsys1_ert_rtw_int_c167cs_sim\fuelsys1_data.c

0%

46-59

46 Working with Altium TASKING IDE

Execution Profiling

• “CrossView Pro Execution Profiling” on page 46-60

• “Task Execution Profiling Kit” on page 46-63

CrossView Pro Execution Profiling
After you download a PIL application and run a simulation, you can view
reports in MATLAB. The reports available depend on the target configuration.
For the C166 Simulator, a hyperlink is provided for each report in the
MATLAB command window towards the end of the Simulink Coder build log
(as shown in the following example):

PIL reports available from CrossView Pro for block: fuelsys
Coverage ("covinfo"): Yes (pil_coverage_report)
Profiling ("proinfo"): Yes (pil_profiling_report)
Cumulative profiling ("cproinfo"): Yes
(pil_cumulative_profiling_report)

Maximum stack usage during PIL (including the PIL test
framework overhead):

C166 User Stack: 59/109 (54.13%) words used.

To view the profiling report, click the hyperlink pil_profiling_report:

pil_profiling_report =

Total Execution Time: 4447016

Cycles %Cycles

Function: pilInitialize 16 0.000%

Function: pilGetUDataSymbol 22428 0.504%

Function: pilStep 20826 0.468%

Function: pilGetYDataSymbol 22428 0.504%

Function: pilTerminate 16 0.000%

Function: pilDataBreakpoint 14454 0.325%

Function: pilReadData 549878 12.37%

Function: pilWriteData 166816 3.751%

Function: pilDataInit 4 0.000%

Function: getNextSymbol 80100 1.801%

46-60

Verification

Function: processData 288360 6.484%

Function: pilCommandLoop 137966 3.102%

Function: main 6432 0.145%

Function: Sens_Failure_Counter 22400 0.504%

Function: Fueling_Mode 54740 1.231%

Function: Init_controllogic 58 0.001%

Function: controllogic 121744 2.738%

Function: fuelsys1_step 677674 15.24%

Function: fuelsys1_initialize 48 0.001%

Function: fuelsys1_terminate 4 0.000%

Function: BINARYSEARCH_S16 372458 8.375%

Function: DotProduct_s32s16 37642 0.846%

Function: INTERPOLATE_EVEN_S16_S16_SAT 51678 1.162%

Function: INTERPOLATE_S16_S16_SAT 528118 11.88%

Function: Look2D_S16_S16_S16_SAT 256320 5.764%

Function: div_s32_sat_floor 406596 9.143%

Module: temp 0 0.000%

Module: ..\..\fuelsys1_ert_rtw_int_c167cs_sim_pil\pil_interface.c

65714 1.478%

Module: ..\..\..\..\..\sandbox\targets with spaces\matlab...

\toolbox\rtw\targets\common\tgtcommon\pilsrc\...

pil_ide_data_stream.c 731152 16.44%

Module: ..\..\..\..\..\sandbox\targets with spaces\matlab...

\toolbox\rtw\targets\common\tgtcommon\pilsrc\...

pil_interface_lib.c 506426 11.39%

Module: ..\..\..\..\..\sandbox\targets with spaces\matlab...

\toolbox\rtw\targets\common\tgtcommon\...

pilsrc\pil_main.c 6432 0.145%

Module: ..\..\fuelsys1_ert_rtw_int_c167cs_sim\...

fuelsys1.c 876668 19.71%

Module: MEMCPY_C 357522 8.040%

Module: MEMSET_C 792 0.018%

Module: MUL 13398 0.301%

Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils\...

binarysearch_s16.c 372458 8.375%

Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils\...

dotproduct_s32s16.c 37642 0.846%

Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils\...

interpolate_even_s16_s16_sat.c 51678 1.162%

Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils\...

46-61

46 Working with Altium TASKING IDE

interpolate_s16_s16_sat.c 528118 11.88%

Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils\...

look2d_s16_s16_s16_sat.c 256320 5.764%

Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils\...

div_s32_sat_floor.c 406596 9.143%

Module: UDIL 147648 3.320%

Module: UMOL 85064 1.913%

Module: fuelsys1_pil 0 0.000%

Module: CSTART 0 0.000%

Module: ..\..\fuelsys1_ert_rtw_int_c167cs_sim\...

fuelsys1_data.c 0 0.000%

27: readDataPtr = & pil_ide_data_buffer[0];

For cumulative profiling, command line messages like the following inform
you that you must configure CrossView Pro to specify which functions to
collect data for. Select Tools > Cumulative Profiling Setup, specify
functions, and then run the simulation again to get the report.

NOTE: Cumulative profiling requires manual setup in
CrossView Pro.
See Tools->Cumulative Profiling Setup
DO NOT add the function pilDataBreakpoint to the list of
functions to profile.

You must then run the PIL simulation again
to generate the report.

pil_cumulative_profiling_report =

CrossView Cumulative Profiling Report

Total Execution Time: 4447016
Function Calls Recursive
Min.Time Max.Time Avg.Time Total Time %Time

For information on build messages containing links at the command line, see
“Command Line Project Information” on page 46-35.

46-62

Verification

Task Execution Profiling Kit
This kit, available on MATLAB Central, provides instructions and examples
on how to implement real-time task based execution profiling on a custom
target. A graphical representation of on-target execution and a HTML report
are provided for analysis. You can implement this for your own custom system
target file that uses the project generator.

For details, see
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=12731

Stack Profiling

• “What Is Stack Profiling?” on page 46-63

• “PIL Applications” on page 46-63

• “Non-PIL Applications” on page 46-64

• “Infineon® TriCore Stack Depth Analyzer” on page 46-65

What Is Stack Profiling?
Stack profiling gives you a maximum bound on the stack usage of an
application. The stack profiling feature works by first writing a signature to
the stack memory region, then when the application executes normally, the
signature pattern is overwritten by the application stack data. Finally the
stack memory is read into MATLAB and analyzed to determine how much
of the stack memory was used during execution.

PIL Applications
Stack profiling is automatically reported after PIL simulation. The report
gives you a maximum bound on the stack usage of the algorithm under test.

Output at end of PIL (bold indicates hyperlinks):

Maximum stack usage during PIL (including the PIL test framework overhead):

TriCore User Stack: 24/2048 (1%) words used.

TriCore Interrupt Stack: 0/256 (0%) words used.

46-63

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=12731

46 Working with Altium TASKING IDE

The hyperlinks for the individual stacks expand to more information about
that stack, as shown in the following example.

The hyperlink for "including the PIL test framework overhead" expands to
show this explanation:

PIL Test Framework Overhead: The maximum stack usage reported after
PIL is the stack usage of the entire PIL application, which includes a small
amount of stack used by the PIL test framework. The stack usage reported is
therefore a maximum bound on the stack usage of the algorithm under test.

To more accurately determine the stack usage of the algorithm it is possible
to use the Embedded Coder CrossView Pro stack profiling feature on an
application that is not configured for PIL. This will allow the stack usage to
be determined without the stack overhead of the PIL test framework.

Non-PIL Applications
Non-PIL applications (perhaps with stimulus signals coming from target
I/O drivers) can be profiled using the CrossView Pro API commands
stackProfileReset and stackProfile.

1 Call stackProfileReset to reset the application you are debugging, and
write a signature pattern to the stack memory region. Use the following
syntax:

xview.stackProfileReset

46-64

Verification

where xview is a tasking.xviewapi object. See “Methods for Class
tasking.xviewapi” on page 46-48.

2 Call stackProfile immediately after resetting to view 0% stack usage
profiling results.

3 Execute the application (e.g., xview.execute('C')).

4 After the amount of time you want to profile for, stop the application using
xview.halt

5 Call stackProfile to get the profiling results for the execution period.

An example of this procedure is shown following.

Infineon TriCore Stack Depth Analyzer
The Infineon TriCoreStack Depth Analyzer (SDA) tool is a static stack depth
analyzer for the TASKING TriCore toolset. This is an alternative to the
dynamic stack profiling provided with Embedded Coder software.

It can be found at the Infineon TriCore Software Downloads page. Navigate
there from this URL:

http://www.infineon.com/tricore

Click the link on the right: “Development Tools, Software and Training”, then
click “Software Downloads”.

46-65

http://www.infineon.com/tricore

46 Working with Altium TASKING IDE

Bidirectional Traceability Between Code and Model

• “Using Traceability” on page 46-66

• “Enabling Traceability” on page 46-67

Using Traceability
Context menu items and command-line methods allow you to navigate
bidirectionally between Simulink blocks and the corresponding generated
source files in the TASKING EDE or the CrossView Pro debugger.

See the demo, tasking_demo_objects, to try this feature. This is a command
line demo that you can run from the Help browser.

To find the generated code for any block in the model, right click on the block
and select: IDE Link > See Generated Code in EDE or IDE Link > See
Generated Code in CrossView Pro.

This opens the source file which contains the generated code for the block,
and highlights the Simulink Coder tag for that block. The Simulink Coder tag
is usually found in the block’s generated comments preceding the block’s code.

There are command-line alternatives to the right-click context menu items —
see tasking_demo_objects for an example.

To find the block which corresponds to some generated code in the EDE or
CrossView Pro:

1 Click to place the cursor at the line of code containing the Simulink Coder
Tag for the given block. Here is an example:

/* Outputs for atomic SubSystem: '<Root>/SS2'

2 Enter at the MATLAB command prompt:

EDE_Obj.hilite_system

or

XView_Obj.hilite_system

46-66

Verification

Enabling Traceability
To use the Traceability feature, you must configure your model as follows:

1 Enable the generation of traceability information by adding
targets_trace_enable(gcs) to the PostLoadFcn callback of the model.

a Select File > Model Properties > Callbacks.’

b Click PostLoadFcn.

c Enter targets_trace_enable(gcs), as shown.

Click OK.

Note targets_trace_enable also selects the check box options Create
Code Generation report and Code-to-model under Report in the
Configuration Parameters dialog box.

2 The model must use an ERT based Target.

MISRA C Rule Checking
The TASKING C compiler supports MISRA C rule checking and can be easily
configured to check the code generated by Simulink Coder software.

You can switch on MISRA C rule checking in your application and/or
library template projects. When you build using these template projects,

46-67

46 Working with Altium TASKING IDE

the TASKING compiler will provide warnings about MISRA C violations.
Embedded Coder software returns these warnings to the MATLAB command
line for your review.

Embedded Coder software provides an example application project
template, pre-configured for MISRA C rule checking, for the TASKING
TriCore Toolset. For instructions, see the MISRA C Rule Checking demo,
tasking_demo_misra.m.

46-68

Optimization

Optimization

In this section...

“Compiler / Linker Optimization Settings” on page 46-69

“Target Memory Placement / Mapping” on page 46-69

“Execution and Stack Profiling” on page 46-70

“Target Specific Optimizations” on page 46-70

“Model Advisor” on page 46-74

Compiler / Linker Optimization Settings
Template projects allow you to fully control the optimization settings used
by the compiler and linker.

• See “Tutorial: Creating New Template Projects” on page 46-76 for details
of using template projects.

• See PIL Block Parameters on page 55 for information about optimization
setting requirements for Processor-in-the-Loop.

• See the TASKING documentation for details of available optimization
settings.

Target Memory Placement / Mapping
Template projects allow you to fully control the target memory map used
for your application.

• See “Overview of the Project Generator Component” on page 46-27 for a
general discussion of how the code generation process and subsequent build
process work together, including a memory placement example.

• See “Tutorial: Creating New Template Projects” on page 46-76 for details of
using template projects. See the TASKING documentation for details of
memory map settings.

46-69

46 Working with Altium TASKING IDE

Execution and Stack Profiling

• “Execution Profiling” on page 46-70

• “Stack Profiling” on page 46-70

Execution Profiling
Execution profiling metrics from the CrossView Pro instruction set simulator
during PIL simulation can be used to identify areas of your algorithms that
can be further optimized.

See “Execution Profiling” on page 46-60 for details.

Stack Profiling
Stack profiling metrics for PIL simulation or real-time applications can be
used to optimize the amount of stack memory required for an application.

See “Stack Profiling” on page 46-63 for details.

Target Specific Optimizations

• “C Language Extensions / Intrinsics” on page 46-70

• “Target Optimized Libraries for Infineon XC166 and Infineon® TriCore” on
page 46-72

C Language Extensions / Intrinsics

Infineon TriCore.

Support C89/C90 ANSI
Target Function
Library

Infineon
TriCore ISO
Target Function
Library

Infineon
TriCore Target
Function
Library (ERT
Only)

ANSI Support Yes Yes Yes

46-70

Optimization

Support C89/C90 ANSI
Target Function
Library

Infineon
TriCore ISO
Target Function
Library

Infineon
TriCore Target
Function
Library (ERT
Only)

ISO Support Yes Yes

Saturated
Arithmetic
Support

Yes

ISO/IEC 9899:1999 Math Library
The target function library Infineon TriCore ISOuses the TASKING
ISO/IEC 9899:1999 Math Library to implement floating-point mathematical
function blocks (e.g. trigonometric functions, log functions). Using these
target optimizations improves the performance of applications performing
floating-point mathematical operations.

When using these target optimizations, the regular Simulink Coder
implementation for many ANSI floating-point mathematical operations
is replaced by the ISO equivalent. These functions behave identically to
the regular Simulink Coder implementation and can be verified using
processor-in-the-loop simulation.

You can use the Infineon TriCore ISO target function library with ERT
or GRT system target files.

To enable the math library for the optimization of floating-point mathematical
operations, select Infineon TriCore ISO for the Simulink Coder option
Target function library (on the Interface pane of the Configuration
Parameters dialog box).

Saturated Arithmetic

The target function library Infineon TriCore includes all ISO optimizations
and also saturated arithmetic optimizations. The target function library
Infineon TriCore is only available for ERT system target files.

46-71

46 Working with Altium TASKING IDE

You can use TASKING compiler extensions and intrinsic functions for
saturated arithmetic. These target optimizations can increase execution
speed up to 18 times for saturated arithmetic operations. The use of these
target optimizations will improve the performance of most applications
performing saturated arithmetic operations. It is therefore recommended
to enable the optimizations.

When using these target optimizations, the regular Simulink Coder
implementation for many saturated arithmetic operations are replaced by
calls to target optimized inlined functions. The behavior of these functions is
identical to the regular Simulink Coder implementation and can be verified
using processor-in-the-loop simulation (see “Processor-in-the-Loop (PIL)
Simulation” on page 46-50).

To enable TASKING compiler extensions and intrinsic functions for the
optimization of saturated arithmetic, select Infineon TriCore for the
Simulink Coder option Target function library (on the Interface pane of
the Configuration Parameters dialog box).

General. Depending on your toolset, your the TASKING compiler may
support C language extensions or intrinsics to help optimize in some of the
following areas:

• Data Types (eg. Fractional Arithmetic, Bit Addressable Memory)

• Memory Qualifiers (eg. Near, far address space)

• Data Type Qualifiers (eg. Circular Buffers, Saturated arithmetic)

Please see your TASKING documentation for details. You can use these
language extensions in your own Simulink blocks and / or custom code.

Target Optimized Libraries for Infineon XC166 and Infineon
TriCore
The following optimized libraries are available for the processors supported
by Embedded Coder software, and can be used to create optimized Simulink
blocks:

• Infineon XC166 DSP Library for TASKING compiler

This library is described by Infineon as follows:

46-72

Optimization

XC166 DSP library is a DSP function library, is C-callable, manually coded
assembly, general purpose signal processing routines:

- Arithmetic Functions

- Filters (FIR–, IIR–, Adaptive Filters)

- Transforms (FFT, IFFT)

- Matrix Operations

- Mathematical Operations

- Statistical Functions

See the Infineon C166 Software Downloads Web page to get the XC166
DSP Library. Navigate there from this URL:

http://www.infineon.com/c166

Click the link on the right: “Development Tools, Software and Training”,
then click “Software Downloads”.

• Infineon TriCore DSP Library (TriLib)

This library is described by Infineon as follows:

TriLib is a DSP Library for TriCore, containing more than 60 commonly
used DSP routines for

- Complex & Vector Arithmetic

- FIR, IIR, Adaptive Filters

- Fast Fourier, Discrete Cosine Transform

- Mathematical, Matrix, Statistical functions

See the Infineon TriCore Software Downloads page to get the TriLib DSP
Library. Navigate there from this URL:

http://www.infineon.com/tricore

Click the link on the right: “Development Tools, Software and Training”,
then click “Software Downloads”.

46-73

http://www.infineon.com/c166
http://www.infineon.com/tricore

46 Working with Altium TASKING IDE

Model Advisor
Following the suggestions in the Model Advisor report may result in faster
on-target execution. See “Consulting the Model Advisor” in the Simulink
documentation.

46-74

Tutorials

Tutorials

In this section...

“Tutorial: Using Option Sets” on page 46-75

“Tutorial: Creating New Template Projects” on page 46-76

“Tutorial: Configuring an Existing Model for Embedded Coder Software” on
page 46-81

Tutorial: Using Option Sets
Option sets are preconfigured settings to specify the target configuration for
the TASKING tools. You use option sets to apply EDE project settings (e.g.,
compiler and linker settings, hardware or simulator) that you can then modify
if you choose. For example, once you have set up your target preferences for
a TriCore configuration, you can use option sets to switch between using an
instruction set simulator configuration, two hardware board configurations,
or a simulator with some MISRA C rule checking.

To choose an option set:

1 Enter taskingutils in the Command Window.

The IDE Link Utilities for Use with Tasking dialog box appears.

2 Select Target Preferences from the list in the dialog box, and click OK.

The Target Preferences Configuration Selection dialog box appears.

3 Select a target configuration (e.g., C166, TriCore) from the list in the dialog
box, and click OK.

The Option Set Selection dialog box appears.

4 Select an option set. The list items are specific to the configuration you
selected; the available option sets are listed in “Option Sets” on page 46-24.
Click OK.

46-75

46 Working with Altium TASKING IDE

Your target preferences are automatically updated according to the option
set you select, and command line messages inform you the following target
preferences have changed:

• EDE_Configuration

Template_Application_Project: Set to default template application
project relating to the option set.

Template_Library_Project: Set to default template library project
relating to the option set.

• CrossView_Pro_Configuration

Initialization_File: Set to CrossView Pro (.st) initialization file
relating to the option set.

Now, when you build any model configured for the same target (e.g.,
TriCore), these project settings are used. To switch to a different option
set, repeat the steps.

You can also use option sets to set up an initial configuration when creating
new template projects. See “Tutorial: Creating New Template Projects” on
page 46-76.

Tutorial: Creating New Template Projects

• “Creating New Template Projects” on page 46-76

• “Creating a New Configuration” on page 46-80

Creating New Template Projects
In this tutorial, you create new template projects for a target configuration
and set up options such as simulator or hardware implementation, compiler
and linker settings, MISRA C rule checking, or any other project options.
Every time you build a model for the selected target configuration, the project
options you have set up in the new template projects are used.

46-76

Tutorials

Note You may want to create a new configuration to use with new template
projects. See the next section, “Creating a New Configuration” on page 46-80
for details.

To create custom application and library template projects:

1 Enter taskingutils in the Command Window.

The IDE Link Utilities for Use with Tasking dialog box appears.

2 Select Create New Template Projects from the list in the dialog box,
and click OK.

The Target Preferences Configuration Selection dialog box appears.

3 Select your target (e.g., TriCore), and click OK.

Your target preferences for the location of your TASKING installation
must be set up for the target configuration you choose (see “Setting Target
Preferences for Altium TASKING” on page 46-8).

a Make sure the fields are filled in for this configuration (except the
Application and Library Template Projects fields, and CrossView
Initialization field, which are autopopulated during the following steps).

b If your target preferences are set up correctly, your TASKING EDE
launches when you click OK.

4 When you are prompted, choose a location for the template projects, and
enter the template name.

5 When you are prompted, choose an option set. An option set delineates
options specific to your target, such as whether you want to use the
simulator or hardware. You can use these to set up an initial configuration
to modify later. See “Option Sets” on page 46-24 for more information and a
list of available option sets.

You now have custom template projects for this new configuration. The
EDE project settings associated with the option set are applied to the new

46-77

46 Working with Altium TASKING IDE

template projects. Messages at the command line inform you the following
target preferences have been automatically updated:

• EDE_Configuration

Template_Application_Project: Set to new template application
project configured by the option set.

Template_Library_Project: Set to new template library project
configured by the option set.

• CrossView_Pro_Configuration

Initialization_File: Set to CrossView Pro (.st) initialization file
configured by the option set.

Note You can always choose a preconfigured option set (from the
drop-down list of the Configuration field) to return to the default
settings.

Next, modify the compiler settings for these new template projects.

6 To modify the template projects, you need to open them in the TASKING
EDE:

a Enter taskingutils in the Command Window.

The IDE Link Utilities for Use with Tasking dialog box appears.

b Select Open Existing Template Projects from the list in the dialog
box, and click OK.

The Target Preferences Configuration Selection dialog box appears.

c Select the same target for which you created new template projects,
and click OK.

The template projects should now be open in the EDE.

46-78

Tutorials

Note Opening or making changes to template projects causes the
regeneration of application and library projects.

d Right-click the project in the TASKING EDE, and select Project
Options. You can now modify the project options (compiler settings,
linker settings, etc.).

Note When making any changes to template projects, it is important to
remove the project from the project space, to make sure your changes are
written to disk. Otherwise the changes may not be applied immediately.
To remove a current project from the project space, right-click on it and
choose Remove from Project Space.

e When done, close the template projects in the TASKING EDE.

7 To modify your CrossView Pro configuration (optional) you need to specify
a .ini file in the Initialization_File Target Preference field. See
Initialization in the section “Target Preference Fields” on page 46-10.

You are now ready to use the configuration.

8 Open any Simulink model that is configured with the Embedded Coder
component (tasking_demo_fuelsys, for example).

9 Select Simulation > Configuration Parameters. The Configuration
Parameters dialog box opens.

10 Select IDE Link on the left-side panel. When you select your target in
the Target Preference Configuration menu, the template projects you
have set up are used.

See “Tutorial: Creating New Template Projects” on page 46-76 for details
about how Embedded Coder software uses template projects during the build
process.

46-79

46 Working with Altium TASKING IDE

Creating a New Configuration
You can customize the default Target Preference configurations by choosing
from the preconfigured options sets, or by creating new template projects.

However, it may be useful to create a new Target Preference configuration if
you want to switch between them in the Target Preference Configuration
menu. For example, if your target is a TriCore processor, you could set up a
new configuration called TriCore_user to specify hardware settings for your
target; then you can easily switch between TriCore (the default instruction
set simulator configuration) and TriCore_user using the Target Preference
Configuration menu in your model’s Configuration Parameters dialog box.

In this tutorial, you create a new TASKING configuration and save it in the
target preferences. You can then use your new configuration in any Simulink
model that is configured with Embedded Coder software by selecting it in the
Target Preference Configuration menu.

To create a new configuration:

1 Enter taskingutils in the Command Window.

The IDE Link Utilities for Use with Tasking dialog box appears.

2 Select Target Preferences from the list in the dialog box, and click OK.

The Target Preferences Configuration Selection dialog box appears.

3 Select Create new Configuration, and click OK.

4 Expand Configuration_Options.

5 Type Tutorial in the Configuration_Description field.

6 Fill in the rest of the fields for this configuration. See “Setting Target
Preferences for Altium TASKING” on page 46-8 to set these fields properly.

a You must specify the location of your toolset, by filling in the path to the
CrossView_Pro_Executable, the DOL_File, and the EDE_Executable.

b You can set up the template projects and CrossView initialization fields
automatically in one of two ways:

46-80

Tutorials

• You can use the Start menu option Select Preconfigured Target
Preference Settings. See “Tutorial: Using Option Sets” on page
46-75 for instructions.

• You can create new template projects for this configuration. See
“Tutorial: Creating New Template Projects” on page 46-76.

If you are going to use either of these options you can leave the template
projects and CrossView initialization fields blank, because they will be
filled in automatically when you follow the steps in using option sets
or creating new template projects.

Click OK to close and save your target preferences.

7 After you save your target preferences, you can use the new Tutorial
configuration in any model that is configured with Embedded Coder
software. For example, open any of the Embedded Coder demo models
(such as tasking_demo_fuelsys).

8 Select Simulation > Configuration Parameters. The Configuration
Parameters dialog box opens.

9 Select IDE Link on the left-side panel. Click the Target Preference
Configuration menu, and notice that the Tutorial configuration now
appears in the list.

Tutorial: Configuring an Existing Model for
Embedded Coder Software
In this tutorial, you configure an existing fixed-point model and build it with
Embedded Coder software.

1 At the MATLAB command prompt, type rtwdemo_fixptdiv to open a
fixed-point demo model.

2 Switch the model to use Embedded Coder software as follows:

a Select Simulation > Configuration Parameters, and click Code
Generation.

b Click Browse and select ert.tlc (first item in the list). Click OK.

46-81

46 Working with Altium TASKING IDE

3 Select Tools > IDE Link > Add IDE Link Configuration to Model to
add the Embedded Coder configuration set to the model.

4 Open the Configuration Parameters dialog box again from the Simulation
menu, and verify that the Embedded Coder configuration set is now added
to the model. Select IDE Link from the left panel:

a Set the Build Action to Create and Build Application Project.

b Select the Target Preference Configuration to match your target.

c Select the check box option to Add Build Directory Suffix, and type
int in the Build Directory Suffix field.

d Under the Code Generation options, select Interface and clear
the check box for floating-point numbers support under Software
environment, because this model is fixed point. Clearing this option
instructs Simulink Coder software to avoid building the floating-point
version of the rtwlib library.

e Under Code Generation, select Hardware Implementation, and
select your device type. For example:

• For C166 platforms, select Infineon C16x, XC16x.

• For TriCore platforms, select Infineon TriCore.

• For ARM platforms, select ARM 7/8/9.

• For Renesas M16C, 8051 Compatible, or Freescale DSP563xx (16-bit
mode) platforms, select those options.

You are now ready to build the model. Press Ctrl+B or select
Tools > Code Generation > Build Model.

46-82

Code Generation Pane — IDE Link

Code Generation Pane — IDE Link

In this section...

“Overview” on page 46-84

“Build Action” on page 46-85

“Target Preference Configuration” on page 46-87

“Add build directory suffix” on page 46-88

“Build directory suffix” on page 46-89

“Export EDE handle to MATLAB base workspace” on page 46-90

“EDE handle name” on page 46-90

“Export CrossView Pro handle to MATLAB base workspace” on page 46-92

“CrossView Pro handle name” on page 46-92

“Configure model to build PIL algorithm object code” on page 46-94

46-83

46 Working with Altium TASKING IDE

Overview
Parameters for controlling Embedded Coder build configuration, export
handles, and processor-in-the-loop verification.

Configuration
This pane appears if you add the Embedded Coder configuration options
to a model with any system target file. To do this, select the menu item
Tools > Utilities for use with TASKING(R) IDE > Add IDE Link
Configuration to Model.

See Also
Working with Configuration Sets

46-84

Code Generation Pane — IDE Link

Build Action
Set what action to take after the Simulink Coder build process completes. You
can create application and library projects in the TASKING EDE and then
stop, or you can also choose to build, execute, or debug.

Settings
Default: Create Application Project

Create Application Project
Generate code for the model or subsystem, create a TASKING
application project for the selected TASKING configuration, connect to
the TASKING EDE, and open the application project (in addition to the
required Simulink Coder and DSP System Toolbox Library projects, if
required) in the TASKING EDE. This option does not build or execute
the application.

Create Library Project
Performs the same actions as Create Application Project, but this option
archives the generated code into a library in TASKING. No main.c
file is generated.

Create and Build Application Project
Performs the same actions as Create Application Project, but also
instructs TASKING to build the application project.

Create and Build Library Project
Performs the same actions as Create Library Project, but also instructs
TASKING to build the Library project.

Create, Build and Execute Application Project
Performs the same actions as Create and Build Application Project and
also downloads the executable file to your CrossView Target and runs
the executable. No debugging information is downloaded into the target
with this option.

Create, Build and Debug Application Project
Performs the same actions as Create, Build and Execute Application
Project but also downloads debugging information to the target. This
option behaves the same way as the Debug Application icon in the
TASKING EDE.

46-85

46 Working with Altium TASKING IDE

Tip
To manually debug the executable from the application project, use the Create
and Build Application Project option, then click the Debug Application icon
in the TASKING EDE

Dependency
This parameter is disabled by Configure model to build PIL algorithm
object code.

Command-Line Information

Parameter: TaskingBuildAction
Type: string
Value: 'Create Application Project' | 'Create Library Project'
| 'Create and Build Application Project' | 'Create and Build
Library Project' | 'Create, Build and Execute Application
Project' | 'Create, Build and Debug Application Project'
Default: 'Create Application Project'

Recommended Settings

Application Setting

Debugging ’Create, Build and Debug Application
Project’

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
Setting Build Action

46-86

Code Generation Pane — IDE Link

Target Preference Configuration
Select a configuration description, as defined in the Target Preferences, to
be used by the build action.

Settings
Default: 'Target Preference Configuration Not Set'

After you have set up target preferences for particular configurations, you
can select them here (e.g., 'c166'). The names in the list correspond to the
Configuration Description for each configuration in the IDE Link Target
Preferences dialog box. Click Edit Configuration to open the IDE Link
Target Preferences dialog box for the currently selected configuration. For
instructions, see Using Configuration Sets to Specify Your Target.

Command-Line Information

Parameter: TaskingConfiguration
Type: string
Value: 'Target Preference Configuration Not Set' | Any
"Configuration_Description" name defined in the IDE Link Target
Preferences (e.g. 'TriCore', 'C166', etc.)
Default: 'Target Preference Configuration Not Set'

See Also

• Using Configuration Sets to Specify Your Target

46-87

46 Working with Altium TASKING IDE

Add build directory suffix
Specify whether to add a model-specific suffix to the regular Simulink Coder
build folder suffix.

Settings
Default: Off

On
Specify a model-specific suffix to be added the regular Simulink Coder
build folder suffix. This setting is useful to avoid "shared utility
function" code generation errors which occur because of conflicts over
Simulink Coder utility functions shared between different models. A
typical conflict is between with models with floating-point number
support and those without. To resolve this conflict, you can add an ’fp’
suffix for floating-point models, and an ’int’ suffix for non-floating-point
models.

Off
Use the default Simulink Coder build folder suffix — not using an
additional suffix may result in rebuilding shared libraries unnecessarily.

Dependencies
This parameter enables Build directory suffix.

Command-Line Information

Parameter: TaskingSpecifyBuildSubDirName
Type: logical
Value: 0 | 1
Default: 0

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

46-88

Code Generation Pane — IDE Link

Application Setting

Efficiency On

Safety precaution No impact

See Also
Shared Libraries

Build directory suffix
Specify a model-specific suffix to be added the regular Simulink Coder build
folder suffix.

Settings
No Default

Enter a model-specific suffix to be added the build folder name. This setting is
useful to avoid "shared utility function" code generation errors which occur
because of conflicts over Simulink Coder utility functions shared between
different models.

Dependencies
This parameter is enabled by Add build directory suffix.

Command-Line Information

Parameter: TaskingBuildSubDirName
Type: string
Value: Any string composed of the following characters: [a-z_A-Z0-9]
Default: ''

See Also
Shared Libraries

46-89

46 Working with Altium TASKING IDE

Export EDE handle to MATLAB base workspace
Specify whether to export the EDE object handle to the workspace.

Settings
Default: On

On
Export a TASKING EDE object handle to the MATLAB base workspace
after the build process completes.

Off
Do not export the EDE object handle to the workspace.

Dependencies
This parameter enables EDE handle name.

Command-Line Information

Parameter: TaskingExportEDEHandle
Type: logical
Value: 0 | 1
Default: 1

See Also
Automation Interface

EDE handle name
Specify a name for the exported handle.

Settings
Default: ’EDE_Obj’

Specify the MATLAB base workspace variable name to export the handle to.

46-90

Code Generation Pane — IDE Link

Dependencies
This parameter is enabled by Export EDE handle to MATLAB base
workspace.

Command-Line Information

Parameter: TaskingExportEDEHandleName
Type: string
Value: Any valid MATLAB variable name (see MATLAB function:
isvarname)
Default: 'EDE_Obj'

See Also
Automation Interface

46-91

46 Working with Altium TASKING IDE

Export CrossView Pro handle to MATLAB base
workspace
Specify whether to export the CrossView Pro object handle to the workspace.

Settings
Default: On

On
Export the TASKING CrossView Pro object handle to the MATLAB base
workspace after the build process completes.

The handle is only exported if the build action launches CrossView Pro.

Off
Do not export the CrossView Pro object handle to the workspace.

Dependencies
This parameter enables CrossView Pro handle name.

Command-Line Information

Parameter: TaskingExportCrossViewHandle
Type: logical
Value: 0 | 1
Default: 1

See Also
Automation Interface

CrossView Pro handle name
Specify a name for the exported handle.

Settings
Default: ’XView_Obj’

46-92

Code Generation Pane — IDE Link

Specify the MATLAB base workspace variable name to export the handle to.

Dependency
This parameter is enabled by Export CrossView Pro handle to MATLAB
base workspace.

Command-Line Information

Parameter: TaskingExportCrossViewHandleName
Type: string
Value: Any valid MATLAB variable name (see MATLAB function:
isvarname)
Default: 'XView_Obj'

See Also
Automation Interface

46-93

46 Working with Altium TASKING IDE

Configure model to build PIL algorithm object code
Specify whether to build Processor-in-the-Loop (PIL) algorithm code.

Settings
Default: Off

On
Configure the model to build PIL algorithm code that is suitable for use
with the PIL block.

Off
Do not build PIL algorithm code.

Dependency
This parameter disables Build action.

See Also
Processor-in-the-Loop (PIL) Simulation

46-94

Limitations and Tips

Limitations and Tips

In this section...

“General Issues” on page 46-95

“Debugger Issues” on page 46-97

“Build Process Issues” on page 46-98

“Processor-in-the-Loop Issues” on page 46-107

“Issues Using Simulink® Coder Software Without Embedded Coder
Software” on page 46-110

General Issues

• “IDE Link TASKING requires User Account Control (UAC) to be disabled
when using Windows 7” on page 46-95

• “Problems with Installations in Read-Only Locations” on page 46-95

• “Simulink Configuration Set Reference Not Supported” on page 46-96

• “Serialization of Embedded Coder Objects Not Supported” on page 46-96

• “Avoid Spaces in Environment Variables Used by tempname and tempdir
Functions” on page 46-97

IDE Link TASKING requires User Account Control (UAC) to be
disabled when using Windows 7
Communication between MATLAB and the TASKING CrossView Pro
debugger requires Windows 7 UAC to be disabled. You can disable UAC by
adjusting the settings in the Windows 7 User Account Control Settings dialog
and restarting your computer. Alternatively, you can disable UAC for a single
Command Prompt session (and any MATLAB processes started from that
session) by right-clicking on the Command Prompt icon and selecting “Run as
administrator”. Note that only Windows 7 32-bit is supported.

Problems with Installations in Read-Only Locations
The process to build models works correctly when Embedded Coder software
is installed in a read-only location because the template projects are copied

46-95

46 Working with Altium TASKING IDE

to the working folder during the process. However, installing Embedded
Coder software in a read-only location (e.g. read-only network) causes the
following problems:

• Template project generation fails because the function
tasking_generate_templates attempts to write to the installation
location.

• Opening existing template projects may fail because the TASKING EDE
attempts to write to the installation location.

To resolve this issue:

• Do not install Embedded Coder software in a read-only location

• Avoid updating or opening the template projects or temporarily allow write
access to the read-only installation location while doing so.

• Create new template projects in a writable location rather than attempting
to update the default template projects.

Simulink Configuration Set Reference Not Supported
The Simulink Configuration Set Reference feature is not supported by
Embedded Coder software.

For Embedded Coder software, make sure your model’s configuration set
objects are "Simulink.ConfigSet" objects and not "Simulink.ConfigSetRef"
objects.

Serialization of Embedded Coder Objects Not Supported
Serialization (saving and loading to MATLAB .mat file) of the objects provided
with Embedded Coder software (e.g., tasking.edeapi, tasking.xviewapi) is not
possible. If you attempt to load a serialized object from a .mat file you may
see the Target Preferences Configuration Selection GUI, warning or error
messages, or both.

In some circumstances, a product (for example the SystemTest™ product)
or a user script may automatically save all contents of the MATLAB base
workspace to a .mat file. In this case, it may be useful to turn off the "Export
Handles" settings in the Embedded Coder configuration set component. Doing

46-96

Limitations and Tips

so stops EDE and CrossView Pro objects from being exported to the base
workspace at the end of a Embedded Coder build process and thus avoids
potential serialization problems.

Avoid Spaces in Environment Variables Used by tempname and
tempdir Functions
The MATLAB functions tempname and tempdir use the TEMP or TMP
environment variables. If the TEMP or TMP environment variables contain
spaces, in Embedded Coder with TASKING, the software does not support
spaces in the TEMP or TMP environment variables. The tempname and
tempdir functions use the TEMP or TMP environment variables.

For example, if you use tempdir and the TEMP environment variable contains
a space, the software creates a corrupt filename.

Debugger Issues

• “ARM CrossView Pro Debugger Fails with File | Open Source Content” on
page 46-97

• “On-Chip Debugging/On-Chip PIL Not Supported on ARM Hardware” on
page 46-98

ARM CrossView Pro Debugger Fails with File | Open Source
Content
Due to a CrossView Pro bug, the File | Open Source menu item of the ARM
CrossView Pro debugger may fail to open the specified source file. Instead,
you may see a blank window or the wrong source file may be opened.

This limitation can affect the Traceability feature from the model to the code
in CrossView. If you right-click on a block in the Simulink model and select
IDE Link > See Code in CrossView Pro, this operation might not work as
expected because the source file cannot be opened.

To work around this issue, you can set a breakpoint in the source file that is
initially visible during debugging and step into other source files from there.

46-97

46 Working with Altium TASKING IDE

On-Chip Debugging/On-Chip PIL Not Supported on ARM
Hardware
For ARM processors the CrossView Pro instruction set simulator can be
used for debugging and processor-in-the-loop (PIL) simulation, but there is
currently no on-chip debugging or PIL support.

To resolve this problem:

• You can contact TASKING for the latest information on CrossView Pro
on-chip debugging support for ARM hardware.

• You can contact Hitex for a solution to debug an application generated by
Embedded Coder software on ARM hardware, however this solution cannot
provide PIL support.

Build Process Issues

• “Linker Errors Due to Limited Memory” on page 46-99

• “EDE Is Slow, Unresponsive, or Crashes” on page 46-99

• “DSP System Toolbox Library Build Failures” on page 46-100

• “Memory Block Freed Twice Error” on page 46-100

• “8051 EDE Cannot Compile Files with Long Names” on page 46-100

• “DSP563xx Toolset Support Limitations” on page 46-101

• ““Create, Build and Execute Application Project” Build Action Fails” on
page 46-101

• “C166 Toolset Warnings” on page 46-102

• “Build Error From Root Drive Location” on page 46-102

• “Limited Support for Nonfinite Values” on page 46-103

• “Memory Warning/Error Messages in the CrossView Pro Command
Window When Using the Instruction Set Simulator” on page 46-105

• “C++ Code Generation Not Supported” on page 46-105

46-98

Limitations and Tips

• “Computer Vision System Toolbox Library Not Supported” on page 46-106

• “Noninlined S-functions Calling rt_matrx.c Not Supported” on page 46-106

• ““Compiler optimization level” Configuration Parameter Has No Effect”
on page 46-106

• “Configuration Changes Cause Build Errors With Referenced Models” on
page 46-107

Linker Errors Due to Limited Memory
The Embedded Coder software supports a variety of targets (instruction set
simulators and embedded hardware) with a range of capabilities. Some demo
models and user-created models may fail to build for certain targets owing
to a lack of available target memory. In such cases you see linker errors like
the following:

Linking and locating to t_pil_lib_alg_pil.out
E 268: relative linear element 'section T_PIL_LIB_ALG_4_NB class
CNEAR' cannot be located within 4 pages
total errors: 1, warnings: 0
wmk: *** action exited with value 1.

To work around such errors you must do one of the following:

1 Modify the model to reduce memory requirements (for example, by
optimizing the algorithm, or by using smaller datatypes).

2 Alternatively, modify the target configuration to make more memory
available (for example, by using a hardware board with more memory, or
changing the memory map to allow extra memory to be used).

In some cases it may not be possible to resolve the problem, because the
algorithm represented by the model is too complex for the target.

EDE Is Slow, Unresponsive, or Crashes
Under certain circumstances the TASKING EDE may become slow,
unresponsive, or even terminate with virtual memory problems. This
limitation is an open issue with the TASKING EDE (for all supported tool
suites).

46-99

46 Working with Altium TASKING IDE

To resolve this issue, take one or both of the following actions:

• Close the EDE and try building the model again

• Try deleting the symbol database file, cwright.sbl, which can be found in
the EDE_Executable folder ($TASKINGRootDir\bin)

DSP System Toolbox Library Build Failures
The following problem has been found with DSP System Toolbox product
(“DSP lib”) library builds.

With Renesas M16C, building the DSP System Toolbox library with floating
point support enabled results in the following error:

TASKING program builder v3.1r1 Build 076 SN 00100552
Assembling qrdc_z_rt.src asm16c E219:
["qrdc_z_rt.src" 1692] expression out of range
(0 and FF hexadecimal)wmk:
*** action exited with value 1.

This limitation is a known issue with the Renesas 16C compiler. To resolve
this issue, disable floating point support in the model.

Memory Block Freed Twice Error
Occasionally, when Embedded Coder software is creating projects in the
TASKING EDE, the following error appears: Memory block freed twice.
This limitation is a known issue with the TASKING EDE.

To work around the problem, click OK in the error dialog box, and the code
generation process continues as normal.

8051 EDE Cannot Compile Files with Long Names
If you encounter this problem, you receive an error message similar to the
following:

Assembling tasking_fuel_controller_ert_rtw_pil_cstart.src

asm51 E001: tasking_fuel_controller_ert_rtw_pil_cstart.src: line 1:

syntax error

wmk: *** action exited with value 1.

46-100

Limitations and Tips

This message indicates that the full path of the model or subsystem you are
trying to build is too long.

To resolve this issue, consider moving the model to a shorter folder name, or
renaming the model, subsystem, or both to use shorter names.

DSP563xx Toolset Support Limitations
The following limitations affect use of the DSP563xx Toolset:

• Only 16-bit mode for the DSP563xx Family is supported. Simulink Coder
grt.tlc-based targets and the "GRT Compatible Call interface" option
in the Code Generation > Interface settings are not supported. This
limitation is because of the non-standard size of single- and double-precision
floating-point datatypes on this architecture (tmwtypes.h will not compile)

• The DSP5600x Toolset is NOT supported because none of the processors
supported by this toolset have 16-bit memory models.

• Both 16-bit memory models of the DSP563xx Family produce watch errors
(wrong values displayed) in CrossView Pro because of an issue with the
TASKING toolset. CrossView Pro does not know that the datatype sizes
should be different according to the selected memory model. This issue
does not affect the DSP566xx Family.

There are no resolutions for this issues.

“Create, Build and Execute Application Project” Build Action
Fails
Tool Suites: Renesas M16C

With the Renesas M16C tool suite, if you are executing the application project,
rather than debugging (via “Create, Build and Debug Application Project”),
this does not work correctly. The application does not execute. This issue
occurs because the CrossView Pro Simulator does not know the start address
when debugging information is not loaded.

To resolve this issue, perform the following steps after CrossView Pro
launches:

46-101

46 Working with Altium TASKING IDE

1 Stop execution by clicking the Halt button.

2 Execute the following command in the CrossView Pro command window to
determine the application entry point stored at location 0xfffffc:

*((unsigned long *)0xfffffc)/x

Example output for this command is:

0xfffffc = 0x000d0000

3 Change the execution position to the application entry point by executing
the "gi" command, using the output of the previous command. For
example, 0xd0000 gi

4 Resume execution by clicking the Run/Continue button.

Alternatively, use the “Create, Build and Debug Application Project” build
action.

C166 Toolset Warnings
When using the C166 toolset you may see warnings similar to the following:

Warning: missing "sdc_lia" or "sdc_lip" lifetime record

This warning is caused by a problem with the TASKING toolset and has
been registered with Altium as PR35043. It is related to debug life time
information.

The warning can be ignored safely.

Build Error From Root Drive Location
On the C166 and 8051 platforms, a limitation of the TASKING toolset may
cause build errors if you build from a root drive location such as c:\ or d:\.

Following is an example error with the C166 toolset:

cc166: E 014: invalid control:

Files\MATLAB\R2007a_nortwec\toolbox\rtw\targets\c166\c166demos" -Wcp"-IC:\Program

wmk: *** action exited with value 1.

46-102

Limitations and Tips

Workaround: Always build from a sub-folder location such as c:\work or
d:\MATLAB\work.

Limited Support for Nonfinite Values
Nonfinite values in your model may cause wrong results, linking errors or
compilation errors. See below for a possible workaround if your target is
a TriCore or ARM platform.

Linking Errors. If you encounter similar linking errors when building your
model:

undeclared identifier "rtMinusInf"
undeclared identifier "rtNaN"
undeclared identifier "rtInf"

then this means that:

• Your model uses nonfinite values, and

• You are using a stubbed version of rt_nonfinite.c which does not define
rtMinusInf, rtNan, or the other nonfinite identifiers required by Simulink
Coder software.

To resolve this issue:

• Do not use nonfinite values in the model. Such values are not desirable for
embedded applications. Nonfinite elements on targets other than TriCore
or ARM are not supported with Embedded Coder software.

• If you want to use nonfinite values and your target is a TriCore or ARM
platform, then you can use the following workaround. You do not need to
use a stubbed version of rt_nonfinite.c because the default one should
compile correctly on this 32-bit target. In the configuration set, under
Code Generation in TLC Options,

1 Remove -aCustomNonFinites="genrtnonfinite_stub.tlc".

2 Delete the generated rt_nonfinite.c file in the build area before
attempting to build the model again. This procedure should generate
a new rt_nonfinite.c file that correctly defines the undeclared
identifiers.

46-103

46 Working with Altium TASKING IDE

Compilation Errors. If you encounter compilation errors in rt_nonfinite.c
similar to the following:

Compiling and assembling rt_nonfinite.c

..\..\slprj\ert_c167cs_sim_sharedutils\rt_nonfinite.c:

47: uint32_T fraction : 23;

E 134: bitfield size out of range - set to 1

57: uint32_T fraction1 : 20;

E 134: bitfield size out of range - set to 1

69: (*(LittleEndianIEEESingle*)&rtNaN).fraction = 0x7FFFFF;

W 195: constant expression out of range -- truncated

78: (*(LittleEndianIEEESingle*)&rtNaN).fraction = 0x7FFFFF;

W 195: constant expression out of range -- truncated

89: (*(LittleEndianIEEEDouble*)&rtNaN).wordL.fraction1 = 0xFFFFF;

W 195: constant expression out of range -- truncated

90: (*(LittleEndianIEEEDouble*)&rtNaN).wordH.fraction2 = 0xFFFFFFFF;

W 196: constant expression out of range due to signed/unsigned type mismatch

98: uint32_T fraction : 23;

E 134: bitfield size out of range - set to 1

105: uint32_T fraction1 : 20;

E 134: bitfield size out of range - set to 1

118: (*(BigEndianIEEESingle*)&rtNaN).fraction = 0x7FFFFF;

W 195: constant expression out of range -- truncated

127: (*(BigEndianIEEESingle*)&rtNaN).fraction = 0x7FFFFF;

W 195: constant expression out of range -- truncated

138: (*(BigEndianIEEEDouble*)&rtNaN).wordL.fraction1 = 0xFFFFF;

W 195: constant expression out of range -- truncated

139: (*(BigEndianIEEEDouble*)&rtNaN).wordH.fraction2 = 0xFFFFFFFF;

W 196: constant expression out of range due to signed/unsigned type mismatch

total errors: 4, warnings: 8

wmk: *** action exited with value 1.

wmk: *** action exited with value 1.

then this issue indicates that you are compiling the default Simulink Coder
rt_nonfinite.c on a target that does not support it. The only targets which
can compile the default rt_nonfinite.c are the TriCore and ARM platforms.
Nonfinite elements on targets other than TriCore or ARM platforms are not
supported with Embedded Coder software.

To resolve this issue, follow these steps:

46-104

Limitations and Tips

1 Make sure you are using the stubbed out version of this file. In the
configuration set, under Code Generation in TLC Options, add the
following: -aCustomNonFinites="genrtnonfinite_stub.tlc"

2 Delete the rt_nonfinite.c file from the build area before attempting to
rebuild the model in the same build area.

Memory Warning/Error Messages in the CrossView Pro
Command Window When Using the Instruction Set Simulator
Due to a limitation in the TASKING C166 toolset you may see messages
similar to the following in the CrossView Pro command window during
execution of an application in the instruction set simulator:

GPR registers could not be scheduled to 0xF200
GPR registers could not be scheduled to 0xF220

and

Reading register "R0" (0) failed: memory failure at
memory space 0 range 0x00FC00-0x00FC01

These messages occur because the CrossView Pro feature "Use map file for
memory map" does not work correctly.

The workaround suggested by Altium is to not use this feature, in which case
the debugger assumes that the entire memory range that the processor can
address is available to the application.

You can create custom Embedded Coder template projects and a custom
CrossView Pro initialization file to disable this feature. For example, in the
custom template application project, uncheck the project option, CrossView
Pro > Initialization > Use map file for memory mapping.

C++ Code Generation Not Supported
C++ code generation is not supported. If you try to use this option, you see
an error message like the following:

IDE Link does not support the Simulink Coder C++ Target
Language option. Please set the "Language" setting to
"C" in the configuration parameters of

46-105

46 Working with Altium TASKING IDE

the model.

There is no resolution for this issue.

Computer Vision System Toolbox Library Not Supported
The Computer Vision System Toolbox library is not supported by Embedded
Coder software. If you include blocks from the Computer Vision System
Toolbox library in your model then you may see compilation or link errors.

There is no resolution for this issue.

Noninlined S-functions Calling rt_matrx.c Not Supported
Noninlined S-functions that use routines in rt_matrx.c are not supported
because rt_matrx.c contains functions that can allocate memory dynamically.
Embedded Coder software does not support dynamic memory allocation. You
may see errors like the following:

Linking and locating to rt_matrx_test.out
E 222: module _nmalloc.obj (_NMALLOC_C):
symbol '?C166_NHEAP_TOP': unresolved
E 222: module _nmalloc.obj (_NMALLOC_C):
symbol '?C166_NHEAP_BOTTOM':

unresolved
total errors: 2, warnings: 0

There is no resolution for this issue.

“Compiler optimization level” Configuration Parameter Has
No Effect
When using Embedded Coder software, the Simulink Coder Configuration
Parameter Compiler optimization level has no effect on the building of
generated code in the TASKING EDE.

The Embedded Coder template projects specify the compiler and linker
settings used for building the generated code. See “Tutorial: Creating New
Template Projects” on page 46-76 for more information, and “Tutorial:
Creating New Template Projects” on page 46-76 for instructions on
customizing settings.

46-106

Limitations and Tips

Configuration Changes Cause Build Errors With Referenced
Models
If you build a model hierarchy, and then change your option set or template
application project before rebuilding, you see build errors like the following:

Simulink Configuration Parameter settings for the model
'rtwdemo_pil_link_ts' and model
'rtwdemo_pil_component_mid1_link_ts' are incompatible.
The Link or Target product settings in the configuration set
for the two models result in different build folders
for the model reference code:

rtwdemo_pil_link_ts : slprj\ert_c167cs_sim\...
rtwdemo_pil_component_mid1_link_ts : slprj\ert_c167cs_hw\...

Please check that the two models have compatible Link and
Target settings.

To work around this problem, change to a clean work folder after changing
your target preferences and before rebuilding. Alternatively, update all
models and then they will rebuild correctly with the new settings.

Processor-in-the-Loop Issues

• “Generic PIL Issues” on page 46-108

• “On-Chip PIL Not Supported on ARM Hardware” on page 46-108

• “10-Second Pause on Termination of the CrossView Pro Debugger” on
page 46-108

• “DSP563xx Link-Order Issue Can Cause PIL Application Failure” on page
46-108

• “No Support for TASKING Feature “Treat double as float”” on page 46-109

• “TASKING Optimization Settings May Cause Incorrect Simulation
Results” on page 46-110

46-107

46 Working with Altium TASKING IDE

Generic PIL Issues
See the Support Table section in the Embedded Coder documentation for
general PIL feature support information affecting the PIL block with Link
products. See “SIL and PIL Simulation Support and Limitations” on page
39-60.

On-Chip PIL Not Supported on ARM Hardware
For ARM processors the CrossView Pro instruction set simulator can be
used for debugging and processor-in-the-loop (PIL) simulation, but there is
currently no on-chip debugging or PIL support.

See “On-Chip Debugging/On-Chip PIL Not Supported on ARM Hardware” on
page 46-98 for solutions for this issue.

10-Second Pause on Termination of the CrossView Pro
Debugger
When you terminate an instance of the CrossView Pro debugger application
that was launched by Embedded Coder software, there is a pause of about
10 seconds before the CrossView Pro window closes. This 10-second pause
is the intended behavior of CrossView Pro when acting as a COM server.
CrossView Pro pauses for the 10 seconds to wait for clients such as MATLAB
to release their COM references.

DSP563xx Link-Order Issue Can Cause PIL Application Failure
When building PIL applications for DSP563xx you may see linker errors
similar to the following example:

lk563 E208 (0): Found unresolved external(s):

FDotProduct_s32s16 - (fuelsys0.a:fuelsys0.obj)

FLook2D_S16_S16_S16_SAT - (fuelsys0.a:fuelsys0.obj)

FBINARYSEARCH_S16 - (fuelsys0.a:fuelsys0.obj)

FINTERPOLATE_S16_S16_SAT - (fuelsys0.a:fuelsys0.obj)

FINTERPOLATE_EVEN_S16_S16_SAT - (fuelsys0.a:fuelsys0.obj)

wmk: *** action exited with value 1.

To resolve this issue, contact TASKING for a patch to make it possible to use
the multipass option to rescan multiple libraries.

46-108

Limitations and Tips

No Support for TASKING Feature “Treat double as float”
You can enable the feature in a TASKING project to treat the double-precision
floating point datatype “double” as the single-precision floating point datatype
“float”. Usually, this means that double-precision floating point datatypes are
represented in 4 bytes rather than 8 bytes.

PIL always assumes that the “double” datatype is represented normally.
If you enable the “Treat double as float” override, PIL does not correctly
transfer “double” datatypes between host and target, and unexpected data
transfer errors occur during simulation. The default templates that ship
with Embedded Coder software do not enable the override “Treat double as
float” project option.

46-109

46 Working with Altium TASKING IDE

To resolve this issue:

• Do not use the option to treat “double” as “float”. In this case, double
precision floating point values are represented normally.

• Use the “single” datatype in Simulink rather than “double”. In this case,
the option to treat “double” as “float” will have no effect on PIL, because no
“double” datatypes are used.

This is an example of the wider issue of problems caused by mismatching
datatypes on host and target. For more details, see “Data Type Size
Mismatch Issues (Embedded Targets)” on page 39-86 in the Embedded Coder
documentation.

TASKING Optimization Settings May Cause Incorrect Simulation
Results
Sometimes, you may observe differences between simulation and PIL
simulation results. The code compiled and running in the TASKING
environment may not always behave correctly, even when the generated code
is correct. One cause of this issue, particularly with the TriCore toolset, is the
compiler optimization configuration used to build the generated code.

If you see differences between simulation and PIL simulation results, to
resolve this issue try setting the compiler optimization settings in the
template projects to either No optimization, Debug purpose, or a similar
equivalent for your TASKING toolset. Then, build the PIL algorithm and PIL
application again and try repeating the simulation.

To create new template projects and modify their project settings see
“Tutorial: Creating New Template Projects” on page 46-76.

Issues Using Simulink Coder Software Without
Embedded Coder Software

• “Simulink® Coder grt.tlc-Based Targets Not Supported for PIL” on page
46-111

• “DSP563xx Toolset Support Limitations” on page 46-111

• “Use ERT Target for Memory-Constrained Targets” on page 46-111

46-110

Limitations and Tips

• “8051 GRT Limitations” on page 46-112

Simulink Coder grt.tlc-Based Targets Not Supported for PIL
Simulink Coder “grt.tlc”-based targets are not supported for PIL.

To resolve this issue, use a Simulink Coder “ert.tlc”-based target.

DSP563xx Toolset Support Limitations
Only 16-bit mode for the DSP563xx Family is supported. Simulink Coder
grt.tlc-based targets and the "GRT Compatible Call interface" option in
the Simulink Coder Interface settings are not supported. This limitation is
because of the nonstandard size of single- and double-precision floating-point
datatypes on this architecture (tmwtypes.h does not compile).

You must use 16–bit mode.

Use ERT Target for Memory-Constrained Targets
Some targets such as the TASKING TriCore 1766B have memory constraints
that can cause errors if you use the GRT target.

The 1766b has no external memory. You should use ERT rather than GRT
when targeting this board, due to memory resource constraints. If you use the
GRT target you may see compilation errors similar to the following example:

ltc E117: conflicting restriction for sections ".text.libc" and
".text.trapvec.000": absolute restrictions overlap

This problem occurs because the ERT (embedded real time) target is optimized
for size and speed, while the GRT (generic real time) target is designed for
ease of prototyping which incurs extra memory usage.

Use the ERT target for memory-constrained targets such as the TASKING
TriCore 1766B.

See also “Linker Errors Due to Limited Memory” on page 46-99.

46-111

46 Working with Altium TASKING IDE

8051 GRT Limitations
Working with the 8051 has some limitations when using GRT.

CrossView Pro Parameters. GRT application builds link against an
example main (grt_main.c) file which includes a main function with argc
and argv parameters for handling command-line arguments. When executing
the application in CrossView Pro, these parameters are uninitialized and
application execution terminates early. This behavior differs from that of
other toolsets, where these parameters are initialized to 0 (argc) and the
null pointer (argv).

To work around this issue on 8051, you can manually set argc to 0 in
CrossView Pro before beginning execution.

Alternatively, you can create a library project for algorithm export that does
not link against grt_main.c— see “Setting Build Action” on page 46-18 for
more detail.

DSP System Toolbox Software. The DSP System Toolbox library fails to
build for GRT models with the 8051 toolset. Certain datatypes required by
the DSP System Toolbox software, for example, real64_T, are not defined by
Simulink Coder software for this configuration.

Use a Embedded Coder, ERT-based target, rather than a GRT-based target.

46-112

47

Working with Analog
Devices VisualDSP++ IDE

• “Getting Started” on page 47-2

• “Automation Interface” on page 47-7

• “Project Generator” on page 47-30

• “Reported Limitations and Tips” on page 47-40

47 Working with Analog Devices™ VisualDSP++® IDE

Getting Started

In this section...

“Overview” on page 47-2

“Software Structure and Components” on page 47-3

“Software Requirements” on page 47-5

“Installation and Configuration” on page 47-6

Overview
Embedded Coder software provides a connection between MATLAB and the
VisualDSP++ IDE to enable you to access the processor from MATLAB. You
can, manipulate data on the processor, and manage projects within the IDE,
while simultaneously utilizing the MATLAB tools of numerical analysis and
simulation. Using Embedded Coder software, you can perform the following
tasks, and others related to Model-Based Design:

• Function calls — Write scripts in MATLAB software to execute any
function in the VisualDSP++ IDE

• Automation — Write automated tests in MATLAB software to be executed
on your processor, including control and verification operations

• Host-Processor Communication — Communicate with the processor
directly from MATLAB software, without going to the IDE

• Verification and Validation

- Load and execute projects into the VisualDSP++ IDE from the MATLAB
command line

- Build and compile code, and then use vectors of test data and parameters
to test the code

- Build and compile your code, and then download the code to the
processor and execute it

• Design models — Design models and algorithms in MATLAB and Simulink
software and run them on the processor

47-2

Getting Started

• Generate code— Generate executable code for your processor directly from
the models designed in Simulink software, and execute it

Embedded Coder software connects MATLAB software and Simulink software
with Analog Devices VisualDSP++ integrated development and debugging
environment from Analog Devices. Embedded Coder software enables you to
use MATLAB and Simulink software to debug and verify embedded code
running on all Analog Devices DSPs that VisualDSP++ software supports,
such as the Analog Devices™ Blackfin®, Analog Devices™ SHARC® and Analog
Devices™ TigerSHARC® processor families.

Embedded Coder software includes a project generator component. With the
project generator component, you can generate a complete project for the
VisualDSP++ IDE from your Simulink software models, including ANSI C
code generated with Simulink Coder software. Thus, you use the Simulink
Coder and Embedded Coder software to generate generic ANSI C code projects
for VisualDSP++ software from models. You can then build and run these
projects on Blackfin, SHARC®, and TigerSHARC® processors.

The following list suggests some of the uses for the capabilities of the software:

• Create test benches in MATLAB and Simulink software for testing your
manually written or automatically generated code running on ADI DSPs

• Generate code and project files for VisualDSP++ software from Simulink
models for rapid prototyping or deployment of a system or application

• Build, debug, and verify embedded code on ADI DSPs

• Perform processor-in-the-loop (PIL) testing of embedded code

Software Structure and Components

• “Automation Interface” on page 47-4

• “Project Generator” on page 47-4

• “Verification” on page 47-5

Embedded Coder software comprises components—the Automation Interface
component, the Project Generation component, and the Verification
component. The Automation Interface component enables communication

47-3

47 Working with Analog Devices™ VisualDSP++® IDE

between MATLAB software and Embedded Coder software. The Project
Generation component leverages Simulink software and lets you build models,
simulate them, and generate code from the models directly to the processor.

The Verification component offers capabilities that help you use Model-Based
Design to validate and verify your projects. With the Verification component,
you can simulate algorithms and processes in Simulink models and
concurrently on your processor. Comparing the results helps verify the
fidelity of you model or algorithm code.

Automation Interface
The Automation Interface component allows you to use Embedded Coder
functions and methods to communicate with the VisualDSP++ IDE to perform
the following tasks:

• Automate project management

• Debug programs

• Manipulate the data in the processor internal and external memory, and
in the registers

• Communicate between the host and processor applications

The Debug Component of automation interface includes methods and
functions for project automation, debugging, and data manipulation.

Project Generator
The Project Generator component comprises methods that utilize the
VisualDSP++ API to create projects in VisualDSP++ software and generate
code with Simulink Coder and Embedded Coder software. With the interface,
you can do the following:

• Automatic project-based build process — Automatically create and build
projects for code generated by Simulink Coder or Embedded Coder software.

• Custom code generation — Use System Target Files (STF) to generate
processor-specific and optimized code.

47-4

Getting Started

• Automatic downloading and debugging — Debug generated code in the
VisualDSP++ debugger, using either the instruction set simulator or real
hardware.

• Create and build projects for VisualDSP++ software from Simulink models
— Project Generator uses Simulink Coder or Embedded Coder software to
build projects that work with Analog Devices processors.

• Generate custom code using the Configuration Parameters in your model
with the system target files vdsplink_ert.tlc and vdsplink_grt.tlc.

Verification
Verifying your processes and algorithms is an essential part of developing
applications. The components of Embedded Coder software combine to provide
the following verification tools for you to apply as you develop your code:

Processor-in-the-Loop Simulation. Use simulation techniques to verify
generated code running in an instruction set simulator or real hardware
environment.

Task Execution and Stack Usage Profiling. Gather execution profiling
measurements with VisualDSP++ instruction set simulator to establish
the timing requirements of your algorithm. Also, verify the stack usage is
appropriate and as expected.

Software Requirements
For detailed information about the software and hardware required to use
Embedded Coder software, refer to the Embedded Coder system requirements
areas on the MathWorks Web site:

• Requirements for Embedded Coder:
www.mathworks.com/products/ide-link/requirements.html

• Requirements for use with VisualDSP++:
www.mathworks.com/products/ide-link/adi-adaptor.html

47-5

http://www.mathworks.com/products/ide-link/requirements.html
http://www.mathworks.com/products/ide-link/adi-adaptor.html

47 Working with Analog Devices™ VisualDSP++® IDE

Installation and Configuration

1 Install VisualDSP++ according to the instructions provided with that
software.

2 Enter adivdspsetup on the MATLAB command line.

3 Use Browse to locate the system folder for Analog Devices VisualDSP++.
This action registers the Embedded Coder with that IDE.

4 Confirm that the installation works by entering IDE_Obj = adivdsp on
the MATLAB command line. This action creates an IDE handle object for
VisualDSP++ in MATLAB, and starts VisualDSP++.

47-6

Automation Interface

Automation Interface

In this section...

“Getting Started with Automation Interface” on page 47-7

“Constructing Objects” on page 47-22

“Properties and Property Values” on page 47-23

“adivdsp Object Properties” on page 47-27

Getting Started with Automation Interface

• “Introducing the Automation Interface Tutorial” on page 47-7

• “Running the Interactive Tutorial” on page 47-10

• “Selecting Your Session and Processor” on page 47-11

• “Querying Objects for VisualDSP++ IDE” on page 47-12

• “Loading Files into VisualDSP++ IDE” on page 47-14

• “Running the Project” on page 47-15

• “Working with Global Variables and Memory” on page 47-16

• “Working with Local Variables and Memory” on page 47-18

• “Closing Files and Projects” on page 47-20

• “Closing the Connections or Cleaning Up VisualDSP++ Software” on page
47-21

• “Tutorial Summary” on page 47-22

Introducing the Automation Interface Tutorial
Embedded Coder software provides a connection between MATLAB software
and a processor in VisualDSP++ software. You can use objects as a
mechanism to control and manipulate a signal processing application using
the computational power of MATLAB software. This approach can help you
while you debug and develop your application. Another possible use for
automation is creating MATLAB scripts that verify and test algorithms that
run in their final implementation on your production processor.

47-7

47 Working with Analog Devices™ VisualDSP++® IDE

Note Before using the functions available with the objects, you must select
a session in the VisualDSP++ IDE. The object you create is specific to a
designated session in VisualDSP++ IDE.

To get you started using objects for VisualDSP++ software, Embedded Coder
software includes an example script vdspautointtutorial.m. As you work
through this tutorial, you perform the following tasks that step you through
creating and using objects for VisualDSP++ IDE.

1 Select your session.

2 Create and query objects to VisualDSP++ IDE.

3 Use MATLAB software to load files into VisualDSP++ software IDE.

4 Work with your VisualDSP++ IDE project from MATLAB software.

5 Close the connections you opened to VisualDSP++ IDE.

You use these tasks in any development work you do with signal processing
applications. Thus, the tutorial provided here gives you a working process and
best practice for using Embedded Coder software and your signal processing
programs to develop programs for a range of Analog Devices processors.

The tutorial covers some methods and functions for Embedded Coder software.
The functions listed first do not require an adivdsp object. The methods listed
require an existing adivdsp object before you can use the function syntax.

Functions for Working with VisualDSP++ Software. The following table
shows functions that do not require an object.

Function Description

listsessions Return information about the boards that
VisualDSP++ IDE recognizes as installed on
your PC.

adivdsp Construct an object that refers to a VisualDSP++
IDE session. When you construct the object you
specify the session by processor.

47-8

Automation Interface

Methods for Working with adivdsp Objects in VisualDSP++ Software.
The following table presents some of the methods that require an adivdsp
object.

Methods Description

add Add a file to a project

address Return the address and page for an entry in the
symbol table in VisualDSP++ IDE

build Build the project in VisualDSP++ software

cd Change the working folder

display Display the properties of an object that references
a VisualDSP++ software session

halt Terminate execution of a process running on the
processor

info Return information about the object or session

isrunning Test whether the processor is executing a process

load Load a built project to the processor

open Open a file in the project

read Retrieve data from memory on the processor

reset Restore the program counter (PC) to the entry
point for the current program

run Execute the program loaded on the processor

save Save files or projects

visible Set whether VisualDSP++ IDE window is visible
on the desktop while VisualDSP++ IDE is
running

write Write data to memory on the processor

Running VisualDSP++ Software on Your Desktop — Visibility. When
you create an adivdsp object in the tutorial in the next section, Embedded
Coder starts VisualDSP++ software in the background.

47-9

47 Working with Analog Devices™ VisualDSP++® IDE

If VisualDSP++ software is running in the background, it does not appear on
your desktop, in your task bar, or on the Applications page in the Task
Manager. It does appear as a process, idde.exe, on the Processes tab in
Task Manager.

You can make the VisualDSP++ IDE visible with the function visible.
The function isvisible returns the status of the IDE—is it visible on your
desktop. To close the IDE when it is not visible and MATLAB is not running,
use the Processes tab in WindowsWindows Task Manager and look for
idde.exe.

If an object that refers to VisualDSP++ software exists when you close
VisualDSP++ software, the application does not close. Windows software
moves it to the background (it becomes invisible). Only after you clear
all objects that access VisualDSP++ IDE, or close MATLAB, does closing
VisualDSP++ unload the application. You can see if VisualDSP++ IDE is
running in the background by checking in the Windows Task Manager. When
VisualDSP++ IDE is running, the entry idde.exe appears in the Image
Name list on the Processes tab.

Running the Interactive Tutorial
You have the option of running this tutorial from the MATLAB command line
or entering the functions as described in the following tutorial sections.

To run the tutorial in MATLAB, click run vdspautointtutorial. This
command launches the tutorial in an interactive mode where the tutorial
program provides prompts and text descriptions to which you respond to move
to the next section. The interactive tutorial covers the same information
provided by the following tutorial sections. You can view the tutorial
MATLAB file used here by clicking vdspautointtutorial.m.

Note To run the interactive tutorial, you must have at least one session
configured in VisualDSP++ software. If you do not yet have a session, use
the Analog Devices VisualDSP++ Configurator to create a session to use for
this tutorial.

47-10

Automation Interface

Selecting Your Session and Processor
Embedded Coder IDE requires that you have at least one session available
for VisualDSP++ software. To help you select the session to use for this
tutorial, and for any development work, Embedded Coder software provides a
command line tool, called listsessions, which prints a list of the available
sessions. So that you can use this function in a script, listsessions can
return a MATLAB structure that you use when you want your script to select
a session in the IDE without your help.

Note The session you select is used throughout the tutorial.

1 To see a list of the sessions that you can use, enter the following command
at the MATLAB prompt:

session_list = listsessions

MATLAB returns a list that shows all the sessions that Embedded Coder
IDE recognizes as available in your installation.

session_list =

'ADSP-21060 ADSP-2106x Simulator'
'ADSP-21362 ADSP-2136x Simulator'

2 listsessions has a verbose mode that provides further details about the
sessions in a cell array. The array contains structures that describe each
session—the target type, the platform, and the processor.

sessionsinfo = listsessions('verbose');

echo off
sessionname: 'ADSP-21362 ADSP-2136x Simulator'
targettype: 'ADSP-2136x Family Simulator'

platformname: 'ADSP-2136x Simulator'
processors: 'ADSP-21362'

3 Use adivdsp to create an object that accesses a session in VisualDSP++
IDE.

47-11

47 Working with Analog Devices™ VisualDSP++® IDE

IDE_Obj = adivdsp('sessionname','ADSP-21362 ADSP-2136x Simulator','procnum',0)

Sessionname and procnum are property names that specify the property to
set. ADSP-21362 ADSP-2136x Simulator is the session to access, and 0 is
the number of the processor to refer to in the session.

When you use adivdsp, you create an object, in this case IDE_Obj, that
refers to the session you specify in sessionname.

Querying Objects for VisualDSP++ IDE
In this tutorial section you create the connection between MATLAB and
VisualDSP++ IDE. This connection, or object, is a MATLAB object, which for
this session you save as variable IDE_Obj. You use function adivdsp to create
objects. When you create objects, adivdsp input arguments let you define
other object properties, such as the global time-out. Refer to the adivdsp
reference information for more about the input arguments.

Use the generated object IDE_Obj to direct actions to your session processor.
In the following tasks, IDE_Obj appears in all function syntax that interact
with IDE session and the processor: The object IDE_Obj identifies and refers
to a specific session. You need to include the object in any method syntax you
use to access and manipulate a project or files in a session in VisualDSP++
IDE.

1 Create an object that refers to your selected session and processor. Enter
the following command at the prompt.

IDE_Obj = adivdsp('sessionname','ADSP-21362 ADSP-2136x Simulator','procnum',0)

If you watch closely, and your machine is not too fast, you see VisualDSP++
software appear briefly when you call adivdsp. If VisualDSP++ was not
running before you created the new object, VisualDSP++ software starts
and runs in the background.

Usually, you need to interact with VisualDSP++ while you develop your
application. The function visible, controls the state of VisualDSP++
software on your desktop. visible accepts Boolean inputs that make
VisualDSP++ software either visible on your desktop (input to visible ≥ 1)
or invisible on your desktop (input to visible = 0). For this tutorial, you

47-12

Automation Interface

need to interact with the development environment, so use visible to
set the IDE visibility to 1.

2 To make VisualDSP++ IDE show on your desktop, enter the following
command at the prompt:

visible(IDE_Obj,1)

3 Next, enter display(IDE_Obj) at the prompt to see the status information.

ADIVDSP Object:
Session name : ADSP-21362 ADSP-2136x Simulator
Processor name : ADSP-21362
Processor type : ADSP-21362
Processor number : 0
Default timeout : 10.00 secs

Embedded Coder software provides three methods to read the status of
a processor:

• info— Return a structure of testable session conditions.

• display— Print information about the session and processor.

• isrunning— Return the state (running or halted) of the processor.

4 Type procinfo = info(IDE_Obj).

The IDE_Obj link status information provides data about the hardware, as
follows:

procinfo =

procname: 'ADSP-21362'
proctype: 'ADSP-21362'
revision: ''

5 Verify that the processor is running by entering

runstatus = isrunning(IDE_Obj)

MATLAB responds, indicating that the processor is stopped, as follows:

47-13

47 Working with Analog Devices™ VisualDSP++® IDE

runstatus =

0

Loading Files into VisualDSP++ IDE
In this part of the tutorial, you load the executable code for the CPU in
the IDE. Embedded Coder software includes a tutorial project file for
VisualDSP++ IDE. Through the next commands in the tutorial, you locate
the tutorial project file and load it into VisualDSP++ IDE. The open method
directs VisualDSP++ software to load a project file or workspace file.

Note To continue the tutorial, you must identify or create a folder to which
you have write access. Embedded Coder software cannot create a folder for
you. If you do not have a writable folder, create one in Windows software
before you proceed with the rest of this tutorial.

VisualDSP++ software has its own workspace and workspace files that are
quite different from MATLAB workspace files and the MATLAB workspace.
Remember to monitor both workspaces. The next steps change the working
folder to your new writable folder.

1 Use cd to switch to the writable folder

prj_dir = cd('C:\vdsp_demo')

where the name and path to the writable folder is a string, such as
C:\vdsp_demo as used in the example. Replace C:\vdsp_demo with the full
path to your folder.

2 Change your working folder to the new folder by entering the following
command:

cd(IDE_Obj,prj_dir)

3 Next, use the following command to create a new VisualDSP++ software
project named dot_product_c.dpj in the new folder:

47-14

Automation Interface

new(IDE_Obj,'debug_demo.dpj')

Look in the IDE to verify that your new project exists. Next you need to
add source files to your project.

4 Add the provided source file—scalarprod.c to the project debug_demo.dpj
using the following command:

add(IDE_Obj, [matlabroot '\toolbox\vdsplink\vdspdemos\src\scalarprod.c'])

The variable matlabroot indicates the root folder of your MATLAB
installation. Replace matlabroot with the path to MATLAB on your
machine. For more information about the MATLAB root folder, refer to
matlabroot in the MATLAB documentation.

5 Open the file in the IDE from MATLAB by issuing the following command
to open the file:

open(IDE_Obj,[matlabroot '\toolbox\vdsplink\vdspdemos\src\scalarprod.c'])

Switch to the IDE to verify that the files are in your project and open.

6 Save your project.

save(IDE_Obj,'debug_demo.dpj','project')

Your IDE project is saved with the name debug_demo.dpj in your writable
folder. The input string ’project’ specifies that you are saving a project file.

Running the Project
After you create dot_project_c.dpj in the IDE, you can use Embedded
Coder functions to create executable code from the project and load the code
to the processor.

The next steps in this tutorial build the executable and download and run
it on your processor.

1 Use the following build command to build an executable module from the
project dot_product_c.dpj.

build(IDE_Obj,30) % The optional input argument 30 sets the time out period to 30 seconds.

47-15

47 Working with Analog Devices™ VisualDSP++® IDE

At the end of the build process, Embedded Coder software returns a value
of 1 to indicate that the build succeeded. If the build process returns a 0,
the build failed.

ans =

1

2 To load the new executable to the processor, use load with the project file
name and the object name. The name of the executable is debug_demo.dxe,
and it is stored with the project in your writable folder, in a subfolder
named debug.

load(IDE_Obj,'c:\vdsp_demo\debug\debug_demo.dxe',30);

Embedded Coder software provides methods to control processor
execution—run, halt, and reset. To demonstrate these methods, use run to
start the program you loaded on the processor, and then use halt to stop
the processor.

Try the following methods at the command prompt.

run(IDE_Obj) % Start the program running on the processor.

halt(IDE_Obj) % Halt the processor.

reset(IDE_Obj) % Reset the program counter to start of program.

Working with Global Variables and Memory
After you load your program on the processor, you can access memory locations
and variables. You can then read variables either from the program symbol
table or directly from addresses in memory. Three methods—address, read,
and write, let you get, read, and write to and from your project and processor.

Start by getting the address of the global variable v1 from the debug_demo
project symbol table.

1 Enter the following command to retrieve the address for v1.

address_v1 = address(IDE_Obj, 'v1')

47-16

Automation Interface

address_v1 =

753666 1

2 Convert the address from decimal format to hexadecimal.

dec2hex(address_v1(1))

ans =

B8002

The address of global data array v1 is 0xB8002, which is stored in type
1 memory on the processor

3 With the address of v1 saved as address_v1, use read to return the data
from that location. To specify the data type and the number of values to
read, add the datatype (’int32’) and count (32) input arguments.

value_v1 = read(IDE_Obj, address_v1, 'int32', 32) % Interpret the data as 32-bit integers.

value_v1 =

Columns 1 through 10

-37 -133 31 -104 32 66 -123 19 140 -28

Columns 11 through 20

16 80 -2 83 -243 148 56 163 46 45

Columns 21 through 30

-217 -11 -164 49 -3 99 21 -61 -26 101

Columns 31 through 32

-101 -151

4 Repeat the read process for another global variable in the project—v2. Nest
the address method inside the read method to reduce typing.

47-17

47 Working with Analog Devices™ VisualDSP++® IDE

value_v2 = read(IDE_Obj,address(IDE_Obj,'v2'),'int32',32) % Read and address methods in one call.

value_v2 =

Columns 1 through 10

-50 5 -17 28 5 31 -23 -156 68 -5

Columns 11 through 20

-220 5 -14 57 214 183 213 40 175 144

Columns 21 through 30

-12 -77 -18 77 130 -39 132 107 52 -59

Columns 31 through 32

127 -117

Working with Local Variables and Memory
If you examine the source files for debug_demo in the IDE, you can verify the
values for v1 and v2 in the source file scalarprod.c. You can also use the
address method to get the addresses of local variables on the stack, after
the variable is in scope.

To get the variables in scope (on the stack), you run the program. Adding
a breakpoint to the program allows you to read the stack contents when
the program stops at the breakpoint. Without the breakpoint, the program
runs to completion, and you cannot read the contents of the stack because it
no longer exists.

Begin the process by adding a breakpoint to the project file scalarprod.c:

1 Insert a breakpoint on line 100 of program scalarprod.c with the
following command:

insert(IDE_Obj, 'scalarprod.c', 100)

47-18

Automation Interface

2 Run the program to add the variable to the stack, and move the program
counter to the breakpoint. Add the optional input argument timeout sets
the time out value to 30s instead of the default 20s value:

run(IDE_Obj,'runtohalt',30)

The program stops at the breakpoint on line 100.

3 Read the address of the local variable result, and convert it to its
hexadecimal equivalent value.

address_result = address(IDE_Obj,'result','local') % address_result is a 'local' variable.

address_result =

933884 1

dec2hex(address_result(1))

ans =

E3FFC

address returns 933884 as the location of result in memory, in type 1
memory on the processor, stored in the MATLAB variable address_result.

4 Use the variable address_result to get the value stored at that address by
issuing the following read command:

actual_value_result = read(IDE_Obj, address_result, 'int32')

actual_value_result =

18875

Verify in the IDE Output Window that 18875 is the correct value for the
dot product.

5 Use the following command to remove the breakpoint set on line 100.

remove(IDE_Obj, 'scalarprod.c', 100)

47-19

47 Working with Analog Devices™ VisualDSP++® IDE

MATLAB includes a dot product function to use to verify the value in
actual_value_result. Called dot, the function calculates the dot product of
two input vectors. In this case, the inputs are vectors value_v1 and value_v2.

Comparing the two results—expected_value_result in MATLAB with
actual_value_result from the processor implementation validates your
simulation and implementation. With Automation Interface methods,
you can create MATLAB file scripts to test and verify algorithms in their
implementation on a processor.

1 Calculate the expected result by performing the dot function with two
input vectors.

expected_value_result = dot(value_v1, value_v2)

expected_value_result =

18875

2 Test to see if the actual and expected results match.

isequal(expected_value_result, actual_value_result)

ans =

1

3 After verifying the result and removing the breakpoint, run the program to
completion, and then halt and reset the processor.

run(IDE_Obj)
halt(IDE_Obj)
reset(IDE_Obj)

Closing Files and Projects
You can close files in your projects from the MATLAB command line. The
method close works at the command line to close programs or projects in the
IDE through the adivdsp object and input keywords that describe the kind of
file to close.

47-20

Automation Interface

To finish this tutorial, close the open documents or files in the IDE, and then
close the project debug_demo.dpj.

1 Close all of the open files and documents in the IDE. All of the open files
are text files, so use the text input argument.

close(IDE_Obj, 'all', 'text')

2 Now, close the project.

close(IDE_Obj, 'debug_demo.dpj', 'project')

Note If you close the VisualDSP++ IDE manually outside of MATLAB, clear
the IDE handle object in MATLAB. For example, at the MATLAB command
line enter:

clear IDE_Obj

Closing the Connections or Cleaning Up VisualDSP++ Software
Objects that you create in Embedded Coder software have connections to
VisualDSP++ software. Until you delete these handles, the VisualDSP++
process (idde.exe in the Windows Task Manager) remains in memory.
Closing MATLAB removes these objects automatically, but there may be times
when it helps to delete the handles manually, without quitting MATLAB.

Note When you clear the last adivdsp IDE handle object, Embedded Coder
software closes VisualDSP++ software. When it closes the IDE, the link
software does not save current projects or files in the IDE, and it does not
prompt you to save them. A best practice is to save all of your projects and
files before you clear adivdsp objects from your MATLAB workspace.

1 Use the following command to make the IDE invisible if it is visible on
your desktop.

visible(IDE_Obj.0)

47-21

47 Working with Analog Devices™ VisualDSP++® IDE

2 To delete your connection to VisualDSP++ IDE, use clear IDE_Obj.

Tutorial Summary
During the tutorial you performed the following tasks:

1 Selected your session.

2 Created and queried objects that refer to a session in Embedded Coder to
get information about the session and processor.

3 Used MATLAB to load files into VisualDSP++ IDE, and used methods in
MATLAB to run that file.

4 Accessed variables in the program symbol table and on the processor.

5 Used the Automation Interface methods to compare the results of a
simulation in MATLAB with the same algorithm running on a processor.

6 Closed the files, projects, and connections you opened to VisualDSP++ IDE.

Constructing Objects
When you create a connection to a session in VisualDSP++ software using the
adivdsp function, you create an object. The object implementation relies on
MATLAB object-oriented programming capabilities similar to the objects you
find in MATLAB or Filter Design Toolbox.

The discussions in this section apply to the objects in Embedded Coder
software. Because adivdsp objects use the MATLAB programming
techniques, the information about working with the objects, such as how
you get or set properties, or use methods, apply to the objects you create in
Embedded Coder software.

Like other MATLAB structures, objects in Embedded Coder software have
predefined fields referred to as object properties.

You specify object property values by one of the following methods:

• Specifying the property values when you create the object

47-22

Automation Interface

• Creating an object with default property values, and changing some or all
of these property values later

For examples of setting link properties, refer to “Setting Property Values
with set.”

Example — Constructor for adivdsp Objects
The easiest way to create an object is to use the function adivdsp to create an
object with the default properties. Create an object named IDE_Obj referring
to a session in VisualDSP++ software by entering the following syntax:

IDE_Obj = adivdsp

MATLAB responds with a list of the properties of the object IDE_Obj you
created along with the associated default property values.

ADIVDSP Object:
Session name : ADSP-21362 ADSP-2136x Simulator
Processor name : ADSP-21362
Processor type : ADSP-21362
Processor number : 0
Default timeout : 10.00 secs

The object properties are described in the adivdsp documentation.

Note These properties are set to default values when you construct links.

Properties and Property Values

• “Setting and Retrieving Property Values” on page 47-24

• “Setting Property Values Directly at Construction” on page 47-24

• “Setting Property Values with set” on page 47-25

• “Retrieving Properties with get” on page 47-25

• “Direct Property Referencing to Set and Get Values” on page 47-26

• “Overloaded Functions for adivdsp Objects” on page 47-26

47-23

47 Working with Analog Devices™ VisualDSP++® IDE

Objects in this software have properties associated with them. Each property
is assigned a value. You can set the values of most properties, either when
you create the link or by changing the property value later. However, some
properties have read-only values. Also, a few property values, such as the
board number and the processor to which the link attaches, become read-only
after you create the object. You cannot change those after you create your link.

Setting and Retrieving Property Values
You can set adivdsp object property values by either of the following methods:

• Directly when you create the link — see “Setting Property Values Directly
at Construction”

• By using the set function with an existing link — see “Setting Property
Values with set”

Retrieve Embedded Coder software object property values with the get
function.

Direct property referencing lets you either set or retrieve property values for
adivdsp objects.

Setting Property Values Directly at Construction
To set property values directly when you construct an object, include the
following entries in the input argument list for the constructor method
adivdsp:

• A string for the property name to set followed by a comma. Enclose the
string in single quotation marks as you do any string in MATLAB.

• The associated property value. Sometimes this value is also a string.

Include as many property names in the argument list for the object
construction command as there are properties to set directly.

Example — Setting Object Property Values at Construction. Suppose
that you want to create a link to a session in VisualDSP++ software and
set the following object properties:

47-24

Automation Interface

• Refer to the specified session.

• Connect to the first processor.

• Set the global time-out to 5 s. The default is 10 s.

Set these properties by entering

IDE_Obj = adivdsp('sessionname','ADSP-21060 ADSP-2106x Simulator','procnum',0,'timeout',5);

The sessionname, procnum, and timeout properties are described in Link
Properties, as are the other properties for links.

Setting Property Values with set
After you construct an object, the set function lets you modify its property
values.

Using the set function, you can change the value of any writable property
of an object.

Example — Setting Object Property Values Using set. To set the
time-out specification for the link IDE_Obj from the previous section, enter
the following syntax:

set(IDE_Obj,'timeout',8);

get(IDE_Obj,'timeout');
ans =

8

The display reflects the changes in the property values.

Retrieving Properties with get
You can use the get command to retrieve the value of an object property.

Example — Retrieving Object Property Values Using get. To retrieve
the value of the sessionname property for vd2, and assign it to a variable,
enter the following syntax:

47-25

47 Working with Analog Devices™ VisualDSP++® IDE

session = get(vd2,'sessionname')

session =

ADSP-21060 ADSP-2106x Simulator

Direct Property Referencing to Set and Get Values
You can directly set or get property values using MATLAB structure-like
referencing. Do this by using a period to access an object property by name,
as shown in the following example.

Example — Direct Property Referencing in Links. To reference an object
property value directly, perform the following steps:

1 Create a link with default values.

2 Change its time-out and number of open channels.

IDE_Obj = adivdsp;
IDE_Obj.time = 6;

Overloaded Functions for adivdsp Objects
Several methods and functions in Embedded Coder software have the same
name as functions in other MathWorks products. These functions behave
similarly to their original counterparts, but you apply them to an object. This
concept of having functions with the same name operate on different types of
objects (or on data) is called overloading of functions.

For example, the set command is overloaded for objects. After you specify
your object by assigning values to its properties, you can apply the methods
in this toolbox (such as address for reading an address in memory) directly
to the variable name you assign to your object. You do not have to specify
your object parameters again.

For a complete list of the methods that act on adivdsp objects, refer to Analog
Devices VisualDSP++ in the function reference pages.

47-26

Automation Interface

adivdsp Object Properties

• “Quick Reference to adivdsp Properties” on page 47-27

• “Details About adivdsp Object Properties” on page 47-28

Embedded Coder software provides links to your processor hardware so you
can communicate with processors for which you are developing systems and
algorithms. Because Embedded Coder software uses objects to create the
links, the parameters you set are called properties and you treat them as
properties when you set them, retrieve them, or modify them.

This section details the properties for the objects for VisualDSP++ software.
First the section provides tables of the properties, for quick reference.
Following the tables, the section offers in-depth descriptions of each property,
its name and use, and whether you can set and get the property value
associated with the property. Descriptions include a few examples of the
property in use.

MATLAB users may find much of this handling of objects familiar. Objects
in Embedded Coder software behave like objects in MATLAB and the other
object-oriented toolbox products. C++ programmers may already understand
the concepts described in this section.

Quick Reference to adivdsp Properties
The following table lists the properties for the links in Embedded Coder
software. The second column indicates the object to which the property
belongs. Knowing which property belongs to each object tells you how to
access the property.

47-27

47 Working with Analog Devices™ VisualDSP++® IDE

Property
Name User Settable? Description

sessionname At construction
only

Reports the name of the session in
VisualDSP++ IDE that the object
references.

procnum At construction
only

Stores the number of the processor in
the session. If you have more than one
processor, this number identifies the
specific processor.

timeout Yes/default Contains the global time-out setting for
the link.

Some properties are read only. Thus, you cannot set the property value.
Other properties you can change at any time. If the entry in the User Settable
column is “At construction only”, you can set the property value only when
you create the object. Thereafter it is read only.

Details About adivdsp Object Properties
To use the objects for VisualDSP++ interface, set values for the following:

• sessionname— Specify the session with which the object interacts.

• procnum— Specify the processor in the session. If the board has multiple
processors, procnum identifies the processor to use.

• timeout— Specify the global time-out value. (Optional. Default is 10 s.)

Details of the properties associated with adivdsp objects appear in the
following sections, listed in alphabetical order by property name.

procnum. Property procnum identifies the processor referenced by an object
for Embedded Coder IDE. Use procnum to specify the processor you are
working with in the session specified by sessionname. The VisualDSP++
Configurator assigns a number to each processor installed in each session.
To determine the value of procnum for a processor, use listsessions or the
Configurator.

47-28

Automation Interface

To identify a processor, you need the sessionname and procnum values. For
sessions with one processor, procnum equals 0. VisualDSP++ IDE numbers
the processors on multiprocessor boards sequentially from 0 to the total
number of processors. For example, on a board with four processors, the
processors are numbered 0, 1, 2, and 3.

sessionname. Property sessionname identifies the session referenced by a
Embedded Coder software. When you create an object, you use sessionname
to specify the session you are intending to interact with. To get the value
for sessionname, use listsessions or the Analog Devices VisualDSP++
Configurator. The Configurator utility assigns the name for each session
available on your system.

timeout. Property timeout specifies how long VisualDSP++ software waits
for any process to finish. You set the global time-out when you create an
object for a session in VisualDSP++ IDE. The default global time-out value 10
s. The following example shows the timeout value for object vd2.

display(vd2)

ADIVDSP Object:
Session name : ADSP-21060 ADSP-2106x Simulator
Processor name : ADSP-21060
Processor type : ADSP-21060
Processor number : 0
Default timeout : 10.00 secs

47-29

47 Working with Analog Devices™ VisualDSP++® IDE

Project Generator

In this section...

“Introducing Project Generator” on page 47-30

“Project Generator Tutorial” on page 47-31

“Model Reference” on page 47-35

Introducing Project Generator
Project generator provides the following features for developing projects and
generating code:

• Automated project building for VisualDSP++ software that lets you create
VisualDSP++ software projects from code generated by Simulink Coder
and Embedded Coder software. Project generator populates projects in the
VisualDSP++ software development environment.

• Blocks in the library idelinklib_adivdsp for controlling the scheduling
and timing in generated code.

• Highly configurable code generation using model configuration parameters
and Target Preferences block options.

• Capability to use one of two system target files to generate code specific to
your processor.

• Highly configurable project build process.

• Automatic downloading and running of your generated projects on your
processor.

To configure your Simulink software models to use the Project Generator
component, do one or both of the following tasks:

• Add a Target Preferences block from the idelinklib_common library to
the model.

• To use the asynchronous scheduler capability in Embedded Coder software,
add one or more hardware interrupt blocks or idle task block from the
idelinklib_adivdsp library.

47-30

Project Generator

The following sections describe the blockset and the blocks in it, the scheduler,
and the Project Generator component.

Project Generator Tutorial

• “Building the Model” on page 47-32

• “Adding the Target Preferences Block to Your Model” on page 47-32

• “Specifying Simulink Configuration Parameters for Your Model” on page
47-32

In this tutorial you build a model and generate a project from the model into
VisualDSP++ IDE.

Note The model demonstrates project generation only. You cannot build and
run the model on your processor without additional blocks.

To generate a project from a model, complete the following tasks:

1 Use Simulink blocks, DSP System Toolbox blocks, and blocks from other
blocksets to create the model application.

2 Add the Target Preferences block from the idelinklib_common library to
your model. Verify and set the block parameters for your hardware. In
most cases, the default settings work fine.

3 Set the configuration parameters for your model, including the following
parameters:

• Solver parameters such as simulation start and solver options

• Simulink Coder software options such as processor configuration and
processor compiler selection

4 Generate your project.

5 Review your project in VisualDSP++ software.

47-31

47 Working with Analog Devices™ VisualDSP++® IDE

Building the Model
To build the model for audio reverberation, follow these steps:

1 Start Simulink software.

2 Create a new model by selecting File > New > Model from the Simulink
menu bar.

3 Use Simulink blocks and DSP System Toolbox blocks to create the following
model.

Look for the Integer Delay block in the Discrete library of Simulink and the
Gain block in the Commonly Used Blocks library. Do not add the Target
Preferences block at this time.

4 Save your model with a suitable name before continuing.

Adding the Target Preferences Block to Your Model
To configure your model to work with Analog Devices processors, add a Target
Preferences block to your model, as described in “Target Preferences” on page
43-4.

You have completed the model. Next, configure the model configuration
parameters to generate a project in VisualDSP++ IDE from your model.

Specifying Simulink Configuration Parameters for Your Model
The following sections describe how to configure the build and run parameters
for your model. Generating a project, or building and running a model on
the processor, starts with configuring model options in the Configuration
Parameters dialog box in Simulink software.

47-32

Project Generator

Setting Solver Options. After you have designed and implemented your
digital signal processing model in Simulink software, complete the following
steps to set the configuration parameters for the model:

1 Open the Configuration Parameters dialog box and set the appropriate
options on the Solver category for your model and for Embedded Coder
software.

• Set Start time to 0.0 and Stop time to inf (model runs without
stopping). If you set a stop time, your generated code does not honor the
setting. Set this to inf for completeness.

• Under Solver options, select the fixed-step and discrete settings
from the lists when you generate executable projects. When you use PIL,
use any setting on the Type and Solver lists.

• Set the Fixed step size to Auto and the Tasking Mode to Single
Tasking.

Note Generated code does not honor Simulink stop time from the simulation.
Stop time is interpreted as inf. To implement a stop in generated code, you
must put a Stop Simulation block in your model.

Ignore the Data Import/Export, Diagnostics, and Optimization categories
in the Configuration Parameters dialog box. The default settings are correct
for your new model.

Setting Simulink Coder Software Options. To configure Simulink Coder
software to use the correct processor files and to compile and run your model
executable file, you set the options in the Code Generation category of the
Select tree in the Configuration Parameters dialog box. Follow these steps
to set the Simulink Coder software options to generate code tailored for your
DSP:

1 Select Code Generation on the Select tree.

2 In Target selection, click Browse to select the system target file for
Analog Devices processors—vdsplink_grt.tlc. It may already be the
selected target file.

47-33

47 Working with Analog Devices™ VisualDSP++® IDE

Clicking Browse opens the System Target File Browser to allow you
to changes the system target file.

3 On the System Target File Browser, select the system target file
vdsplink_grt.tlc, and click OK to close the browser.

Setting Embedded Coder Options. After you set the Simulink Coder
options for code generation, set the options that apply to your Analog Devices
processor.

1 Change the category on the Select tree to Hardware Implementation.

2 Verify that the Device type is the correct value for your processor—ADI
Blackfin, ADI SHARC, or ADI TigerSHARC.

3 From the Select tree, choose IDE Link to specify code generation options
that apply to the processor.

4 Under Code Generation, clear all of the options.

5 (optional) Under Link Automation, provide a name for the handle in
IDE handle name.

6 Set the following options in the dialog box under Project options:

• Set Project options to Custom.

• Set Compiler options string and Linker options string to blank.

7 Set the following Runtime options:

• Build action: Create_project.

• Interrupt overrun notification method: Print_message.

You have configured the Simulink Coder options that let you generate a
project for your processor. A few Simulink Coder categories on the Select tree,
such as Comments, Symbols, and Optimization do not require configuration
for use with Embedded Coder software. In some cases, you may decide to
set options in the other categories.

For your new model, the default values for the options in these categories
are correct. For other models you develop, you may want to set the options

47-34

Project Generator

in these categories to provide information during the build and to run TLC
debugging when you generate code. Refer to your Simulink and Simulink
Coder documentation for more information about setting the configuration
parameters.

Creating Your Project. After you set the configuration parameters and
configure Simulink Coder software to create the files you need, you direct
the software to create your project:

1 Click OK to close the Configuration Parameters dialog box.

2 Click Incremental Build on the model toolbar to generate your project
into VisualDSP++ IDE.

When you perform an incremental build with Build action set to
Create_project, the automatic build process starts VisualDSP++ software
and populates a new project in the development environment.

Model Reference

• “How Model Reference Works” on page 47-36

• “Using Model Reference” on page 47-37

• “Configuring Targets to Use Model Reference” on page 47-38

Model reference lets your model include other models as modular components.
This technique is useful because it provides the following capabilities:

• Simplifies working with large models by letting you build large models
from smaller ones, or even large ones.

• Lets you generate code once for all the modules in the entire model and
then only regenerate code for modules that change.

• Lets you develop the modules independently.

• Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

47-35

47 Working with Analog Devices™ VisualDSP++® IDE

Your Simulink Coder documentation provides much more information about
model reference.

How Model Reference Works
Model reference behaves differently in simulation and in code generation. For
this discussion, you need to know the following terms:

• The Top model is the root model block or model. It refers to other blocks or
models. In the model hierarchy, this is the topmost model.

• Referenced models are blocks or models that other models reference, such
as models the top model refers to. All models or blocks below the top model
in the hierarchy are reference models.

The following sections describe briefly how model reference works. More
details are available in your Simulink Coder documentation in the online
Help system.

Model Reference in Simulation. When you simulate the top model,
Simulink Coder software detects that your model contains referenced models.
Simulink software generates code for the referenced models and uses the
generated code to build shared library files for updating the model diagram
and simulation. It also creates an executable (.mex file) for each reference
model that is used to simulate the top model.

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink software rebuilds the model reference files. Whether
reference files or models are rebuilt depends on whether and how you change
the models and on the Rebuild options settings. You can access these
setting through theModel Reference pane of the Configuration Parameters
dialog box.

Model Reference in Code Generation. Simulink Coder software requires
executables to generate code from models. If you have not simulated your
model at least once, Simulink Coder software creates a .mex file for simulation.

Next, for each referenced model, the code generation process calls make_rtw
and builds each referenced model. This build process creates a library file for
each of the referenced models in your model.

47-36

Project Generator

After building all the referenced models, the software calls make_rtw on
the top model, linking to all the library files it created for the associated
referenced models.

Using Model Reference
With few limitations or restrictions, Embedded Coder software provides full
support for generating code from models that use model reference.

Build Action Setting. The most important requirement for using model
reference with the Analog Devices targets is that you must set the Build
action (select Configuration Parameters > IDE Link) for all models
referred to in the simulation to Archive_library.

To set the build action, perform the following steps:

1 Open your model.

2 Select Simulation > Configuration Parameters from the model menus.

The Configuration Parameters dialog box opens.

3 From the Select tree, choose IDE Link.

4 In the right pane, under Runtime, select set Archive_library from the
Build action list.

If your top model uses a reference model that does not have the build action
set to Archive_library, the build process automatically changes the build
action to Archive_library and issues a warning about the change.

Selecting the Archive_library setting removes the following options from
the dialog box:

• Interrupt overrun notification method

• Compiler options string

• Linker options string

• System stack size (MAUs)

• Profile real-time execution

47-37

47 Working with Analog Devices™ VisualDSP++® IDE

Target Preferences Blocks in Reference Models. Each referenced model
and the top model must include a Target Preferences block for the correct
processor. You must configure all the Target Preferences blocks for the same
processor.

The referenced models need Target Preferences blocks to provide information
about which compiler and which archiver to use. Without these blocks, the
compile and archive processes do not work.

By design, model reference does not allow information to pass from the top
model to the referenced models. Referenced models must contain all the
necessary information, which the Target Preferences block in the model
provides.

Other Block Limitations. Model reference with Embedded Coder software
does not allow you to use the following blocks or S-functions in reference
models:

• No noninlined S-functions

• None of the following blocks:

- Target Preferences

- Memory Allocate

- Memory Copy

- Idle Task

- Hardware Interrupt for SHARC, TigerSHARC, or Blackfin DSPs

Configuring Targets to Use Model Reference
When you create models to use in Model Referencing, keep in mind the
following considerations:

• Your model must use a system target file derived from the ERT or GRT
targets files.

• When you generate code from a model that references other models, you
must configure the top-level model and the referenced models for the same
system target file.

47-38

Project Generator

• Simulink Coder software builds and Embedded Coder software do not
support external mode in model reference. If you select the external mode
option, it is ignored during code generation.

• Your TMF must support use of the shared utilities folder, as described in
Supporting Shared Utility Directories in the Build Process in the Simulink
Coder documentation.

To use an existing processor, or a new processor, with Model Reference, set
the ModelReferenceCompliant flag for the processor. For information about
setting this option, refer to ModelReferenceCompliant in the online Help
system.

If you start with a model that was created prior to MATLAB release R14SP3,
use the following command to set the ModelReferenceCompliant flag to On to
make your model compatible with model reference:

set_param(bdroot,'ModelReferenceCompliant','on')

Code that you generate from Simulink software models by using Embedded
Coder software automatically include the model reference capability. You
do not need to set the flag.

47-39

47 Working with Analog Devices™ VisualDSP++® IDE

Reported Limitations and Tips

Reported Issues
Some long-standing issues affect the Embedded Coder software. When you
are using adivdsp objects and methods to work with VisualDSP++ software
and supported hardware or simulators, recall the information in this section.

The latest issues in the list appear at the bottom. PIL means
“processor-in-the-loop” and is similar to hardware-in-the-loop operations.

Using 64-bit Symbols in a 64-bit Memory Section on SHARC
Processors
VisualDSP++ compiler design prevents Embedded Coder from generating
code the accesses 64-bit memory locations correctly. To avoid unexpected
results, do not allocate 64-bit data or symbols to 64-bit memory locations
on SHARC processors.

When 64-bit data is in 64-bit memory, the compiler generates code that
accesses the 64-bit locations as two 32-bit values. Thus, the code does not
read and write the 64-bit data correctly. It reads or writes every other 32-bit
location, returning or writing incorrect values and possibly exceeding the
allocated memory.

Refer to pp. 5-33 in the ADSP-2136x SHARC Processor Programming
Reference, revision 1.0 for a description of how the compiler treats 64-bit (long
word) data values.

47-40

48

Working with Eclipse IDE

• “Tested Software Versions” on page 48-2

• “Installing Third-Party Software for Eclipse” on page 48-4

• “Configuring Your MathWorks Software to Work with Eclipse” on page
48-10

• “Troubleshooting with Eclipse IDE” on page 48-15

Note To use the coder product with Eclipse IDE, complete the steps in
“Installing Third-Party Software for Eclipse” on page 48-4 and “Configuring
Your MathWorks Software to Work with Eclipse” on page 48-10

48 Working with Eclipse™ IDE

Tested Software Versions
MathWorks has tested the coder product with the specific software versions
listed in the following tables.

Required for all platforms Tested Versions

Sun™ Java Runtime Environment
(JRE)

JRE 6.0 (Java 1.6.x)

Eclipse IDE for C/C++ Developers
package, which includes the CDT
feature

Ganymede (Eclipse 3.4)

CDT
(If CDT is installed separately from
Eclipse IDE for C/C++ Developers
package, match CDT version with
Eclipse version.)

CDT 5.0

Linux: Additional Software
Required

Tested Versions

GNU GCC (compiler) GCC 4.3.x

GNU as (assembler — part of the
GNU binutils package)

as 2.18

GNU ar (archiver — part of the GNU
binutils package)

ar 2.18

GNU GDB (debugger) GDB 6.8.x

GNU make make 3.81

Windows: Additional Software
Required

Tested Versions

MinGW 5.1.x

GDB GDB 6.3.x

MSYS 1.0.11

48-2

Tested Software Versions

You can try untested versions and combinations of third-party software at
your own risk.

For the most current information about using
the coder product software with Eclipse IDE, see:
www.mathworks.com/products/embedded-coder/eclipse-adaptor.html

48-3

http://www.mathworks.com/products/embedded-coder/eclipse-adaptor.html

48 Working with Eclipse™ IDE

Installing Third-Party Software for Eclipse

In this section...

“Installing Sun Java Runtime Environment (JRE)” on page 48-4

“Installing Eclipse IDE for C/C++ Developers” on page 48-4

“Verifying the GNU Tool Chain on Linux” on page 48-5

“Installing the GNU Tool Chain on Windows” on page 48-7

Installing Sun Java Runtime Environment (JRE)
To install the JRE, complete the following steps:

1 At your Windows or Linux command prompt, enter:

java -version

If Java is present, the command line responds with the version information,
as this example shows.

2 If Java is missing or the version is lower than 1.6.x, download and install
JRE 6.0 from http://www.java.com.

3 Verify that Java is working by entering java -version again or by visiting
http://www.java.com/en/download/help/testvm.xml.

Installing Eclipse IDE for C/C++ Developers

Note The following instructions are based on Eclipse 3.4 (Ganymede). More
recent versions of the Eclipse IDE can have different appearances, menus,
or software package names.

48-4

http://www.java.com
http://www.java.com/en/download/help/testvm.xml

Installing Third-Party Software for Eclipse™

The Eclipse IDE for C/C++ Developers package includes the Eclipse IDE
and the C/C++ Development Tools (CDT). To install Eclipse IDE for C/C++
Developers package, complete the following steps:

1 Download the Ganymede SR2 zip file for Eclipse IDE for C/C++ Developers,
from http://www.eclipse.org/downloads/packages/release/ganymede/sr2.

2 Extract the Eclipse files to a permanent location, such as C:\eclipse\ and
create a desktop shortcut to eclipse.exe.

3 Start Eclipse, and select Help > Software Updates.

4 Look under the Installed Software tab, and verify that Eclipse has the
following three CDT software packages.

• Eclipse C/C++ Development Platform

• Eclipse C/C++ Development Tools

• Mylin Bridge: C/C++ Development

If you have a previous Eclipse installation that does not include CDT,
complete the following steps:

1 In Eclipse, select Help > Software Updates.

2 Click the Available Software tab.

3 Click Ganymede Update Site.

4 Select C and C++ Development, and click Install.

5 When the installation process completes, click the Installed Software
tab, and verify that you have CDT.

Verifying the GNU Tool Chain on Linux
Most Linux distributions include the following GNU C/C++ development
tools. Eclipse and CDT require these tools to compile code, build projects,
and debug applications:

• Assembler (as)

• Archiver (ar)

48-5

http://www.eclipse.org/downloads/packages/release/ganymede/sr2

48 Working with Eclipse™ IDE

• compiler and linker (gcc)

• debugger (gdb)

• build utility (make)

Verify that the GNU tools are present and set the tool chain path:

1 On the Linux command line, enter:

• gcc --version

• gdb --version

• as --version

• ar --version

• make --version

2 Compare the version of each tool with the following list of tested versions:

• gcc 4.3.x

• as 2.18

• ar 2.18

• gdb 6.8.x

• make 3.81

If you are using Eclipse for targeting Linux, disregard the version numbers
in the preceding list.

You can use versions of the GNU tools that are more recent than the tested
versions at your own risk.

To install a missing tool or to change the version of the tool, use the
software installation manager that comes with your Linux distribution.

Alternatively, visit http://directory.fsf.org/GNU/ for more information about
individual tools. Source files for the tools are available from:

• binutils (includes as and ar), http://ftp.gnu.org/gnu/binutils/

• gcc, http://ftp.gnu.org/gnu/gcc/

48-6

http://directory.fsf.org/GNU/
http://ftp.gnu.org/gnu/binutils/
http://ftp.gnu.org/gnu/gcc/

Installing Third-Party Software for Eclipse™

• gdb, http://ftp.gnu.org/gnu/gdb/

• make, http://ftp.gnu.org/gnu/make/

3 Modify the PATH environment using the appropriate commands for your
running shell. You can also modify the path environment variable in your
login scripts.

If you are using a Bash shell prompt, enter:

PATH=my_tool_path:$PATH

Where my_tool_path is the path to the GNU tool binaries. For example:

PATH=/bin:$PATH

If you are using a C shell prompt, enter:

setenv PATH my_tool_path:$PATH

Where my_tool_path is the path to the GNU tool binaries. For example:

setenv PATH /bin:$PATH

Installing the GNU Tool Chain on Windows
Windows typically does not include GNU C/C++ development tools. Eclipse
and CDT require these tools to compile code, build projects, and debug
applications.

Provide a GNU tool chain for Windows by installing MinGW:

1 Open http://sourceforge.net/projects/mingw/files/.

2 Download and run the latest version of the “Automated MinGW Installer".

Note The earliest version of MinGW available is more recent than the
tested version.

3 Start the MinGW installation wizard to perform a default installation.

48-7

http://ftp.gnu.org/gnu/gdb/
http://ftp.gnu.org/gnu/make/
http://sourceforge.net/projects/mingw/files/

48 Working with Eclipse™ IDE

Perform a default installation until you reach Select Components. At
that step, select MSYS Basic System.

Then, complete the default installation process. Wait for the installation
wizard to download, and install additional files from the Internet.

Note If you alter the default installation path, C:/MinGW, do not use
spaces in the new path.

Set the PATH environment variable:

1 In Windows, right-click My Computer or Computer, and choose
Properties.

2 Then select Advanced or Advanced system settings, and click
Environment Variables.

3 Under System variables, scroll down to the Path variable.

4 Select Path, and click Edit.

5 Ensure that the operating system calls the GNU tools when there are
multiple paths:

a Add the paths of the MinGW and MSYS bin folders to the beginning of
the Variable value.

b Use semicolons to separate the paths. For example,
C:\mingw\bin;C:\mingw\msys\1.0\bin;

48-8

Installing Third-Party Software for Eclipse™

6 Reboot your system.

7 To verify the GNU tools installation and path settings, enter the following
commands on the Windows command line:

• gcc --version

• gdb --version

• as --version

• ar --version

• make --version

Each command displays the tool name and version on the command line. If
you receive a message that the command is not recognized, verify that you
completed the preceding installation and path configuration instructions.

You can use versions of the GNU tools that are more recent than the tested
versions at your own risk.

48-9

48 Working with Eclipse™ IDE

Configuring Your MathWorks Software to Work with
Eclipse

After you install the third-party software, configure the coder product to work
with Eclipse:

1 Close Eclipse IDE before you run eclipseidesetup. For more information,
see “Build Errors” on page 48-16.

2 At the MATLAB command line, enter eclipseidesetup. The coder product
displays the following dialog box.

3 Update Executable with the location and file name of the Eclipse
application file. For example, C:\eclipse\eclipse.exe.

You can get this value by right-clicking a shortcut for Eclipse and looking
at the properties.

4 Update Workspace with the default location where
Eclipse creates and saves new project files. For example,
C:\WINNT\Profiles\username\workspace.

48-10

Configuring Your MathWorks Software to Work with Eclipse™

To find the current workspace, open Eclipse and select File > Switch
Workspace > Other.

In the future, if you change the Eclipse workspace, repeat this configuration
procedure.

Do not use workspace paths that contain spaces. If you have a path with
spaces, recreate the workspace, and then update the path in Eclipse.

5 For Port number, enter a valid, unused, IP port number. For example,
5555.

6 For Site, identify where the coder product uploads and runs the executable
file upon completing the build process. Use either of these options:

• Choose local to run the executable on your Linux workstation.

• Choose remote to download the executable to a remote target running
Linux operating system over a network connection (for example, to
connect to an embedded system connection to the Ethernet port on your
workstation).

You must perform additional steps to connect to a remote target running
Linux. See:“Additional Configuration Steps to Run Your Executable on a
Remote Embedded Linux Target” on page 48-13.

Note Later on, when you are working on your model, open the Target
Preferences block, and set Processor to match the processor at the Site
you selected.

7 To customize the Tool Chain settings, see the Custom GCC/GDB topic.

8 When you click OK or Apply, the coder product:

• Verifies the locations of the Executable and Workspace in the Eclipse
Adaptor Setup dialog box.

• Verifies that the required third-party software is present.

• Installs the coder product plug-ins in the Eclipse plugins folder. For
example, in C:\Program Files\eclipse\plugins\.

48-11

48 Working with Eclipse™ IDE

• Saves configuration information to the mwidelink.ini file, located in
the Eclipse plugins folder.

Note When Eclipse starts, it loads the coder product plug-in. The coder
product plug-in loads the port number from mwidelink.ini. To resolve a
port number conflict, change the port number by running eclipseidesetup
again. Do not edit mwidelink.ini.

9 To verify that the configuration process is complete, create a handle object
for the Eclipse IDE. Enter the following command in MATLAB

IDE_Obj = eclipseide

This command, starts Eclipse IDE if it is not already running, and creates
a handle object. For example:

Starting Eclipse(TM) IDE...

ECLIPSEIDE Object:
Default timeout : 10.00 secs
Eclipse folder : C:\eclipse3.4\eclipse
Eclipse workspace: C:\WINNT\Profiles\rolfedh\workspace
Port number : 5555
Processor site : local

If you are using more recent versions of the GNU tools, you can disregard
command-line warnings about using untested versions.

10 In Eclipse, click the following icon to see the status of the IDE Link plug-in.

48-12

Configuring Your MathWorks Software to Work with Eclipse™

Additional Configuration Steps to Run Your
Executable on a Remote Embedded Linux Target
On Linux host systems, you can configure the coder product to download and
run an executable on a remote target running Embedded Linux.

During the “Configuring Your MathWorks Software to Work with Eclipse” on
page 48-10 process, complete these additional steps:

1 Set Site to remote. The dialog box displays additional Target Processor
and GNU GCC/GDB Commands parameters.

2 Under Target Processor, enter the values the coder product uses to
connect to the target processor over the network:

• User login: Supply a user name that has trusted “r-” access to the
remote system. The user name must appear in the /etc/hosts.equiv or
$HOME/.rhosts files on the remote system.

• IP address: Enter the IP address of the remote system. To test the
software on your local system instead of the remote system, enter
localhost.

• Port number: Enter the IP port number for communications between
the two systems. For example, 10000.

• Download path: Enter the path on the remote system that receives the
compiled executable and related files. For example, ./ sends the files to
the home folder of the user login.

3 Under GNU GCC/GDB Commands, enter the tool chain commands and
optional arguments the coder product uses to build executable for the
target processor.

For example, if you are using the generic GNU tool chain to build an
executable for a target processor running Embedded Linux, enter:

• Assembler: as

• C Compiler: gcc

• C Linker: gcc

• Archiver: ar

48-13

48 Working with Eclipse™ IDE

• Debugger: gdb

For example, if you are using the MontaVista Linux tool chain to build an
executable for an ARM processor running Embedded Linux, enter:

• Assembler: arm_v5t_le-as

• C Compiler: arm_v5t_le-gcc

• C Linker: arm_v5t_le-gcc

• Archiver: arm_v5t_le-ar

• Debugger: arm_v5t_le-gdb

4 Click OK to complete the Eclipse Adaptor Setup process.

Also see: Chapter 52, “Working with Linux Target”

48-14

Troubleshooting with Eclipse IDE

Troubleshooting with Eclipse IDE

In this section...

“SIGSEGV Segmentation Fault for GDB” on page 48-15

“GDB Stops on Each Semaphore Post” on page 48-15

“Build Errors” on page 48-16

“Profiling is not available for Intel x86/Pentium and AMD K5/K6/Athlon
processors running Windows or Linux” on page 48-16

“Eclipse Message: “Can’t find a source file”” on page 48-16

“Eclipse Message: “Cannot access memory at address”” on page 48-17

SIGSEGV Segmentation Fault for GDB
If you use Comodo Internet Security (CIS) software on your development
system, CIS causes a SIGSEGV segmentation fault for GDB. When this fault
occurs, you receive the following message:

Debugger name and version: GNU gdb (GDB) 7.0

Program received signal SIGSEGV, Segmentation fault.

In ntdll!RtlpWaitForCriticalSection () (C:\WINDOWS\system32\ntdll.dll)

Continuing...

Program received signal SIGSEGV, Segmentation fault.

In ?? () (C:\WINDOWS\system32\guard32.dll)

If you get this message, click OK and then click Continue.

For more information, see the “Guard32.dll causes SIGSEGV segmentation
fault for GDB debugger CIS 3.9.95478 x32” topic athttp://forums.comodo.com/.

GDB Stops on Each Semaphore Post
If you use gdb to debug a target application running on Linux , gdb stops on
each semaphore post. You can override this expected behavior adding the
following text to .gdbinit, the GDB init file:

handle SIG34 nostop noprint pass
handle SIG35 nostop noprint pass

48-15

http://forums.comodo.com/defense_bugs/guard32dll_causes_sigsegv_segmentation_fault_for_gdb_debugger_cis_3995478_x32-t48069.0.html

48 Working with Eclipse™ IDE

On Linux, .gdbinit resides on your home folder, by
default. For more information about creating .gdbinit and
configuring gdb, consult the GDB User Manual, available from
http://www.gnu.org/software/gdb/documentation/.

Build Errors
If you use eclipseidesetup without closing Eclipse IDE, you may get build
errors similar to the following ones:

The call to idelink_ert_make_rtw_hook, during the exit hook generated the following error:

Error while creating the project.

The build process will terminate as a result.

===

Error while creating the project.

===

Error creating a new project.

===

An exception occurred while performing this operation. 0

To solve this problem, close and restart Eclipse IDE.

Profiling is not available for Intel x86/Pentium and
AMD K5/K6/Athlon processors running Windows
or Linux
Profiling is not available for Intel® x86/Pentium and AMD® K5/K6/Athlon
processors running Windows or Linux.

Eclipse Message: “Can’t find a source file”
With specific Configuration Parameters, while building and loading a target
application, Eclipse IDE displays a message that it could not find a source
file. This message appears even if the load action completes successfully.
Here is an example of the message:

Can't find a source file at
"../../sumdiff_bash_eclipseide/sumdiff_bash_main.c
Locate the file or edit the source lookup path

48-16

http://www.gnu.org/software/gdb/documentation/

Troubleshooting with Eclipse IDE

to include its location.

In Configuration Parameters, on the IDE Link pane, in the Vendor Tool
Chain section: If Configuration is set to Release or Custom, the coder
product does not specify the -g compiler option for gcc. Therefore, the build
process does not produce debugging information gdb requires. Without this
information, gdb cannot map the executable to the source file, resulting in the
"Can’t find a source file” message.

To solve this problem, add -g to the Compiler options string for the Custom
and Release configurations, or set Configuration to Debug.

Eclipse Message: “Cannot access memory at
address”
If you use the coder product’s halt method to stop the target application,
Eclipse displays a message similar to the following example:

[Switching to thread 5528.0x1664]
Quit (expect signal SIGINT when the program is resumed)
Cannot access memory at address 0x720000
Cannot access memory at address 0x720000

This error is not related to Eclipse IDE. It is a bug with gdb/MinGW. It
typically occurs when gdb tries to access an invalid or protected memory
location.

48-17

48 Working with Eclipse™ IDE

48-18

49

Working with Freescale
MPC5xx Processors

• “Getting Started” on page 49-2

• “Generating Stand-Alone Real-Time Applications” on page 49-24

• “PIL Simulation” on page 49-82

• “Configuration Parameters” on page 49-109

• “Toolchains and Hardware” on page 49-124

49 Working with Freescale MPC5xx Processors

Getting Started
This section contains the following topics:

In this section...

“Overview” on page 49-2

“Additional Blocks on MATLAB Central Web Site” on page 49-8

“Using This Guide” on page 49-8

“CAN Hardware Requirements for Freescale MPC5xx” on page 49-9

“Supported Cross-Development Tools for Freescale MPC5xx” on page 49-9

“Setting Up and Verifying Your Configuring the Host Vector CAN
Application ChannelInstallation” on page 49-10

“Setting Target Preferences for MPC5xx” on page 49-11

“Accessing Utilities for Freescale MPC555” on page 49-18

“Data Type Support and Scaling for Device Driver Blocks” on page 49-20

Overview

• “Introduction” on page 49-2

• “Feature Summary” on page 49-3

• “Applications for the coder product” on page 49-6

Introduction
The coder product provides a complete and unified set of tools for developing
embedded applications for the Freescale MPC555 and MPC56x processors
(MPC561, MPC562, MPC563, MPC564, MPC565 and MPC566). The MPC5xx
family of processors are products of Freescale Semiconductor, Inc., formerly
a division of Motorola, Inc.

Used in conjunction with Simulink and Stateflow, your coder product lets you:

• Design and model your system and algorithms.

49-2

Getting Started

• Compile, download, run and debug generated code on the target hardware,
seamlessly integrating with industry-standard compilers and development
tools for the MPC5xx.

• Use simulation and rapid prototyping techniques to evaluate performance
and validate results obtained from generated code running on the target
hardware.

• Deploy production code on the target hardware.

Feature Summary

Production Code Generation.

• The coder product generates production code for use on the target MPC5xx
microcontroller.

• The coder product generates project or makefiles for popular
cross-development systems:

- Wind River Systems Wind River Compiler

- Freescale CodeWarrior®

• Debugger support:

- Wind River Systems SingleStep™ debugger

- Freescale CodeWarrior debugger

• Support for ANSI C (ANSI X3.159-1989) math library for floating-point
functions.

Device Driver Support.

• The Embedded Targets block library provides device driver blocks that let
your applications access on-chip resources. The I/O blocks support the
following features of the MPC555 and MPC56x:

- Pulse width modulation (PWM) generation via the Modular Input/Output
Subsystem (MIOS) PWM unit or the Time Processor Unit 3 (TPU)
modules

- Analog input via the Queued Analog-to-Digital Converter (QADC64)

49-3

49 Working with Freescale MPC5xx Processors

- Digital input and output via the MIOS or TPU

- Digital input via the QADC64

- Frequency and pulse width measurement via the MIOS Double Action
Submodule (MDASM)

- Transmit or receive Controller Area Network (CAN) messages via the
MPC5xx TouCAN modules

- Driver blocks to support other functions of the TPU modules — Fast
Quadrature Decode, New Input Capture/Input Transition Counter, and
Programmable Time Accumulator

- Serial transmit and receive

- Utility blocks such as a watchdog timer

Code and Performance Analysis. Web-viewable code generation report
includes

• Analysis of RAM/ROM usage and other variables

• Analysis of code generation options used, with optimization suggestions

• Hyperlinks to all generated code files

• Hyperlinks from generated code to source model in Simulink

Applications Development and Rapid Prototyping.

• Generation of real-time, stand-alone code for MPC5xx

• Scheduler and time functions for singlerate or multirate real-time operation

• CAN-based loader for download of generated code to RAM or flash memory

• CAN-based host-target communications for non-real-time retrieval of data
on host computer

Simulation and Simulation.

• Automatic S-function generation lets you validate your generated code in
software-in-the-loop (SIL) simulation.

49-4

Getting Started

• Processor-in-the-loop (PIL) simulation lets you integrate generated code,
running on the target processor, into your simulation.

• SIL and PIL code components are generated by the coder product. These
simulation components are in the same compact and efficient format as the
production code generated for final deployment.

CAN Support.

• Transmit or receive CAN messages via the MPC5xx TouCAN modules.

• CAN Drivers (Vector) library provides blocks for transmitting, receiving,
configuring, and connecting to Vector-Informatik CAN hardware and
drivers. These can be used in simulation to connect to a real CAN bus.

• The CAN Message Blocks library includes blocks for transmitting,
receiving, decoding, and formatting CAN messages. It also supports
message specification via the Vector-Informatik CANdb standard. CAN is
an industry standard protocol used in automotive electronics and many
other embedded environments where dispersed components require
sharing of information.

Code Validation and Performance Analysis.

Code Validation

Since signal data is available to Simulink during each sample interval in a
PIL simulation, you can observe signal data on Scope blocks or other Simulink
signal viewing blocks. You can also store signal data to MAT-files via To File
blocks. To validate the results obtained by the generated code running on
the target processor, you can compare these files to results obtained using a
normal Simulink plant/controller simulation.

Determining Code Size

In control design it is critical to ensure that the size of the generated code
does not exceed physical limitations of RAM and ROM. The coder product can
automatically produce a code generation report that displays the RAM usage
and ROM size of the generated code.

49-5

49 Working with Freescale MPC5xx Processors

This capability is useful when selecting which code generation optimizations
will be used. After determining the size of the required RAM and ROM,
you can consider which code generation optimizations to use, and consider
modifications to the modeling style.

Applications for the coder product
The coder product provides targets that support three application scenarios:

• Real-time (RT) execution for production and rapid prototyping

• Processor-in-the-loop (PIL) simulation target

• Algorithm export (AE) target

In the sections that follow, we summarize typical applications and the tasks
you will need to perform for each; we also provide links to the relevant
documentation.

Real-Time Execution and Rapid Prototyping. The Embedded Coder
real-time target enables you to use your controller block diagram in real time
to perform embedded control. With this target, you can add I/O blocks for the
MPC5xx to your controller subsystem, generate and build code, download to
the target, and run the generated C code.

When you first begin using the RT target, see “Tutorial: Creating a New
Application” on page 49-26, which demonstrates the following topics through
the use of a simple model with a device driver:

• Examining the demo model with a plant model and controller

• Adding the MPC555 Resource Configuration block to your subsystem

• Adding I/O device drivers from the Embedded Targets block library

• Selecting the RT target

• Generating code for real time

• Downloading code with

- A BDM connector

- CAN

49-6

Getting Started

• Running the generated code in real-time

You may also be interested in generating code analysis information from
your RT target build. See “HTML Code Analysis (RAM/ROM) Report” on
page 49-104 for details.

Processor-in-the-Loop. The processor-in-the-loop (PIL) target lets you run a
simulation of a closed-loop Simulink model for the purpose of code validation
and analysis. When running a PIL simulation, you use a closed-loop model
with two major components: a plant model and a controller. The plant model
may contain any Simulink blocks including a combination of continuous-time
and discrete-time blocks.

To get started with the PIL target, see “Tutorial 1: Building and Running a
PIL Simulation” on page 49-84. The tutorial covers the following topics:

• Opening the demo model and examining the plant model and controller

• Selecting the PIL target

• Generating the Embedded Real-Time (ERT) S-function and the
corresponding library block

• Inserting the S-function back into the closed-loop model

• Automatic downloading of generated code with

- Wind River Systems SingleStep debugger and a Background Debug
Mode (BDM) port connector

- CodeWarrior and a BDM connector

• Running a PIL simulation

You may also be interested in generating code analysis information from
your PIL target build. See “HTML Code Analysis (RAM/ROM) Report” on
page 49-104 for details.

49-7

49 Working with Freescale MPC5xx Processors

Algorithm Export. The algorithm export (AE) target enables you to generate
code for your controller subsystem and build the code as a stand-alone
executable for use on the MPC5xx. The difference between the AE and the
PIL target is that the AE target eliminates all extraneous code (such as
serial communications code) used for simulation, and also eliminates any
real-time interrupts. The AE target therefore generates code only for the
basic controller subsystem (e.g. algorithm code). You can then modify or
customize this code for your own special purposes.

In contrast, the RT target provides turnkey code including interrupt service
routines, driver code, and underlying initialization code for the MPC5xx.
Depending upon your particular application, you may find it more valuable
to begin with the AE target baseline, and extend this environment for your
own use.

The AE target is documented in “Algorithm Export Target” on page 49-103.

Like the PIL and RT targets, the AE target supports generation of code
analysis information. See “HTML Code Analysis (RAM/ROM) Report” on
page 49-104 for details.

Additional Blocks on MATLAB Central Web Site
Check the MATLAB Central Web site for user- and developer-contributed
blocks and demos, such as the MPC555 Motor Control Function Blockset
for Release 2006a.

The MPC555 Motor Control Function Blockset is an extensive collection
of additional TPU I/O blocks for the coder product. This functionality is
particularly useful in the context of motor and powertrain control, including
functions for missing and additional tooth detection.

Using This Guide
To get acquainted with the coder product and gain hands-on experience with
the features most relevant to your interests:

• Read “Getting Started” on page 49-2 in its entirety, paying particular
attention to “Setting Up and Verifying Your Configuring the Host Vector
CAN Application ChannelInstallation” on page 49-10.

49-8

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=10439&objectType=file
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=10439&objectType=file

Getting Started

• If you are interested in using the supplied device driver blocks and in
deploying stand-alone, real-time applications on the MPC5xx, read
“Generating Stand-Alone Real-Time Applications” on page 49-24. Work
through the “Tutorial: Creating a New Application” on page 49-26.

• If you are interested in processor-in-the-loop (PIL) simulation, read “PIL
Simulation” on page 49-82 to learn about the PIL target. Work through the
“Tutorial 1: Building and Running a PIL Simulation” on page 49-84.

• Then, for in-depth information about the Embedded Targets device drivers
and other blocks, see “Freescale MPC5xx” It is particularly important to
read MPC5xx MPC555 Resource Configuration, as the MPC555 Resource
Configuration block is required to use most of the device driver blocks.

CAN Hardware Requirements for Freescale MPC5xx
If you want to use CAN to transmit or receive CAN messages between your
host PC and your target, you require Vector-Informatik CAN hardware
supported by the Vector CAN Driver Library. You must install the correct
driver libraries to support profiling, downloading, and external mode.

Note For CANcaseXL, you must install both the Vector XL-driver library
and Vector CAN Driver Library vcand32.dll.

For older CAN hardware, you must install the Vector CAN Driver Library
vcand32.dll.

Make sure that the library, vcand32.dll, is placed in the Windows system32
folder.

For configuration steps, see “CAN Hardware and Drivers” on page 49-139.

Supported Cross-Development Tools for Freescale
MPC5xx
In addition to the required MathWorks software, a supported
cross-development environment is required. The coder product currently
supports the cross-development tools listed below; please read carefully the
limitations noted:

49-9

http://www.vector-informatik.com
http://www.vector-worldwide.com/downloads/drivers/canlib43.zip

49 Working with Freescale MPC5xx Processors

• Freescale CodeWarrior Development Studio, MPC5xx Edition, v8.7 (debug
via Macraigor Systems Wiggler, Raven/ Blackbird, or On-board BDM).

Search on the Freescale Web site: http://www.freescale.com

• Wind River Systems Wind River Compiler version 5.4.0, (formerly known
as Diab), and Wind River Systems SingleStep debugger of the following
versions:

- Wind River Systems SingleStep with vision Version 7.7.5 (debug via
Wind River visionPROBE) (for MPC5xx)

- Wind River Systems SingleStep Version 7.6.6 (debug via Macraigor
Systems Wiggler, Raven / Blackbird, On-board BDM) (for MPC555 only)
(+ Fromelf patch from Wind River Support)

You must download fromelf.exe for the Wind River Systems SingleStep
debugger 7.6.6, otherwise builds with debug flag -g set will not load,
with the following error: "aborting due to failure of ELF reader".

To use these BDM devices you must set up nondefault target preferences,
as detailed in “Setting Up and Verifying Your Configuring the Host
Vector CAN Application ChannelInstallation” on page 49-10.

See Wind River Products for information.

The full feature set (PIL, RT, and AE targets) is supported for both toolchains.

Before using the coder product with any of the above cross-development tools,
please be sure to read and follow the instructions in “Setting Up and Verifying
Your Configuring the Host Vector CAN Application ChannelInstallation” on
page 49-10.

See also this solution for Information about the availablity of SingleStep.

Setting Up and Verifying Your Configuring the Host
Vector CAN Application ChannelInstallation
The next sections describe how to configure your development environment
(compiler, debugger, etc.) for use with the coder product and verify correct
operation. The initial configuration steps are described in the following
sections:

49-10

http://www.macraigor.com/wiggler.htm
http://www.macraigor.com/raven.htm
http://www.freescale.com
http://www.macraigor.com/wiggler.htm
http://www.macraigor.com/raven.htm
http://www.windriver.com/products/
http://www.mathworks.co.uk/support/solutions/data/1-3ZL6JP.html?product=TM&solution=1-3ZL6JP

Getting Started

• You must set up your development environment and your target hardware.
Information on these settings can be found in the “Toolchains and
Hardware” on page 49-124:

- “Setting Up Your Target Hardware” on page 49-133

- “Setting Up Your Toolchain” on page 49-124

Note You MUST check your jumper settings. Incorrect operation or
even hardware damage may occur if you do not. See “Jumper Settings”
on page 49-134.

• You must configure the product to work with your toolchain by specifying
the locations of your compiler and debugger. This is described in the section
“Setting Target Preferences for MPC5xx” on page 49-11.

• We supply a test program to verify your installation. This confirms you
have correctly set up your toolchain, and development board. See “Run
Test Program” on page 49-15.

• The next step is to download boot code to the flash memory of your MPC5xx.
See “Download Boot Code to Flash Memory” on page 49-16.

Note You must download the new boot code if you have used a previous
release of the coder product with your hardware. See “Download Boot Code
to Flash Memory” on page 49-16.

Once you have completed these steps, run the tutorials in subsequent sections
to get started.

Setting Target Preferences for MPC5xx

• “Configuring the coder product for Your Cross-Development Toolchain” on
page 49-12

• “Run Test Program” on page 49-15

• “Download Boot Code to Flash Memory” on page 49-16

49-11

49 Working with Freescale MPC5xx Processors

Configuring the coder product for Your Cross-Development
Toolchain
This section describes how to set target preferences associated with the
coder product. These settings persist across MATLAB sessions and different
models. Target preferences let you specify the location of your MPC5xx
cross-compiler, the communications port to be used for downloading code, and
other parameters affecting the generation, building, and downloading of code.

You must make sure you localize the settings to suit your PC and
cross-development toolchain. It is important that you set the correct path to
your compiler and debugger using the Target Preferences dialog box.

Instructions for setting up specific third-party toolchains for use with the
coder product are in “Toolchains and Hardware” on page 49-124. Make sure
you have followed the instructions to set up your toolchain first:

• “Setting Up Your Installation with Wind River Compiler and Wind River
Systems SingleStep Debugger” on page 49-124

- “Setting Target Preferences for Wind River Compiler and Wind River
Systems SingleStep” on page 49-126. Note especially the settings you
must change if you are not using the visionPROBE BDM device. The
defaults are set up for the visionPROBE.

• “Setting Up Your Installation with Freescale CodeWarrior” on page 49-129

- “Set Target Preferences for CodeWarrior” on page 49-131

You can modify target preference objects via the Target Preferences dialog box:

1 Enter mpc555utils in the Command Window. This opens the Utilities
for Use with MPC555 dialog box.

2 Select Target Preferences from the drop-down list, and click OK. This
opens the Target Preferences dialog box where you can edit the settings
for your cross-development environment. When you first open the dialog
the following settings are visible.

3 Select Diab or CodeWarrior from the drop-down Toolchain menu.

49-12

Getting Started

Note the Wind River Compiler was formerly known as Diab. Any
appearances of the term Diab in the documentation and / or product should
be understood to refer to the Wind River Compiler.

4 Expand ToolChainOptions (by clicking the plus sign) and type the correct
path into CompilerPath. The following shows Wind River Compiler
options. Note that the defaults are set up for the visionPROBE — see the
Appendix for settings to use another BDM device, described in “Setting
Target Preferences for Wind River Compiler and Wind River Systems
SingleStep” on page 49-126.

Note The drive designated in the compiler and debugger paths must be
either an actual hard drive on your PC, or a mapped drive. Do not use a
Universal Naming Convention (UNC).

5 For Wind River Systems SingleStep you must also type the correct path
into Debugger Path. This is not necessary for CodeWarrior as the
compiler and debugger are integrated. The example below shows the
CodeWarrior preferences.

There are other settings in the target preferences you can see by expanding
all the options.

Serial Communications. These target preferences relate to
Processor-in-the-Loop (PIL) simulation only.

• BitRate — Bit rate (in bps) for host/target communications. The default
is 57600.

• HostPort— Host serial port for host/target communications. Select from
com1 to com8; the default is com1.

• TargetPort — Target board serial port for host/target communications.
Select from com1 to com8; the default is com1.

49-13

49 Working with Freescale MPC5xx Processors

• TimeOut— Timeout value (in seconds) for the serial communications port.
The default is 4.

Target Board.

• OscillatorFrequency— Choose either 20 MHz (the default) or 4 MHz if
you are using a 4MHz board.

• ProcessorVariant— Here you can select from 555, 561, 562, 563, 564, 565
or 566 to match your target processor. The default is the MPC555.

When you install bootcode after setting target preferences the correct bootcode
for your chosen target processor and oscillator frequency will be automatically
installed. Note that you also need to make these settings match in your
models for the non-default target processor and oscillator frequency. See
“Configuration for Nondefault Hardware” on page 49-141.

Compiler Optimization Switches.

For both toolchains these settings configure optimizations for speed, size,
and debug. The settings are compiler specific. These properties can be edited
from the Target Preferences dialog box or from the Configuration Parameters
dialog box, described below. The defaults should be adequate for most rapid
prototyping purposes.

49-14

Getting Started

If you want to alter these settings, consult your compiler documentation for
specific optimizations. To edit the settings,

• If you want your changes to apply to many models, edit them within
the Target Preferences dialog box. Your settings will appear within the
Configuration Parameters dialog box in the Compiler optimization
switches field when you select speed, size or debug from the Optimize
compiler for options in the drop-down menu. You must choose ET MPC5xx
real-time options (1) from the Code Generation tree to reach these
settings.

• If you want to customize these settings for a single model, edit them from
the Configuration Parameters dialog box. Optimize compiler for will
change to custom and the defaults for these settings will remain unchanged
in the Target Preferences dialog box. When you edit these settings, you
must place single quotation marks at either end of the string. These
settings are then applied to model code.

Use Prebuilt Libraries

This check box option (selected by default) determines whether prebuilt
libraries, compiled with default compiler switches, are linked against during
compilation of the generated code. When this option is not selected, the source
modules that comprise these libraries will be compiled individually in the
model build folder, using the currently selected compiler switches. Using
prebuilt libraries saves a considerable amount of time during the build process

Debugger Switches. This setting is specific to Wind River Systems
SingleStep. See “Setting Target Preferences for Wind River Compiler and
Wind River Systems SingleStep” on page 49-126.

Run Test Program
To verify your setup, you can download and run a simple test program on
the phyCORE-MPC555 board:

1 .Enter mpc555utils in the Command Window. This opens the Utilities
for Use with MPC555 dialog box.

49-15

49 Working with Freescale MPC5xx Processors

2 Select Run Simple MPC5xx Test Application (via BDM) from the
drop-down list, and click OK.

3 To the question Do you wish to load the applications? (Y/N) type
Y at the command line.

If you have not set up your target preferences properly the process will stop
and ask you to do this now.

Watch as your toolchain downloads and runs the application on your
phyCORE board. Successful execution results in a blinking LED.

You have now verified your installation and are ready to begin working with
the coder product.

Download Boot Code to Flash Memory
The next step is to download the boot code to flash memory, if you have not
already done so. Normally, you will only need to program the boot code
into flash memory once. After this is done, new application code can be
downloaded as often as required without any changes to the boot code.

The first time you program the boot code into the target hardware, you must
download it via the BDM port. However, if existing boot code is already
programmed into flash memory and must be replaced (for example, with a
newer or modified version) it is also possible to download entirely over CAN or
serial. If you are upgrading from a previous release of the coder product you
must download the new boot code.

If your target does not have bootcode already you can only install new
bootcode with a BDM. See the next section “Installing Bootcode via BDM and
Serial or CAN” on page 49-17. For existing bootcode, you can use a BDM or
CAN; with bootcode from version 1.2 or later you can also download over
Serial. See “Installing Bootcode Without a BDM” on page 49-17.

The first time you use the coder product you must use a toolchain to download
boot code to the MPC555 flash memory. Once the boot code is loaded into
flash memory, you can download code to the processor entirely over serial or
the CAN network as described in the tutorials. See “Overview of Memory
Organization and the Boot Process” on page 49-40 for more information.

49-16

Getting Started

Installing Bootcode via BDM and Serial or CAN. To install bootcode,
follow these steps:

1 Connect the BDM cable to the target, and a serial or CAN cable. If you do
not have a BDM available, see “Installing Bootcode Without a BDM” on
page 49-17.

2 .Enter mpc555utils in the Command Window. This opens the Utilities
for Use with MPC555 dialog box.

3 Select Install MPC5xx Bootcode from the drop-down list, and click OK.

A dialog appears asking if you are connected to the target via BDM. Read
the information on the dialog.

4 Click Yes.

Your toolchain is launched and prepares to download.

The Download Control Panel appears.

5 If you are using CAN (the default) you can proceed to step 5. If you
are using serial to connect to the target, click the Communications
Options tab in the Download Control Panel and select Serial from the
Connection type drop-down menu.

6 On the Download tab, click Start Download.

Your development tools execute a command to install the boot code. When
the process stops, the messages in the Download Control Panel complete,
and the Stop Download button reverts to Start Download. The boot code
should now be installed.

Installing Bootcode Without a BDM. If your target does not have bootcode
already you can only install new bootcode with a BDM. For targets with
existing bootcode, if you do not have a BDM available you can install bootcode
as follows:

• For a target with R14 bootcode, you can install new bootcode using the
Start menu exactly as described above except step 4 - click No when asked

49-17

49 Working with Freescale MPC5xx Processors

if you are connected via BDM. The download should complete successfully
over serial or CAN.

• If existing bootcode on the target is version 1.1 (R13+SP1), you can install
bootcode without a BDM if you have CAN. Use the Start menu bootcode
installer as described above and click No when asked if connected by BDM.
The download should complete successfully over CAN.

Note If the existing bootcode is earlier than version 1.1 (if it is R12.1 or R13),
you need to upgrade bootcode with a BDM. If no BDM is available, please
contact Technical Support for a solution.

Once you have successfully downloaded boot code to your target, you have
completed your installation and are ready to use all the product features. If
necessary, please consult your toolchain documentation.

Now turn to “Generating Stand-Alone Real-Time Applications” on page 49-24
to get hands-on experience with using the coder product and your toolchain to
generate, download, and execute application code on your phyCORE-MPC555
board. You can then also work through the tutorials in “PIL Simulation” on
page 49-82 to start using processor-in-the-loop simulation for development
via the coder product.

Accessing Utilities for Freescale MPC555

Utilities for Use with MPC555 Dialog
Open the Utilities for Use with MPC555 dialog box by entering mpc555utils
in the Command Window or double-clicking Launch MPC555 Utilities in the
Simulink block library. You see the following options:

• Target Preferences — Opens the Target Preferences dialog box. See
“Setting Target Preferences for MPC5xx” on page 49-11.

• Run Simple MPC5xx Test Application (via BDM)— Downloads and
runs a simple test application that uses your hardware to make an LED
blink. See “Run Test Program” on page 49-15.

49-18

Getting Started

• Install MPC5xx Bootcode— Installs the appropriate boot code on your
target processor. See “Download Boot Code to Flash Memory” on page
49-16.

• Inspect the MPC5xx Hardware (via BDM) — Opens your debugger
so you can inspect the hardware.

• Debug RAM Based Application (via BDM) — Downloads and then
enables you to debug a RAM application in .elf format.

• Debug FLASH Based Application Already in FLASH (via BDM) —
Enables you to debug an application (in .elf format) already in FLASH.

• Download RAM / FLASH Based Application (via CAN / Serial) —
Launches the Download Control Panel, for downloading applications in
.s19 format to your hardware. See “Tutorial: Creating a New Application”
on page 49-26, and “Downloading Application Code” on page 49-42.

49-19

49 Working with Freescale MPC5xx Processors

• Download FLASH Based Application (via BDM and CAN / Serial)
— Allows you to use a BDM and the Download Control Panel to download
an application in .s19 format to FLASH memory. See “Downloading
Application Code” on page 49-42.

• Initialize visionPROBE for Selected Target Board (WindRiver
Only)— If you are using a visionPROBE, run this option to initialize the
device, after setting target preferences (and again if you change target
processor). See “Initialize visionPROBE” on page 49-128.

• Rebuild the MPC5xx Driver Library— Recompiles the MPC5xx Driver
libraries. See “Boot Code Parameters for CAN Download” on page 49-52.

Data Type Support and Scaling for Device Driver
Blocks
The following table summarizes the input and output data types supported
by the device driver blocks in the Embedded Targets library and the scaling
applied to block inputs and outputs.

I/O Data Types and Scaling for MPC5xx Device Driver Blocks

Block
Input Data
Type

Input
Scaling

Output Data
Type

Output
Scaling/
Units

MPC5xx MIOS Digital In Boolean 0 or 1
only

MPC5xx MIOS Digital Out Any Simulink
supported data
type

logic 1
if input
> 0,
logic 0
if input
<= 0

MPC5xx MIOS Digital Out (MPWMSM) Any Simulink
supported data
type

logic 1
if input
> 0,
logic 0
if input
<= 0

49-20

Getting Started

I/O Data Types and Scaling for MPC5xx Device Driver Blocks (Continued)

Block
Input Data
Type

Input
Scaling

Output Data
Type

Output
Scaling/
Units

MPC5xx MIOS Pulse Width Modulation
Out

double or
single

0 to 1

MPC5xx MIOSWaveform Measurement double or
single

Seconds

MPC5xx QADC Analog In uint16
or int16
(defined by
Justification
parameter)

(defined
by
Justification
parameter)

MPC5xx QADC Digital In Boolean 0 or 1
only

MPC5xx TouCAN Receive CAN_MESSAGE_STANDARD
or
CAN_MESSAGE_EXTENDED

N/A

MPC5xx TouCAN Transmit CAN_MESSAGE_STANDARD
or
CAN_MESSAGE_EXTENDED

N/A

MPC5xx TouCAN Warnings Boolean N/A

MPC5xx TouCAN Error Count uint8 N/A

MPC5xx TouCAN Fault Confinement
State

uint16 N/A

MPC5xx TPU3 Digital In Boolean 0 or 1
only

MPC5xx TPU3 Digital Out Any Simulink
supported data
type

Logic 1
if input
> 0,
logic 0
if input
<= 0

49-21

49 Working with Freescale MPC5xx Processors

I/O Data Types and Scaling for MPC5xx Device Driver Blocks (Continued)

Block
Input Data
Type

Input
Scaling

Output Data
Type

Output
Scaling/
Units

MPC5xx TPU3 Fast Quadrature Decode Fast Mode
input Boolean

uint16 N/A

MPC5xx TPU3 New Input
Capture/Input Transition Counter

uint16 N/A

MPC5xx TPU3 Programmable Time
Accumulator

Time
Accumulation

uint32

Period Count

uint8

N/A

MPC5xx TPU3 Pulse Width Modulation
Out

Duty cycle
input (top if 2
inputs): double
or single

0 to 1

Pulse period
register input
— uint16

Saturated
to be
in the
range
0 to
32768

49-22

Getting Started

I/O Data Types and Scaling for MPC5xx Device Driver Blocks (Continued)

Block
Input Data
Type

Input
Scaling

Output Data
Type

Output
Scaling/
Units

MPC5xx Serial Transmit Data: uint8
(vector or
scalar)

Number of
bytes: uint32
(scalar)

N/A Number of
bytes: uint32

0-16 (for
SCI1); 0
or 1 (for
SCI2)

MPC5xx Serial Receive Number of
bytes: uint32

Reset: Boolean

N/A

0 or 1

Data: uint8

Actual number
of bytes:
uint32

Framing and
parity error:
Boolean

Overrun flag:
Boolean

N/A

N/A

0 or 1

0 or 1

Configuration Class Blocks

Each sublibrary of the Embedded Targets library contains a configuration
class block that has an icon similar to the one shown in this figure.

Configuration class blocks exist only to provide information to other blocks.
Do not copy these objects into a model.. If you do you see an error dialog box to
warn you. This causes build failures.

49-23

49 Working with Freescale MPC5xx Processors

Generating Stand-Alone Real-Time Applications
This section includes the following topics:

In this section...

“Overview” on page 49-24

“Tutorial: Creating a New Application” on page 49-26

“Downloading Boot and Application Code” on page 49-39

“Parameter Tuning and Signal Logging” on page 49-53

“HTML Code Profile (RAM/ROM) Report” on page 49-67

“Execution Profiling” on page 49-68

“Summary of the Real-Time Target” on page 49-76

“Performance Tips” on page 49-79

Overview

• “Generating Real-Time Applications” on page 49-24

• “Deploying Generated Code” on page 49-25

Generating Real-Time Applications
This section describes how to generate a stand-alone real-time application for
the MPC555. The components required to generate stand-alone code are

• The Embedded Coder real-time target features

• The MPC555 Resource Configuration object provided in the Embedded
Targets library

• I/O driver blocks provided in the Embedded Targets library

• Utilities for downloading generated code to the target hardware

Using these together with your toolchain, you can build a complete
application. You do not need to manually write any C code to integrate the
generated code into a final application.

49-24

Generating Stand-Alone Real-Time Applications

The tutorial “Tutorial: Creating a New Application” on page 49-26 uses two
blocks from the Embedded Targets library. For complete information on the
Embedded Targets library blocks, see “Freescale MPC5xx”.

Before reading this section and using the Embedded Targets library,
you should have at least a basic understanding of the architecture of the
MPC555. To learn about the MPC555, study the MPC555 Users Manual. We
recommend that you read the introduction to the processor and familiarize
yourself with all the major subsystems of the MPC555. You can find this
document at the following URL:

http://www.freescale.com/files/microcontrollers/doc/user_guide/MPC555UM.pdf

Deploying Generated Code
You can load a generated program into the MPC555 flash memory for
permanent deployment. You can also load your code into external RAM (if
available on your development hardware).

Alternatively, you can use the automatic code generation process for rapid
prototyping and investigate a range of different design alternatives before
making a deployment decision.

Your generated program can run on any Electronic Control Unit (ECU) that
is based on the MPC5xx processor. Your application can use any of the
supported MPC5xx on-chip I/O devices. We provide driver blocks for the
MPC5xx’s MIOS, TPU, QADC and TouCAN modules, providing you with
drivers for the on-chip analog input, digital I/O, PWM, serial and CAN devices.

See “Freescale MPC5xx” for further information on the device driver blocks in
the Embedded Targets library.

In addition to on-chip I/O resources, an ECU typically provides additional I/O
devices. If you want to access such custom I/O devices, you must write device
drivers and integrate them with the automatically generated code.

Once the application has been programmed into memory on the target
system, you may need to monitor signals or tune parameters. The coder
product supports signal monitoring and parameter tuning via Simulink
external mode or a third party calibration tool. In both cases you must

49-25

http://www.freescale.com/files/microcontrollers/doc/user_guide/MPC555UM.pdf

49 Working with Freescale MPC5xx Processors

include a CAN Calibration Protocol (CCP) block in your model. The CAN
Calibration Protocol block implementation of CCP has been tested against
CANape from Vector-Informatik and ATI Vision. See “Parameter Tuning and
Signal Logging” on page 49-53 and MPC5xx CAN Calibration Protocol for
further information.

Tutorial: Creating a New Application

• “Tutorial Overview” on page 49-26

• “Before You Begin” on page 49-27

• “The Example Model” on page 49-28

• “Generating Code” on page 49-31

• “Downloading the Application to RAM via Serial or CAN” on page 49-33

• “Downloading the Application to RAM via BDM” on page 49-37

Tutorial Overview
In this tutorial, you build a stand-alone real-time application from a model
incorporating blocks from the Embedded Targets library. We assume that you
are already familiar with the Simulink product and with the code generation
and build process.

In the following sections, you will

• Configure the model

• Generate code from a subsystem

• Download code by one of the following methods:

- Download to target RAM via a serial connection, using the Download
Control Panel utility (provided with the coder product)

- Download to target RAM via a CAN connection, using the Download
Control Panel utility

- Download to target RAM via a BDM connection

• Execute the code on the target

49-26

Generating Stand-Alone Real-Time Applications

After you complete this tutorial, you may want to learn how to deploy
generated code into the MPC555 flash memory. See “Downloading Boot and
Application Code” on page 49-39 for that information.

Before You Begin
This tutorial requires the following specific hardware and software in addition
to the coder product:

• Phytec phyCORE-MPC555 development board

The tutorial model utilizes two LEDs on the phyCORE-MPC555 board.
These LEDs are connected to pins MPIO32B0 and MPIO32B1 on the MPC555
MIOS digital output pins. If you are using a different development board,
you may be able to obtain the same functionality by making similar
connections.

• A supported toolchain for compiling and debugging. Currently supported
toolchains are

- Wind River Compiler and Wind River Systems SingleStep from Wind
River Systems

- CodeWarrior from Freescale

See “Setting Up Your Toolchain” on page 49-124 for details.

• Hardware to enable downloading:

- If you want to download generated code to the target board over serial
you will need a serial cable to connect your host PC to the target board.

- If you want to download over BDM you will need a BDM device.

- If you want to download via CAN, you will need a supported CAN card
and drivers from Vector-Informatik. See “CAN Hardware and Drivers”
on page 49-139.

Configuring Target Preferences and Boot Code.

• Make sure that your target preferences are set correctly for your
development tools. See “Setting Target Preferences for MPC5xx” on page
49-11.

49-27

49 Working with Freescale MPC5xx Processors

• Once your target preferences are set for your toolchain you must download
bootcode to the target before you can work through this tutorial. See
“Download Boot Code to Flash Memory” on page 49-16.

The Example Model
In this tutorial we will use a simple example model, mpc555rt_led.

This folder is on the default MATLAB path. The path matlabroot is the
location where MATLAB is installed.

1 Open the model.

mpc555rt_led

2 Save a local copy to your working folder. We will work with this copy
throughout this exercise.

mpc555rt_led_demo Model, Root Level shows the example model at
the root level. We will only use this level in simulation.

mpc555rt_led_demo Model, Root Level

3 Double-click on the Target_LED subsystem block.

Target_LED Subsystem shows the Target_LED subsystem, from which
we will generate code.

49-28

Generating Stand-Alone Real-Time Applications

Target_LED Subsystem

In the Target_LED subsystem, two square wave signals are multiplexed and
routed to the MIOS Digital Out block. The MIOS Digital Out block accepts a
vector of numbers representing pins 0-15 on the MIOS 16-bit Parallel Port I/O
Submodule (MPIOSM) on the MPC555. As the square wave signals oscillate
between 0 and 1, the MIOS Digital Out block writes corresponding logic
values to the appropriate pin on the port.

This figure shows the parameters of the MIOS Digital Out block.

49-29

49 Working with Freescale MPC5xx Processors

The Bits field is set to the vector [0 1]. The block maps this vector to
the MPC555 MIOS digital output pins MPIO32B0 and MPIO32B1. When the
application runs, it will send a pulse signal to these output pins. On the
phyCORE-MPC555 board, these signals are connected to two of the LEDs,
which will switch on and off at the frequency set in the respective pulse
generator blocks.

In addition to the Pulse Generator, Mux, MIOS Digital Out, and Output
blocks, the Target_LED subsystem contains a MPC555 Resource Configuration
object. When building a model with driver blocks from the Embedded Targets
library, you must always place a MPC555 Resource Configuration object into
the model (or the subsystem from which you want to generate code) first.

The purpose of the MPC555 Resource Configuration object is to provide
information to other blocks in the model. Unlike conventional blocks, the
MPC555 Resource Configuration object is not connected to other blocks via
input or output ports. Instead, driver blocks (such as the MIOS Digital Out
block in the example model) query the MPC555 Resource Configuration object
for required information.

49-30

Generating Stand-Alone Real-Time Applications

For example, a driver block may need to find the system clock speed that is
configured in the MPC555 Resource Configuration object. The MPC555 has a
number of clocked subsystems; to generate correct code, driver blocks need to
know the speeds at which these clock busses will run.

The MPC555 Resource Configuration window lets you examine and edit the
MPC555 Resource Configuration settings. To open the MPC555 Resource
Configuration window, double-click on the MPC555 Resource Configuration
icon. This figure shows theMPC555 Resource Configuration window for
the Target_LED subsystem.

In this tutorial, we will use the default MPC555 Resource Configuration
settings. Observe, but do not change, the parameters in the MPC555
Resource Configuration window. To learn more about the MPC555 Resource
Configuration object, see MPC5xx MPC555 Resource Configuration.

Close theMPC555 Resource Configuration window before proceeding.

The next step in this tutorial is generating code.

Generating Code
We will now look at settings and then generate application code:

1 Select Simulation > Configuration Parameters. The Configuration
Parameters dialog opens.

2 Select Code Generation in the tree.

49-31

49 Working with Freescale MPC5xx Processors

3 Notice the System target file for real-time deployment is mpc555rt.tlc.

To see how to change from real-time deployment to processor-in-the-loop or
algorithm export, click on the Browse button to open the System Target
File Browser. Click Cancel to keep the default real-time setting and
return to the Code Generation pane.

4 Select ET MPC5xx real-time options (1) in the tree. The RAM option
should be selected from the Target memory model menu. This option
directs the build process to generate a code file suitable for downloading
and execution in RAM. The files for both RAM and flash are in Motorola
S-record format.

Leave the options set to their defaults. The code generation options
should appear as shown below (though optimization switches settings vary
between toolchains).

5 You are now ready to build the application. Do this by right-clicking on
the Target_LED subsystem and selecting Code Generation > Build
Subsystem. Then click the Build button in the following dialog.

6 On successful completion of the build process, two files are created in the
working folder:

a Target_LED_ram.s19: This file is for serial or CAN download. It is code
only, without symbols, suitable for execution on the target system.

b Target_LED_ram.elf: This file is for BDM download.

If debug is selected in the compiler optimization settings, the elf file will
contain debugging symbols as well as code. These symbols are suitable
for use with a symbolic debugger such as Wind River Systems SingleStep
or Freescale CodeWarrior. The default optimization setting is speed, so
no symbols are included. Symbols are only generated for a debug build.
See “Compiler Optimization Switches” on page 49-14.

49-32

Generating Stand-Alone Real-Time Applications

You can download to RAM:

• Via Serial or CAN, using the Download Control Panel utility (with
Vector-Informatik hardware if you are using CAN), as described in
“Downloading the Application to RAM via Serial or CAN” on page 49-33.

• Via the BDM port, as described in “Downloading the Application to RAM
via BDM” on page 49-37.

Downloading the Application to RAM via Serial or CAN
The Download Control Panel utility can be used to download application
code to MPC555 RAM or to MPC555 flash memory.

In this section, you will use the Download Control Panel utility to
download the generated Target_LED_ram.s19 file to RAM on the target
system. The s19 file is for download over serial or CAN.

Target_LED_ram.elf is for BDM download, as described in the next section,
“Downloading the Application to RAM via BDM” on page 49-37. Recall you
can perform a debug build to include debugging symbols in the elf file.

Do the following before you begin:

• If you are using serial, make sure you have connected a serial port on your
PC to serial port 1 (RS232-1) on the target hardware.

• If you are using CAN, make sure that your Vector-Informatik CAN card
and drivers are installed and configured properly. See “CAN Hardware and
Drivers” on page 49-139. Make sure that the desired CAN port on the PC
card is connected to the CAN A port on the target hardware.

• Make sure that you have set up your toolchain as described in “Setting Up
Your Toolchain” on page 49-124, and downloaded boot code to the flash
memory of the MPC555 as described in “Download Boot Code to Flash
Memory” on page 49-16.

• Make sure that nothing is connected to the BDM port of your development
board.

• Make sure that the jumpers on the phyCORE-MPC555 board are set as
described in “Phytec MPC555 Jumper Settings” on page 49-134.

49-33

49 Working with Freescale MPC5xx Processors

• Cycle the power (or perform a hard reset) on your development board, to
clear the RAM.

To download the generated Target_LED_ram.s19 file to RAM:

1 Start the Download Control Panel in one of the following ways:

• Open the Utilities for Use with MPC555 dialog box by entering
mpc555utils in the Command Window. Select Download RAM / FLASH
Based Application (via CAN / Serial) from the drop-down list, and
click OK.

• Enter embedded_target_download in the Command Window.

• You can also open the Download Control Panel automatically at
the end of the build process. Before you start the build, you can select
Launch Download Control Panel from the Build action options on
the ET MPC5xx real-time options (1) pane of the Configuration
Parameters dialog.

2 After using any of these three options, the Download Control Panel
dialog opens.

Note RAM application code is automatically selected in the Executable
type menu. You can use exactly the same process to download application

49-34

Generating Stand-Alone Real-Time Applications

code to flash memory by changing this option to Flash application code.
Note that you need to build a model_flash.s19 file in order to use this
option, as described in “Downloading Application Code to Flash Memory
via Serial or CAN” on page 49-44. For this exercise leave the RAM option
selected.

3 Enter the name of the file to be downloaded into the Filename field, in
this case, Target_LED_ram.s19. Alternatively, you can use the browse
button (right of the edit box) to navigate to the desired file. The Download
Control Panel should now appear as shown in this figure.

4 Click on the Communications Options tab.

• If you are using serial, select Serial from the Connection Type
drop-down menu. Select the appropriate host PC connection port from
COM1 to COM8. You can save your preferences by clicking the Save
Preferences button.

• If you are using CAN, select CAN from the Connection Type drop-down
menu. Click Configure to select an appropriate card and port from
the CAN hardware drop-down menu. You must create a MATLAB
application channel to assign to a CAN channel. See “CAN Hardware
and Drivers” on page 49-139 for instructions. The default settings for
the other parameters are appropriate for most cases. You can save your

49-35

49 Working with Freescale MPC5xx Processors

preferences by clicking the Save Settings button. The following figure
shows the Communications Options.

5 Click the Download tab. Then click the Start Download button.

When you click Start, the Download Control Panel’s Status box
changes to read Press reset or power-cycle your development board
to start download.

6 Press the Reset button on your PhyCORE-MPC555 board (or cycle the
power). The Download Control Panel changes its Status box to inform
you that the connection is OK.

Downloading commences, and the Start button caption changes to Stop.

7 While downloading proceeds, progress messages are displayed in the
Download Control Panel. After the download, the Stop button caption
changes back to Start.

If the download does not succeed, reset your development board and return
to step 5.

49-36

Generating Stand-Alone Real-Time Applications

8 Close the Download Control Panel dialog box.

9 A few seconds after a successful download, the boot code transfers control
to the application program. At this point, you should see two LEDs (red
and green) blinking on the target board. This indicates that the program is
operating correctly.

Note that you can monitor the progress of a CAN download using a program
such as CANalyzer. Alternatively, you can use the btest32 utility supplied
with the Vector Informatik driver software. You can invoke the btest32 utility
from the PC command prompt. The following example runs btest32 with a bit
rate of 500000 (500 kbaud):

btest32 500000

Downloading the Application to RAM via BDM
You can choose to automatically download to the target over BDM on
completion of the build process. Follow these steps to generate, download
and execute the Target_LED_ram.elf file in RAM on the target system.
Target_LED_ram.elf can contain both code and symbols for use with the
debugger if you perform a debug build. You will not perform a debug build
in this tutorial, so the file will contain code only.

If you want to download application code to MPC555 flash you can use
serial or CAN. The download process is exactly the same as described in
“Downloading the Application to RAM via Serial or CAN” on page 49-33,
except you change the Download option from RAM to Flash. Note that you
also need to generate a model_flash.s19 file to download to flash memory, as
described in “Downloading Application Code to Flash Memory via Serial or
CAN” on page 49-44. If you want to download the application to flash memory
over BDM manually using your own tools, then the file you need to download
is the S-record file model_flash.s19.

Do the following before you begin:

• Make sure that you have downloaded boot code to the flash memory of the
MPC555. See “Download Boot Code to Flash Memory” on page 49-16.

49-37

49 Working with Freescale MPC5xx Processors

• Connect the BDM port of your development board to parallel port LPT1
of your host PC (or the port specified for your toolchain if different, see
“Setting Up Your Toolchain” on page 49-124).

• Make sure that the jumpers on the phyCORE-MPC555 board are set as
described in “Phytec MPC555 Jumper Settings” on page 49-134.

To generate and download the Target_LED_ram.elf file to RAM over BDM,

1 Select Simulation > Configuration Parameters.

The Configuration Parameters dialog appears.

2 Under Code Generation in the tree, click to select ET MPC5xx real-time
options (1).

3 Select Run_via_BDM or Debug_via_BDM from the Build action drop-down
menu.

4 Ensure the Target memory model selected is RAM (not FLASH).

Notice the default Optimize compiler for setting is speed. If you change
this setting to debug, the generated elf file will contain both code and
symbols for use with a symbolic debugger. See “Compiler Optimization
Switches” on page 49-14 for more information on these settings. For this
tutorial, leave this setting at the default.

5 Right click on the Target_LED subsystem and select Code Generation
> Build Subsystem.

You will see progress messages in the MATLAB Command Window as code is
generated. Your debugger will be automatically started and will download
the code to the target.

Also available is the Start menu option Debug RAM-Based Application
(Via BDM). Use this option to select a *.elf file and debug over BDM as
described above. You can use this option to debug a model you have already
built without having to go through the build process again.

49-38

Generating Stand-Alone Real-Time Applications

Downloading Boot and Application Code

• “RAM vs. Flash Memory” on page 49-39

• “Overview of Memory Organization and the Boot Process” on page 49-40

• “Downloading Application Code” on page 49-42

• “Using the Download Control Panel as a Standalone Application” on page
49-47

• “Downloading Boot or Application Code via CAN Without Manual CPU
Reset” on page 49-49

• “Rebuilding the Boot Code and Device Driver Libraries” on page 49-51

• “Running Applications with a Debugger” on page 49-53

RAM vs. Flash Memory
The coder product creates a file containing the application executable code
that must be programmed onto the MPC555. It can also write a file including
symbolic information suitable for use with a debugger. The files are written to
your working folder.

The format of the code and symbol files is the same for both RAM and flash
memory targets, suitable for downloading into RAM or on-chip flash memory.
The naming convention for these files is

• model_flash.s19 or model_ram.s19 (for serial and CAN download)

• model_flash.elf or model_ram.elf (for BDM download, can contain
debugging symbols).

You can download code to RAM or flash memory via serial or CAN download,
or via the MPC555’s BDM port.

There are advantages and disadvantages to each memory model.

Loading the application code into RAM is faster than loading it into flash
memory. In addition, by using RAM you can avoid using up the programming
cycles of the flash memory; this lengthens the usable lifetime of the flash
memory. Running the application from RAM is a good option for initial
testing of the application.

49-39

49 Working with Freescale MPC5xx Processors

Note The MPC5xx flash memory has a limited lifetime, which is shortened
each time the flash memory is programmed. To extend product life, Freescale
recommends using flash programming only when necessary.

To program applications into RAM, your target hardware must have
additional RAM external to the MPC555 on-chip RAM. The coder product
does not support downloading of code to MPC5xx on-chip RAM, because the
MPC555 has only 26K of on-chip RAM and the MPC565 has 36K.

For final deployment, or to load code onto a test board for use at a test site,
you will generally want to program your code into the nonvolatile flash
memory. 416K of flash memory is available for application code (992K on the
MPC565). Code programmed into flash memory is persistent and restarts
when the board is powered on.

To download code to flash memory, you must first load a binary boot code file
into the flash memory. The coder product provides the boot code file. You
must load the boot code into flash memory in order to run application code.
The boot code is always required even for RAM applications.

To understand the download process, it is first necessary to review the
memory organization on the MPC555 and the operation of the boot code. This
is described in the next section, “Overview of Memory Organization and the
Boot Process” on page 49-40.

• If you just want to know how to download application code, you can jump
ahead to the section “Downloading Application Code” on page 49-42.

• If you want to know how to download boot code, see the Getting Started
section “Download Boot Code to Flash Memory” on page 49-16.

Overview of Memory Organization and the Boot Process

Purpose of Flash Memory Boot Code. When reading this section, you
may want to refer to the internal memory map of the MPC555 in section 1.3 of
the MPC555 User’s Guide. You can find this document at the following URL:

http://www.freescale.com/files/microcontrollers/doc/user_guide/MPC555UM.pdf

49-40

http://www.freescale.com/files/microcontrollers/doc/user_guide/MPC555UM.pdf

Generating Stand-Alone Real-Time Applications

To run generated code from the RAM or flash memory, you must load the first
32K flash sector with boot code. The primary purpose of the boot code is to
load and start application code when the board is powered on or reset. The
boot code also acts as a download agent that downloads generated code into
RAM or flash memory via CAN or serial.

The boot code manages the exception handling for the MPC555. Applications
don’t directly handle exceptions but receive them from the boot code. If the
boot code is not installed, then applications will not work correctly.

Memory Organization. The MPC555 has a total of 448K of on-chip flash
memory (1024K on the MPC565). This memory is organized into banks of 32K
each. The first bank is always used to store the boot code and the remaining
416K is available for application code (992K on the MPC565). When using
the coder product, the on-chip flash memory is located at absolute address
0x0000 in the MPC555 address space.

Organization of Flash Memory

To run a stand-alone application on the MPC555, it is first necessary to
program the boot code into the first bank of flash memory.

The Boot Process. The boot code is executed following power on or reset
(unless a probe is connected to the BDM port). Normally, the boot code
performs basic hardware initialization and then branches to the application
code. Once the application code is running, there is no way to return to the
boot code except by performing a reset.

49-41

49 Working with Freescale MPC5xx Processors

One of the important functions of the boot code is to serve as agent that allows
program code to be downloaded over CAN or serial. There are two methods of
initiating a program download over CAN or serial:

• The default method for initiating a program download is to send a special
serial or CAN message during a short window of time while the boot code
is executing. In the supplied boot code, this window is set to 40ms. If
this special message is received during the window while the boot code is
executing, a program download sequence commences and a new application
can be programmed into RAM or flash memory. See “Downloading
Application Code to Flash Memory via Serial or CAN” on page 49-44 for
details.

• Alternatively, it is possible to commence a program download over CAN
while application code is running on the target. To initiate a download over
CAN, you must include a special block in your Simulink model. This block is
the CAN Calibration Protocol block. See “Downloading Boot or Application
Code via CAN Without Manual CPU Reset” on page 49-49 for details.

The bootcode download process erases the non-volatile flash memory
(including the shadow area) before writing the new bootcode, and the previous
configuration word is removed. The bootcode download process does not write
a replacement configuration word to the shadow flash. Typically, users of the
coder product do not use a Hard Reset Configuration Word that is stored in
non-volatile memory (the shadow flash). Instead, the development board is
generally assumed to source the configuration word from the data bus.

If you want to use a custom configuration word, you must manually program
the shadow flash to an appropriate value for the system. This would only need
to be done along with the irregular updates to the bootcode.

Downloading Application Code
The following sections describe how to download generated image files and run
generated code on the target hardware. They also describe how to download
to RAM and to flash memory, via either serial, CAN, or the BDM port.

49-42

Generating Stand-Alone Real-Time Applications

Downloading the Application Code to RAM. To download application
code to RAM, you must generate a code file in Motorola S-Record format,
which is suitable for downloading and execution in RAM. To do this, select
the RAM option from the Target memory model menu in the ET MPC5xx
real-time options (1) category of the Configuration Parameters dialog.
The build process creates two files in the working folder:

• Files created:

- model_ram.s19: For serial or CAN download. Code only, without
symbols, suitable for execution on the target system.

- model_ram.elf: For BDM download. Can also contain symbols if you
perform a debug build, suitable for use with a symbolic debugger such as
Wind River Systems SingleStep.

49-43

49 Working with Freescale MPC5xx Processors

• You can download to RAM via serial or CAN, using theDownload Control
Panel utility (with Vector-Informatik CAN hardware if applicable), as
described in “Downloading the Application to RAM via Serial or CAN” on
page 49-33.

• You can also download to RAM via BDM, as described in “Downloading the
Application to RAM via BDM” on page 49-37.

Downloading the Application Code to Flash Memory. To download
application code to flash memory, you must generate a code file which is
suitable for downloading and execution in flash memory. To do this, select
the FLASH option from the Target memory model menu in the ET MPC5xx
real-time options (1) category of the Configuration Parameters
dialog. The build process creates the file model_flash.s19 which contains an
image of the executable code, in the working folder.

You can download the file to flash memory via serial or CAN, using the
Download Control Panel utility (with Vector-Informatik hardware if using
CAN), as described in the following section. Note you can also use the Start
menu option to use a BDM (and serial or CAN) to download application code
to flash memory. If you want to download the application to flash memory
over BDM manually using your own tools, then the file you need to download
is the S-Record file model_flash.s19.

Downloading Application Code to Flash Memory via Serial or
CAN. You can use the Download Control Panel to download generated
application code to the MPC555 flash memory. Note that except for changing
the Download option from RAM to Flash, the process is the same as
downloading to RAM.

Do the following before you begin:

• If you are using serial, make sure you have connected the serial port on
your PC to serial port 1 (RS232-1) on the target hardware.

• If you are using CAN, make sure that your Vector-Informatik CAN card
and drivers are installed, and are configured properly. See “CAN Hardware
and Drivers” on page 49-139. Make sure that the desired CAN port on the
PC card is connected to the CAN A port on the target hardware.

49-44

Generating Stand-Alone Real-Time Applications

• Make sure that you have set up your toolchain and downloaded boot code to
the flash memory of the MPC555, as described in “Setting Up and Verifying
Your Configuring the Host Vector CAN Application ChannelInstallation”
on page 49-10.

• Make sure that nothing is connected to the BDM port of your development
board.

• Make sure that the jumpers on the phyCORE-MPC555 board are set as
described in “Phytec MPC555 Jumper Settings” on page 49-134.

To download the generated model_flash.s19 file to flash:

1 Open the Download Control Panel in one of the following ways:

• Open the Utilities for Use with MPC555 dialog box by entering
mpc555utils in the Command Window. Select Download RAM / FLASH
Based Application (via CAN / Serial) from the drop-down list, and
click OK.

• Type embedded_target_download at the MATLAB command prompt.

• You can also open the Download Control Panel automatically at the
end of the build process. Before you start the build process, you can select
Launch Download Control Panel from the Build action options on
the ET MPC5xx real-time options (1) tab of the Model Explorer.

After using any of these three options, the Download Control Panel
window opens.

2 Select Flash application code from the Executable type menu.

3 Enter the name of the file to be downloaded into the Executable filename
field. Alternatively, you can use the browse button to navigate to the
desired file. Remember the model_flash.s19 files are for serial or CAN
download to flash. The Download Control Panel should now appear as
shown in this figure.

49-45

49 Working with Freescale MPC5xx Processors

4 Click on the Communications Options tab. If you have not saved your
preferences already, select Serial or CAN from the Connection Type
drop-down menu. If necessary, select an appropriate card/port. The
default settings for the other parameters are appropriate for the default
download process. You can save your preferences by clicking the Save
Preferences button. The Communications Options configured for a
Vector-Informatik CAN-AC2-PCI card, channel 1, are shown in the section
“Downloading the Application to RAM via Serial or CAN” on page 49-33.

5 The next step is to download code. Click the Download tab, and then
click the Start button.

• If there is an application currently running on the target that contains
a CAN Calibration Protocol (CCP) kernel, the download proceeds
automatically. For more details see “Downloading Boot or Application
Code via CAN Without Manual CPU Reset” on page 49-49.

• If the CCP condition is not met, you must immediately press the reset
button on your PhyCORE-MPC555 board after clicking the Start button.
You will see a message prompt in the Status box: Press reset or
power-cycle your development board to start download.

When you press the Reset button on your PhyCORE-MPC555 board (or
cycle the power), the Download Control Panel changes its Status
box to read CCP Connection OK. Please wait till completion or
press Stop to terminate the download.

49-46

Generating Stand-Alone Real-Time Applications

Downloading commences, and the Start button caption changes to
Stop. While downloading proceeds, progress messages are displayed in
the Download Control Panel. A successful download ends with an
information dialog and the Stop button caption changes back to Start.

6 If the download does not succeed, reset the board and return to step 5.

You can monitor the progress of the flash download over CAN by using a
program such as CANalyzer. Alternatively, you can use the btest32 utility
supplied with the Vector Informatik driver software. You can invoke the
btest32 utility from the PC command prompt. The following example runs
btest32 with a bit rate of 500000 (500kbaud):

btest32 500000

7 Close the Download Control Panel window.

Once the download process is complete, the application starts running
immediately on the target hardware.

Using the Download Control Panel as a Standalone Application
You can use the Download Control Panel utility as a standalone application,
separate from MATLAB.

To install the utility, complete the following steps:

1 Using the MATLAB command prompt, download the utility to a local
folder. For example:

embedded_target_download('install', 'c:\dcp_utility')

If the folder does not exist, this command creates the folder.

2 Using the operating system command prompt, change directories to the
folder. For example:

cd c:\dcp_utility

3 Using the operating system command prompt, display the Download
Control Panel prerequisites by entering:

49-47

49 Working with Freescale MPC5xx Processors

embedded_target_download.bat -help

A static list of software environment prerequisites appears. For example:

Embedded Target Download (Standalone) Help

DOWNLOAD_WORK_DIR:

The location used to look for application files to

download. You can edit this batch file

(embedded_target_download.bat) to set your own location.

Requirements:

Java Virtual Machine (JVM):

This utility is written using Java, and requires a JVM

in order to run. Please install a Java Runtime Environment

on your system and ensure that the path to the Java

Interpreter is added to the system path, so that java.exe can

be executed from the command line. (http://java.sun.com)

For downloading over CAN:

Vector-Informatik CAN Programming DLL (vcand32.dll):

This file is available from Vector-Informatik, and

must be somewhere on the system path (includes current dir)

(http://www.vector-informatik.de/english)

Vector-Informatik CAN Drivers:

Hardware drivers for your CAN hardware must be installed on the system.

These drivers are available from Vector-Informatik

(http://www.vector-informatik.de/english)

--

4 Address any unsatisfied prerequisites before starting the utility.

49-48

Generating Stand-Alone Real-Time Applications

Note To set a default location for the utility to look for application files,
edit the DOWNLOAD_WORK_DIR variable in embedded_target_download.bat.

To start Download Control Panel as a stand-alone application, complete the
following steps using the operating system command prompt:

1 Change directories to the installation folder. For example:

cd c:\dcp_utility

2 Start the utility:

embedded_target_download.bat

This command displays the Download Control Panel utility.

To move the Download Control Panel utility to another location, such
as another computer, copy and paste the installation folder to that new
location. Verify that the new environment meets the Download Control
Panel prerequisites.

Downloading Boot or Application Code via CAN Without
Manual CPU Reset
The default method for download over CAN requires that the target
processor be manually reset in order for the download process to begin. This
requirement may be problematic if the target hardware is not physically
accessible or if it cannot be individually reset or powered down/up.

49-49

49 Working with Freescale MPC5xx Processors

It is possible to remove this requirement for manual reset if a suitably
prepared application is already running on the target. To do this, include
a CAN Calibration Protocol block within the model (see MPC5xx CAN
Calibration Protocol).

When the currently running application includes the CAN Calibration
Protocol block, the download process begins when you click on the Start
button of the Download Control Panel; it is not necessary to manually
reset the target hardware to initiate the download. A reset of the processor
is triggered by a CCP Program Prepare message. After the Program
Prepare message is received at the target, there will be a short delay until
the processor resets and continues the download process by transmitting a
response to the Program Prepare message.

The length of the delay will be the watchdog timeout period of the application.
By default, for a 20MHz application, this will be approximately 7 seconds; for
a 40MHz application, this will be approximately 3 seconds.

It is possible to explicitly set the timeout period of the watchdog timer, by
using the Watchdog block in the MPC555 device driver library. See MPC5xx
Watchdog.

The Download Control Panel is configured to allow a maximum delay of
10 seconds between sending the Program Prepare message and receiving a
response from the target. If this delay is exceeded, an error will be reported
by the download tool.

When using the CAN Calibration Protocol block, you must specify

• CAN message identifier for Command Receive Objects

• CAN message identifier for Data Transmit Objects

• CAN Calibration Protocol Station Address

Note that the values specified are permitted to differ from the default values
for these parameters that are programmed in the boot code. When performing
the download procedure using the Download Control Panel, you must
ensure that the parameters specified on the Communications Options tab
match those specified in the currently running application.

49-50

Generating Stand-Alone Real-Time Applications

For an example of how to use the CAN Calibration Protocol block for signal
monitoring, parameter tuning and automatic download, see the demo model
mpc555rt_ccp.

Rebuilding the Boot Code and Device Driver Libraries
You must rebuild the libraries to enable execution profiling for device driver
interrupt service routines. See “Enabling Execution Profiling for Device
Driver Interrupt Service Routines” on page 49-75 for instructions in that case.

You cannot change the default boot code parameter values except by
modifying and recompiling the boot code. If it is absolutely necessary to do
this, you can recompile the boot code as follows:

1 Open the Utilities for Use with MPC555 dialog box by entering
mpc555utils in the Command Window. Select Rebuild the MPC5xx
Driver Library from the drop-down list, and click OK.

The Build Driver Libraries dialog box opens.

2 Select the compiler optimization setting you want to use for the build (from
speed, size, debug, or clean).

• See “Compiler Optimization Switches” on page 49-14 for more
information on the speed, size and debug settings, which are
compiler-specific. You can edit these settings in the Target
Preferences dialog.

• The clean option deletes all object files. Note that to ensure a rebuild
of all files you should run a clean build followed by a build using your
required optimization setting. Otherwise only files which have changed
since last library build will be rebuilt.

The coder product automatically recompiles the code, using your settings
in target preferences.

Note You should not make changes to the boot code without fully
understanding the effect of your changes. Note also that the boot code may
be changed without notice in future releases of this product.

49-51

49 Working with Freescale MPC5xx Processors

If a required prebuilt library is not found during the build process, then
you see a dialog box with instructions to rebuild the missing library. For
example, a prebuilt copy of the Signal Processing Library is not installed
with the product.

It is preferable to rebuild via the Startmenu rather than using the commands
suggested in the dialog box, because any rebuild done via the dialog is
dependent on the options selected in the Code Generation> Interface >
Software Environment > Support options, and any library created is
based on these settings. You then need to rebuild your model to complete
the build process.

Boot Code Parameters for CAN Download. The boot code parameters
for download over CAN determine

• CAN bit rate

• CAN message identifier for Command Receive Objects (CRO)

• CAN message identifier for Data Transmit Objects (DTO)

• CAN Calibration Protocol Station Address

• The duration of the window during which the boot code listens for a
download command message

Default Boot Code Parameters on page 49-52 shows the default values for
these parameters. These defaults should be suitable for most applications.

Default Boot Code Parameters

Parameter Default Value

CAN bit rate 500000

CCP station address 1

CAN message identifier (CRO) 6FA

CAN message identifier (DTO) 6FB

Duration of listening window 40 ms

49-52

Generating Stand-Alone Real-Time Applications

Running Applications with a Debugger
It is possible to run an application with a debugger. To have full debugging
capabilities it is necessary that both the application and device driver libraries
are built with debug switches enabled.

To run an application with a debugger it is necessary you must go through the
following steps.

1 In the model Configuration Parameters dialog, under the MPC5xx
options section ensure that Optimize compiler for is set to debug.

2 In the Target Preferences, ensure that the debug compiler switches are set
appropriately for your configuration; see “Setting Target Preferences for
MPC5xx” on page 49-11 for examples.

3 By default the device driver libraries are compiled without debug flags; if
you need to be able to debug device driver code as well as model code you
must re-build the device driver libraries using the debug option. See “Boot
Code Parameters for CAN Download” on page 49-52.

Once you have performed the above steps and built your model, you can run
it with the source level debugger. Open the Utilities for Use with MPC555
dialog box by entering mpc555utils in the Command Window. Select Debug
RAM-Based Application (via BDM) from the drop-down list, and click OK.

Parameter Tuning and Signal Logging

• “Methods for Parameter Tuning and Signal Logging” on page 49-53

• “Using External Mode” on page 49-54

• “Using a Third Party Calibration Tool” on page 49-64

• “Data Acquisition (DAQ) List Configuration” on page 49-66

Methods for Parameter Tuning and Signal Logging
The coder product supports parameter tuning and signal logging either using
Simulink external mode or with a third party calibration tool. In both cases
the model must include a special block, the CAN Calibration Protocol block
(see MPC5xx CAN Calibration Protocol).

49-53

49 Working with Freescale MPC5xx Processors

Using External Mode
The Simulink external mode feature enables you to log signals and tune
parameters without requiring a calibration tool. This section describes the
steps for converting a model to use external mode.

External mode is supported using the CAN Calibration Protocol block and
ASAP2 interface. The CAN Calibration Protocol block is used to communicate
with the target, downloading parameter updates and uploading signal
information. The ASAP2 interface is used to get information about where in
the target memory a parameter or signal lives.

Note You must configure the CAN application channel. See “Configuring the
Host Vector CAN Application Channel” on page 49-55.

To prepare your model for external mode, follow these steps:

1 Add a CCP driver block.

2 Add a Switch External Mode Configuration Block (for ease of use; you can
also make changes manually).

3 Identify signals you want to tune, and associate them with
Simulink.Parameter or canlib.Parameter objects with ExportedGlobal
storage class. It is important to set the data type and value of the parameter
object. See “Using Supported Objects and Data Types” on page 49-56.

4 Identify signals you want to log, and associate them with canlib.Signal
objects. It is important to set the data type of the canlib.Signal. See
“Using Supported Objects and Data Types” on page 49-56.

For information about visualizing logged signal data, see “Viewing and
Storing Signal Data” on page 49-59.

5 Load the Simulink.Parameter or canlib.Parameter and canlib.Signal
data objects into the base workspace.

6 Configure the model for building by double-clicking the Switch External
Mode Configuration block. In the dialog box, select Building an
executable, and click OK.

49-54

Generating Stand-Alone Real-Time Applications

7 Build the model, and download the executable to the target

8 After downloading the executable to the target, you can switch the model to
external mode by double-clicking the Switch External Mode Configuration
Block. In the dialog box that appears, select External Mode, and click OK.

9 You can now connect to the target using external mode by clicking the
Connect button.

10 If you have set up tunable parameters, you can now tune them. See
“Tuning Parameters” on page 49-57.

If you do not want to use the Switch External Mode Configuration block, you
can configure for building and then external mode manually. For instructions,
see “Manual Configuration For External Mode” on page 49-62.

See the following topics for more information:

• “Configuring the Host Vector CAN Application Channel” on page 49-55

• “Using Supported Objects and Data Types” on page 49-56

• “Tuning Parameters” on page 49-57

• “Viewing and Storing Signal Data” on page 49-59

• “Manual Configuration For External Mode” on page 49-62

• “Limitations” on page 49-62

Configuring the Host Vector CAN Application Channel. External mode
expects that the Host CAN connection is using the 'MATLAB 1' application
channel. To configure the application channel used by the Vector CAN
drivers, enter the following at the MATLAB command line:

TargetsComms_VectorApplicationChannel.configureApplicationChannels

The Vector CAN Configuration tool appears. Use this tool to configure your
Host CAN channel settings.

If you try to connect using an application channel other than 'MATLAB 1',
then you see the following warning in the command window:

Warning:

49-55

49 Working with Freescale MPC5xx Processors

It was not possible to connect to the target using CCP.
An error occurred when issuing the CONNECT command.

If you have not already installed the Vector CAN drivers, you will get the
following error message:

??? Error using ==>

TargetsComms_VectorApplicationChannel.TargetsComms_VectorApplicationChannel>

TargetsComms_VectorApplicationChannel.configureApplicationChannels at 40

Unable to launch the application channel configuration utility. The "vcanconf"

utility was not found on the Windows

System Path. To fix this error, make sure the required CAN drivers are

installed on this computer; refer to the product

documentation for details.

If you want to use CAN to transmit or receive CAN messages between your
host PC and your target, you require Vector-Informatik CAN hardware
supported by the Vector CAN Driver Library. You must install the correct
driver libraries to support profiling, downloading, and external mode.

Note For CANcaseXL, you must install both the Vector XL-driver library
and Vector CAN Driver Library vcand32.dll.

For older CAN hardware, you must install the Vector CAN Driver Library
vcand32.dll.

Make sure that the library, vcand32.dll, is placed in the Windows system32
folder.

Using Supported Objects and Data Types. Supported objects:

• Simulink.Parameter or canlib.Parameter for parameter tuning

• canlib.Signal for signal logging

Supported data types:

• uint8, int8

49-56

http://www.vector-informatik.com/vi_can_hardware_en,,223.html
http://www.vector-worldwide.com/downloads/drivers/canlib43.zip

Generating Stand-Alone Real-Time Applications

• uint16, int16

• uint32, int32

• single

You need to define data objects for the signals and parameters of interest for
ASAP 2 file generation. For ease of use, create a MATLAB file to define the
data objects, so that you only have to set up the objects once.

To set up tuneable parameters and signal logging:

1 Associate the parameters to be tuned with Simulink.Parameter or
canlib.Parameter objects with ExportedGlobal storage class. It is
important to set the data type and value of the Simulink.Parameter
object. See the following code for an example of how to create such a
Simulink.Parameter object for tuning:

stepSize = Simulink.Parameter;
stepSize.DataType = 'uint8';
stepSize.RTWInfo.StorageClass = 'ExportedGlobal';
stepSize.Value = 1;

2 Associate the signals to be logged with canlib.Signal objects. It is important
to set the data type of the canlib.Signal. The following code example shows
how to declare such a canlib.Signal object for logging:

counter = canlib.Signal;
counter.DataType = 'uint8';

3 Associate the data objects you have defined in the file with parameters or
signals in the model. For the previous code examples, you could set the
Constant value in a Source block to stepSize, and set a Signal name
to counter in the Signal Properties dialog box. Remember that stepSize
and counter are data objects defined in the code.

Tuning Parameters. To tune a parameter, follow these steps:

1 Set dataobject.value in the workspace while the model is running in
external mode. For example, to tune the parameter stepSize (that is, to
change its value) from 1 to 2, enter the following at the command line:

49-57

49 Working with Freescale MPC5xx Processors

stepSize.value = 2

49-58

Generating Stand-Alone Real-Time Applications

You see output similar to the following:

stepSize =

Simulink.Parameter (handle)
RTWInfo: [1x1 Simulink.ParamRTWInfo]

Description: ''
DataType: 'uint8'

Min: -Inf
Max: Inf

DocUnits: ''
Value: 2

Complexity: 'real'
Dimensions: [1 1]

2 Return to your model, and update the model (press Ctrl+D) to apply the
changed parameter.

Viewing and Storing Signal Data. To view the logged signals attach
a supported scope type to the signal (see “Limitations” on page 49-62 for
supported scope types).

Select which signals you want to log by using the External Signal &
Triggering dialog box. Access the External Mode Control Panel from the Tools
menu, and click the Signal & Triggering button. By default, all displays
appear as selected to be logged, as shown in the following example. Edit
these settings if you do not want to log all displays. Individual displays can
be selected manually.

49-59

49 Working with Freescale MPC5xx Processors

Storing signal data for further analysis. It is possible to store the logged
data for further analysis in MATLAB.

1 To use the Data Archiving feature of external mode, click Data Archiving
in the External Mode Control Panel. The External Data Archiving dialog
box appears.

a Select the check box Enable archiving

b Edit the Directory and Filename and any other desired settings.

49-60

Generating Stand-Alone Real-Time Applications

c Close the dialog box.

2 Open the Scope parameters, and select the check box Save data to
workspace.

3 You may want to edit the Variable name in the edit box. The data that is
displayed on the scope at the end of the external mode session is available
in the workspace with this variable name.

The data that was previously displayed in the scope is stored in .mat files
as previously setup using Data Archiving.

For example, at the end of an external mode session, the following variable
and files could be available in the workspace and current folder:

• A variable ScopeData5 with the data currently displayed on the scope:

ScopeData5

ScopeData5 =

time: [56x1 double]
signals: [1x1 struct]

blockName: 'mpc555rt_ccp/Scope1'

49-61

49 Working with Freescale MPC5xx Processors

• In the current folder, .mat files for the three previous Durations of
scope data:

ExternalMode_0.mat
ExternalMode_2.mat
ExternalMode_1.mat

Manual Configuration For External Mode. As an alternative to using
the Switch External Mode Configuration block, you can configure models
manually for build and execution with external mode.

To configure a model to be built for external mode:

1 Select Inline parameters (under Optimization in the Configuration
Parameters dialog box). The Inline parameters option is required for
ASAP2 generation.

2 Select Normal simulation mode (in either the Simulation menu, or the
drop-down list in the toolbar).

3 Select ASAP2 as the Interface (under Code Generation, Interface, in
the Data Exchange pane, in the Configuration Parameters dialog box).

After you build the model, you can configure it for external mode execution:

1 Make sure Inline parameters are selected (under Optimization in the
Configuration Parameters dialog box). The Inline parameters option is
required for external mode.

2 Select External simulation mode (in either the Simulation menu, or
the drop-down list in the toolbar).

3 Select External mode as the Interface (under Code Generation,
Interface, in the Data Exchange pane, in the Configuration Parameters
dialog box).

Limitations. Logging of multiple signals feeding the same scope block is not
supported. Instead, log each signal with its own scope block. These multiple
signals can be on the same Simulink line, or can be multiple lines feeding the
same scope (i.e. the scope can have multiple axes).

49-62

Generating Stand-Alone Real-Time Applications

Only the following kinds of scopes are supported with External Mode Logging:

• Simulink Scope block

• Simulink Display block

• Viewer type: scope — To use this option, right-click a signal in the model,
and select Create & Connect Viewer > Simulink > Scope. The other
scope types listed there are not supported (e.g., floating scope).

Before connecting to external mode, you also need to right-click the signal,
and select Signal Properties. In the dialog box, select the Test point
check box, and click OK.

GRT is supported but only for parameter tuning.

If a signal comes directly from a Rate Transition block, external mode may
fail to detect the correct sample time. To work around this, place a nonvirtual
block (e.g., Contiguous Copy) in between the Rate Transition block and the
signal to log.

It is not possible to log signals with very fast sample times (e.g., 0.0001)
without losing data.

Subsystem builds are not supported for external mode, only top-level builds
are supported.

Logging and tuning of nonscalars is not supported. It is possible to log
nonscalar signals by breaking the signal down into its scalar components. For
an example of how to do this signal deconstruction, see the CCP demo models,
which use a Demux and Signal Conversion block with contiguous copy.

Logging and tuning of complex numbers is not supported. It is possible to
work with complex numbers by breaking the complex number down into its
real and imaginary components. This breakdown can be performed using
the following blocks in the Simulink Math Operations library: Complex to
Real-Imag, Real-Imag to Complex, Magnitude-Angle to Complex, Complex
to Magnitude-Angle.

49-63

49 Working with Freescale MPC5xx Processors

Using a Third Party Calibration Tool
The coder product allows an ASAP2 data definition file to be generated during
the code generation process. This file can be used by a third party tool to
access data from the real-time application while it is executing.

ASAP2 is a data definition standard proposed by the Association for
Standardization of Automation and Measuring Systems (ASAM). ASAP2 is a
standard description used for data measurement, calibration, and diagnostic
systems. You can use the Embedded Coder real-time target features to export
an ASAP2 file containing information about your model during the code
generation process.

Before you begin generating ASAP2 files with the real-time target, you should
read the “Generating ASAP2 Files” section of the product help. That section
describes how to define the signal and parameter information required by
the ASAP2 file generation process.

The process of generating an ASAP2 file from your model with the real-time
target is similar to that described in the product help.

How the Process Works. The mpc555rt_ccp demo provides an example of
the ASAP2 file generation feature.

The coder product generates an initial ASAP2 file during the code generation
process. At this point, the addresses of signals and parameters on the target
system are unavailable, since the code has not been compiled and linked. The
initial ASAP2 file contains placeholders for the unresolved addresses.

To supply the required memory addresses, the generated code must be
compiled and the compiler must generate a MAP file.

After the build process, if the real-time target detects the presence of
the ASAP2 file and a MAP file in the required format, it performs a
post-processing phase. During this phase, the MAP file is used to propagate
the required address information back into the ASAP2 file.

MAP file formats differ between compilers, so the post processing phase is
compiler-specific. The coder product provides the post-processing mechanism
for both supported toolchains (Wind River and CodeWarrior).

49-64

Generating Stand-Alone Real-Time Applications

To use the ASAP2 file generation feature, you simply need to select the
ASAP2 file option in the Configuration Parameters dialog box, as described in
the following section “ASAP2 File Generation Procedure” on page 49-65. If it
is appropriate to back propagate addresses from the MAP file into the ASAP2
file, then this will also be done automatically. No other steps are necessary
to ensure that the generated MAP and ASAP2 files are automatically post
processed.

The names of the ASAP2 file and the MAP file derive from the source model.
The MAP file is generated in the same folder as the source model. The ASAP2
file is written to the build folder.

ASAP2 File Generation Procedure.

1 Create the desired model. Use appropriate parameter names and signal
labels to refer to ASAP2 CHARACTERISTICS and MEASUREMENTS respectively.

2 Define the corresponding Simulink.Parameter and Simulink.Signal
objects in the MATLAB workspace.

3 Configure the data objects to generate unstructured global storage
declarations in the generated code by assigning one of the following storage
classes to the RTWInfo.StorageClass property for each object:

• ExportedGlobal

• ImportedExtern

• ImportedExternPointer

ExportedGlobal is the default storage class.

4 Configure the other data object properties for each object. See “Defining
ASAP2 Information” in the Simulink Coder documentation.

5 In your model window, select the menu item Simulation > Configuration
Parameters.

The Configuration Parameters dialog box appears.

6 Select Optimization in the tree.

7 Select the Inline parameters option.

49-65

49 Working with Freescale MPC5xx Processors

Note that you should not configure the parameters associated with your
data objects in theModel Parameter Configuration dialog box (reached
via the Configure button). If a parameter that resolves to a Simulink data
object is configured using the Model Parameter Configuration dialog
box, the dialog box configuration is ignored. You can, however, use the
Model Parameter Configuration dialog to configure other parameters
in your model.

8 Under Code Generation, select Interface in the tree.

9 Select the ASAP2 option from the Interface drop-down menu in the Data
exchange frame.

10 Click Apply.

11 Select Code Generation in the tree, then click Build.

The ASAP2 file is generated as part of the build process.

Data Acquisition (DAQ) List Configuration
The coder product supports the Data Acquisition (DAQ) List feature of the
CAN Calibration Protocol (CCP). DAQ lists allow efficient synchronous signal
monitoring. The CCP block supports DAQ lists (see MPC5xx CAN Calibration
Protocol for details).

Simulink.Signal objects are used for monitoring a signal in the CCP polling
mode of operation. To monitor a signal in a DAQ list, however, you must
configure the signal somewhat differently. The differences are as follows:

• Instead of defining a Simulink.Signal in the MATLAB workspace (and
associated signal in the Simulink model), define a canlib.Signal object
instead.

• There is no need to set the RTWInfo.StorageClass property of the
canlib.Signal object. By default, the storage class is set to Custom.

• You should enter data in the other fields of the canlib.Signal object in
the same way you would do for a Simulink.Signal object.

49-66

Generating Stand-Alone Real-Time Applications

Note In order to use the canlib.Signal objects, the model must contain a
CAN Calibration Protocol block. See MPC5xx CAN Calibration Protocol.

During code generation, the coder product automatically determines how
to configure the DAQ lists in the generated code. For each distinct sample
rate (of the set of canlib.Signal objects assigned by the user) one DAQ list
in the model is created. The CCP DAQ List Object Descriptor Tables (ODTs)
are shared equally between the created DAQ lists.

The sample rates of the canlib.Signal objects are mapped to CCP event
channels in an extra file, DAQ_LIST_EVENT_MAPPINGS, that is generated in
the build folder. This shows how to assign event channels to MEASUREMENT
signals in a calibration package.

The event channels periodically transmit events that are used to trigger the
sending of DAQ data to the host. By assigning event channels as defined in
DAQ_LIST_EVENT_MAPPINGS, consistent and efficient transmission of DAQ
data is achieved.

It is the responsibility of the calibration tool (see “Compatibility with
Calibration Packages”) to assign an event channel and data to the available
DAQ lists using CCP commands, and to interpret the synchronous response.

It is the responsibility of the user to make sure the calibration tool is set
up correctly and that the event channels assigned to MEASUREMENT signals
correspond to those defined in the file DAQ_LIST_EVENT_MAPPINGS.

HTML Code Profile (RAM/ROM) Report
The coder product supports an extended version of the HTML code generation
report.

For instructions, see “HTML Code Analysis (RAM/ROM) Report”
on page 49-104. You can generate reports for the real-time target,
processor-in-the-loop (PIL) target and algorithm export (AE) target.

49-67

49 Working with Freescale MPC5xx Processors

Execution Profiling

• “Overview of Execution Profiling” on page 49-68

• “The Profiling Command” on page 49-69

• “Execution Profiling Definitions” on page 49-71

• “MPC5xx Options for Execution Profiling” on page 49-72

• “Interpreting the Execution Profiling Graphic” on page 49-74

• “Enabling Execution Profiling for Device Driver Interrupt Service Routines”
on page 49-75

Overview of Execution Profiling
The coder product provides a set of utilities for recording, uploading and
analyzing execution profile data for timer-based tasks and asynchronous
Interrupt Service Routines (ISRs). With these utilities, you can

• Generate a graphical display that shows when timer-based tasks and
interrupt service routines are activated, preempted, resumed and
completed.

• Generate a report with information on

- Maximum number of overruns for each timer-based task since model
execution began

- Maximum turnaround time for each timer-based task since model
execution began

- Analysis of profiling data for timer-based tasks and asynchronous
interrupts over a period of time

You can use the demo model mpc555rt_multitasking to see an example.
This demo model illustrates both execution profiling and the preemptive
multitasking scheduler with configurable overrun handling. For instructions,
click the link MPC555 Multitasking Demo.

To perform execution-profiling analysis on a model, you must perform the
following steps:

49-68

Generating Stand-Alone Real-Time Applications

1 Depending on whether you are using serial or CAN, place a copy of the
appropriate execution profiling block in your model (MPC555 Execution
Profiling via SCI1 or MPC555 Execution Profiling via CAN A).

2 Connect a serial or CAN cable between the target processor and your host
PC.

3 Check the box to enable Execution profiling in the Configuration
Parameters dialog box. See “MPC5xx Options for Execution Profiling” on
page 49-72.

4 Build, download and run the model.

5 Initiate execution profiling by running the command profile_mpc555. See
below for more information on the profiling command.

Two forms of execution profiling are provided:

1 The worst-case values for task turnaround times and number of task
overruns since model execution began are updated whenever a previous
worst-case value is exceeded.

2 A snapshot of task and ISR activity may be recorded over a period of time;
the length of this period depends on how much memory is available to
log the data.

Note You need additional steps if device drivers use interrupt service
routines (may include CAN, TPU, and QSPI). See “Enabling Execution
Profiling for Device Driver Interrupt Service Routines” on page 49-75. If this
is not done, then no profiling information will be recorded.

The Profiling Command
Use the profiling command as follows:

profile_mpc555(connection)

Specify your connection as 'can' or 'serial', to collect data via a CAN or
serial connection between the target and the host computer. Make sure the

49-69

49 Working with Freescale MPC5xx Processors

model includes the appropriate MPC5xx execution profiling block (CAN or
SCI1), to provide an interface between the target-side profiling engine and the
host-side computer from which this command is run.

PROFDATA = profile_mpc555(connection) collects and displays execution
profiling data from a MPC5xx target microcontroller that is running a suitably
configured application generated by the coder product. PROFDATA contains the
execution profiling data in the format documented by exprofile_unpack.

The data collected is unpacked then displayed in a summary HTML report
and as a MATLAB graphic.

To use the serial connection, the MPC5xx board must be connected via a serial
cable to one of the host computer’s serial ports. This function defaults to port
SCI1 on the MPC5xx and port COM1 on the host computer. If the 'BitRate'
argument is not provided, the default of 57600 baud is used.

PROFDATA = PROFILE_mpc555('serial','SerialPort',serialport)

sets the serial port to the specified serialport, which should be one of COM1,
COM2, etc.

Optionally, you can specify the bit rate as follows:

PROFDATA = PROFILE_mpc555('serial', 'BitRate', bitrate)

This specification sets the bitrate for serial connection to the target. bitrate
must be the same as the bit rate specified for the application that is running
on the target.

Alternatively, you can set the bitrate for the serial connection to the target
automatically as follows:

profdata = profile_mpc555('serial', 'ModelName', modelname)

This specification automatically sets the bit rate by analyzing modelname
and extracting the correct serial connection bit rate setting from the model.
modelname should be set to the name of a model which is currently open and
running on the target.

49-70

Generating Stand-Alone Real-Time Applications

To use the CAN connection, you must have suitable CAN hardware installed.
If no Application Channel is specified, this function will use the channel
'MATLAB 1'. The bit rate is a property of the Application Channel; to change
the bit rate, you must use a different Application Channel, or change the
bit rate by running the Vector Informatik configuration utility. To run this
utility, make sure that vcanconf.exe is on your System Path, then type
vcanconf from a Windows command prompt.

You can specify the Application Channel as follows:

profdata = profile_mpc555('can', 'CANChannel', canchannel)

canchannel specifies the Vector Informatik CAN Application Channel, and
must be of the form 'MATLAB 1', 'MATLAB 2' etc.

Execution Profiling Definitions

Task turnaround time
the elapsed time between start and finish of a task. If the task is not
preempted then the task turnaround time is equal to the task execution
time.

Task execution time
that part of the time between task start and finish when the task
is actually running and not preempted by another task. Note that
the task execution time cannot be measured directly, but is inferred
from the task start and finish time and the intervening periods during
which it was preempted by another task. Note that, in performing
these calculations, no account is taken of processor time consumed
by the scheduler while switching tasks: this means that, in cases
where preemption has occurred, the reported task execution times will
overestimate the true values.

Task overruns
occur when a timer task does not complete before that same task is
next scheduled to run. Depending on how the real-time scheduler
is configured, a task overrun may be handled as a real-time failure.
Alternatively, a small number of concurrent task overruns may be
allowed in order to accommodate cases where a task occasionally takes
longer than normal to complete.

49-71

49 Working with Freescale MPC5xx Processors

See also “Interpreting the Execution Profiling Graphic” on page 49-74.

The Execution Profiling Block. See the Block Reference section MPC5xx
MPC555 Execution Profiling via SCI1 or MPC5xx MPC555 Execution
Profiling via CAN A.

MPC5xx Options for Execution Profiling
You can see these options on the ET MPC5xx real-time options (2) section
(under Code Generation in the tree) of the Configuration Parameters dialog
box.

Execution profiling
If this option is checked then the generated code for the model will be
instrumented with function calls at the beginning and end of each task
or ISR to be profiled. These function calls read a timer (on MPC555 it is
the decrementer timer) and log this reading along with a task identifier.

When code for the model is generated, these functions will update
data on the worst-case turnaround time for each timer-based task as
well as the worst-case number of concurrent task overruns, whenever
a previous worst case value is exceeded. Additionally, when a trigger
is provided, data will be logged over a period of time to record all task
start and task finish times. The trigger signal can be supplied by the
execution profiling blocks. See MPC5xx MPC555 Execution Profiling
via SCI1 or MPC5xx MPC555 Execution Profiling via CAN A.

Number of data points
When a snapshot of task and ISR activity is logged this data is stored
in memory that is statically allocated at build time. Each data point
requires 8 bytes on the MPC555. The larger the number of data points
to be stored, the more RAM that must be reserved for this purpose.
At the end of a logging run, the data must be uploaded to the host
computer for analysis; this is typically achieved by using the execution
profiling blocks.

49-72

Generating Stand-Alone Real-Time Applications

Overrun Options. These options configure the allowable number of task
overruns. You can see these options on the ET MPC5xx real-time options
(2) section (under Code Generation in the tree) of the Configuration
Parameters dialog.

You can use the options Maximum number of concurrent base-rate
overruns and Maximum number of concurrent sub-rate overruns to
configure the behavior of the scheduler when any of the timer based tasks do
not complete within their allowed sample time. It is useful to allow task
overruns in the case where a task may occasionally take longer than usual
to complete (e.g. if extra processing is required when a special event occurs);
if the task overrun is only occasional then it is possible for the scheduler to
’catch up’ after the extra processing has been completed.

If the maximum number of concurrent overruns for any task is exceeded, this
is deemed to be a failure and the real-time application is stopped. This in turn
will result in a watchdog timer timeout and the processor will be reset.

As an example, if the base rate is 1 ms and the maximum number of
concurrent base-rate overruns is set to 5 then it is possible for the base rate
task to run for almost 6 ms before failure occurs. Once the overrun has
occurred, it is necessary for subsequent executions of the base rate to complete
in less than 1 ms in order that the lost time is recovered.

The occurrence of base-rate overruns does not affect the numerical behavior
of the algorithm (although reading/writing external devices will of course
be delayed).

If sub-rate overruns are allowed then the transfer of data between different
rates (via rate-transition blocks) in the model may be affected; this
causes the numerical behavior in real-time to differ from the behavior in
simulation. To see an illustration of this effect try running the demo model
mpc555rt_multitasking. To disallow sub-rate overruns and ensure that this

49-73

49 Working with Freescale MPC5xx Processors

effect does not occur, you should set Maximum number of concurrent
sub-rate overruns to zero.

Note If the option "Maximum number of concurrent sub-rate overruns" is set
to a value greater than zero, then the behavior of any Rate-Transition blocks
may be affected. Specifically, if the model contains a Rate Transition block
where the option "Ensure deterministic data transfer (maximum delay)" is
selected, then this setting may not be honored.

Interpreting the Execution Profiling Graphic
Dark shaded areas show the region where a task is executing. Light shaded
areas show the region where a task is preempted by a higher priority task
or ISR. Triangles indicate the beginning of a task. An example is shown
following.

49-74

Generating Stand-Alone Real-Time Applications

Zoom in to see the details of tasks executing and being preempted, as shown
in the following example.

Enabling Execution Profiling for Device Driver Interrupt Service
Routines
By default, execution profiling is not enabled for device driver interrupt
service routines. Device drivers that may use interrupt service routines
include CAN, TPU and QSPI device drivers.

You can enable execution profiling for device driver interrupt service routines.
To do this, you must rebuild the device drivers libraries with a macro
PROFILING_ENABLED defined. Follow these steps:

49-75

49 Working with Freescale MPC5xx Processors

1 Remove the previously built device driver code using one of the following
methods.

a Run the command:

mpc555_build_drivers('clean')

b Delete the contents (compiled object code) of the folder

matlab\toolbox\rtw\targets\mpc555dk\drivers\src\libsrc\standard\src\bin\COMPILER\XXX

where COMPILER is one of DIAB or CODE_WARRIOR and XXX is the MPC5xx
variant you are using.

The second approach will result in a faster rebuild in the next step.

2 Run the command:

mpc555_build_drivers(BUILD_OPTION,'ProfileDeviceDrivers', 'on')

Set BUILD_OPTION to one of the options 'speed', 'size', or 'debug'.

When rebuilding the driver library using the command
mpc555_build_drivers, the compiler and compiler switches used
are taken from the currently selected compiler configuration in the Target
Preferences.

Summary of the Real-Time Target

• “Code Generation Options” on page 49-76

• “Requirements and Restrictions” on page 49-78

Code Generation Options
The real-time target is an extension of the embedded real-time (ERT) target
configuration. The real-time target inherits the code generation options of the
ERT target, as well as the general code generation options. These options
are available under Code Generation, in the tree on the Configuration
Parameters dialog box.

49-76

Generating Stand-Alone Real-Time Applications

Some code generation options of the ERT target are not relevant to the
real-time target, and are either unsupported, or restricted in their operation.
See “Requirements and Restrictions” on page 49-78 for details.

Target-Specific Options. The real-time target has several target-specific
code generation options. To view or change the setting of these options,
select the ET MPC5xx real-time options(1) section in the Configuration
Parameters dialog.

• Optimize compiler for— Select speed, size, debug, or custom.

This option controls compiler optimization switches used during the build
process. The exact effect of the optimization switches depends on whether
you are using the Wind River or CodeWarrior compiler. You can optimize
for performance by choosing the speed, size, or debug options, or define
your own (the custom option). You can edit these preferences here in the
Compiler optimization switches edit box if you want to apply changes
to the current model (Optimize compiler for will change to custom). You
can also edit the defaults for these settings in the Target Preferences
dialog if you want to apply these changes to several models. See “Compiler
Optimization Switches” on page 49-14 for more information.

• Target memory model Select either FLASH or RAM.

If you select the FLASH option, files in a format suitable for downloading
into the MPC555 on-chip flash memory are written. If you select the RAM
option, files in a format suitable for downloading into RAM are generated.

In both cases these two files are generated, with this naming convention:

- model_flash.s19 or model_ram.s19 — code only, for CAN download

- model_flash.elf or model_ram.elf — for BDM download, containing
code and optional debugging symbols if you choose a debug build in the
Optimize compiler for settings

• Build action

- None — code generation only.

- Launch_Download_Control_Panel— on completion of code generation
the Download Control Panel utility is opened.

- Run_via_BDM — on completion of code generation download over BDM
connection automatically starts and on completion the code is run.

49-77

49 Working with Freescale MPC5xx Processors

- Debug_via_BDM— on completion of code generation download over BDM
connection automatically starts. When the download is complete the code
stops at the first line while debugging, so you can step through the code.

• Use prebuilt libraries

This check box option (selected by default) determines whether prebuilt
libraries, compiled with default compiler switches, are linked against
during compilation of the generated code. When this option is not
selected, the source modules that comprise these libraries will be compiled
individually in the model build folder, using the currently selected compiler
switches.

Using prebuilt libraries saves a considerable amount of time during the
build process.

Requirements and Restrictions

MPC555 Resource Configuration Block Required. To generate code from
a model using the real-time target, an MPC555 Resource Configuration block
must be included in the model. The MPC555 Resource Configuration block is
required even for models that do not contain any MPC555 device driver blocks.

Note When using device driver blocks from the Embedded Targets libraries
in conjunction with the MPC555 Resource Configuration block, do not disable
or break library links on the driver blocks. If library links are disabled or
broken, the MPC555 Resource Configuration block will operate incorrectly.
See MPC5xx MPC555 Resource Configuration for further information.

Model Reference and Driver Blocks. Referenced sub-models that contain
driver blocks (including the MPC555 Resource Configuration block) cause
build failures. All driver blocks must be placed in the top level model. It is not
possible to include driver blocks in any of the referenced sub-models.

Restricted Code Generation Options. Certain ERT code generation
options are not supported by the real-time target. If these options are selected,
the real-time target either ignores the option or issues an error message
during the build process. Real-Time Target Restricted Code Generation
Options on page 49-79 summarizes these restricted options.

49-78

Generating Stand-Alone Real-Time Applications

Real-Time Target Restricted Code Generation Options

Option Restriction

MAT-file logging Ignored if selected; build process proceeds

Block type Error if SIL is selected; build process terminates

External mode Error if selected; build process terminates

Generate an example
main program

This option should not be selected for the
real-time target. The real-time target supplies a
target-specific main program, mpc555dk_main.c.
Ignored if selected; build proceeds with a warning.

Generate reusable
code

Error if selected; build process terminates

Terminate function
required

Ignored if selected; if your model includes
a block (for example, a custom S-function
block) that attempts to generate code for the
model_terminate function, then a warning is
issued and code for this function is not generated.

Performance Tips

• “Run the Model Advisor” on page 49-79

• “Increase the System Clock Beyond the Default 20 MHz” on page 49-80

• “Use Flash Instead of RAM” on page 49-80

• “TouCAN Interrupt Generator Block Performance Tips” on page 49-80

• “Optimized Target Function Library” on page 49-80

Run the Model Advisor
Following the suggestions in the Model Advisor report may result in faster
on-target execution.

49-79

49 Working with Freescale MPC5xx Processors

Increase the System Clock Beyond the Default 20 MHz
The default system clock frequency is 20 MHz. For higher performance, you
should consider increasing the system clock frequency up to 40 MHz, which is
the maximum for the MPC555 device. Other processor variants may support
higher System Clock Frequencies depending on your development board.
Please consult your development board documentation for details.

For more information, see:

• “System Clock and Related Parameters ” for information on how to
change system clock parameters.

• MPC5xx Switch Target Configuration; this is a utility block you can use to
apply some predefined configurations.

Use Flash Instead of RAM
Configure the model to run from internal Flash (rather than external RAM)
because this has faster memory access. See “Downloading Application Code”
on page 49-42.

TouCAN Interrupt Generator Block Performance Tips
When using the TouCAN Interrupt Generator block, you can improve
performance as follows:

• Disable Use floating point in the TouCAN Interrupt Generator (if
possible). This will save significant time during ISR context switches (of
which there may be many, depending on the application).

• Minimize the code that runs in the context of the ISR. Try and move as
much code out of the ISR (function-call subsystem) as possible to speed up
individual ISRs. This should allow an increase in the rate at which CAN
messages can be received on that buffer.

Optimized Target Function Library
If your model contains floating-point mathematical function blocks (e.g.,
trigonometric functions, log functions), then you should use target optimized
function libraries. Select the Freescale MPC5xx (ISO) option for the
Target function library (on the Code Generation > Interface pane of

49-80

Generating Stand-Alone Real-Time Applications

the Configuration Parameters dialog box) to use the CodeWarrior or Diab
ISO C function library. This generates calls to the Freescale CodeWarrior or
WindRiver Diab ISO/IEC 9899:1999 math library for floating-point functions
as appropriate.

When you create new models with the mpc555rt.tlc, mpc555rt_grt.tlc
or mpc555exp.tlc System target file, the Freescale MPC5xx (ISO) is
automatically selected for the Target function library setting.

49-81

49 Working with Freescale MPC5xx Processors

PIL Simulation
This section includes the following topics:

In this section...

“Overview of PIL Simulation” on page 49-82

“Tutorial 1: Building and Running a PIL Simulation” on page 49-84

“Tutorial 2: Using the Demo Model in Simulation” on page 49-97

“PIL Target Summary” on page 49-98

“Algorithm Export Target” on page 49-103

“HTML Code Analysis (RAM/ROM) Report” on page 49-104

“Algorithm Export Target Summary” on page 49-106

Overview of PIL Simulation

• “What Is PIL Simulation?” on page 49-82

• “Why Use Simulation?” on page 49-82

• “How Simulation Works” on page 49-83

What Is PIL Simulation?
The coder product supports processor-in-the-loop (PIL) simulation, a technique
that is designed to help you evaluate how well a candidate control system
operates on the actual target processor selected for the application.

The processor-in-the-loop target is an extended version of the embedded
real-time (ERT) target configuration, designed specifically for PIL simulation.
We refer to this configuration as the PIL target.

Why Use Simulation?
PIL simulation is particularly useful for simulating, testing and validating
a controller algorithm in a system comprising a plant and a controller. In
classic closed-loop simulation, the Simulink and Stateflow products model

49-82

PIL Simulation

such a system as two subsystems and the signals transmitted between them,
as shown in this block diagram.

Your starting point in developing a plant/controller system is to model
the system as two subsystems in closed-loop simulation. As your design
progresses, you can use Simulink external mode with standard targets (such
as GRT or ERT) to help you model the control system separately from the
plant.

However, these simulation techniques do not help you to account for
restrictions and requirements imposed by the hardware. When you finally
reach the stage of deploying controller code on the target hardware, you may
need to make extensive adjustments to the controller system. Once these
adjustments are made, your deployed system may diverge significantly from
the original model. Such discrepancies can create difficulties if you need to
return to the original model and change it.

PIL simulation addresses these issues by providing an intermediate stage
between simulation and deployment. The term simulation reflects a division
of labor in which Simulink models the plant, while code generated from the
controller subsystem runs on the actual target hardware. In a PIL simulation,
the target processor participates fully in the simulation loop — hence the
term processor-in-the-loop.

How Simulation Works
This figure illustrates how the plant (P) and controller (C) components
interact in a PIL simulation

49-83

49 Working with Freescale MPC5xx Processors

In a PIL simulation, coder product generates efficient code for the control
system. This code runs (in simulated time) on a target board using the
intended microcontroller. The plant model remains in Simulink without the
use of code generation.

During PIL simulation, Simulink simulates the plant model for one sample
interval and exports the output signals (Yout of the plant) to the target board
via a communications link. When the target processor receives signals from
the plant model, it executes the controller code for one sample step. The
controller returns its output signals (Yout of the controller) computed during
this step to Simulink, via the same communications link. At this point one
sample cycle of the simulation is complete and the plant model proceeds to the
next sample interval. The process repeats and the simulation progresses.

To learn about PIL simulation though hands-on experience, see “Tutorial 1:
Building and Running a PIL Simulation” on page 49-84.

Tutorial 1: Building and Running a PIL Simulation

• “Before You Begin” on page 49-85

49-84

PIL Simulation

• “Hardware Connections” on page 49-85

• “The Demo Model” on page 49-86

• “Setting Up the Model” on page 49-89

• “Building PIL and Simulation Components” on page 49-91

• “Using the Demo Model In a PIL Simulation” on page 49-94

• “Modifying the Controller Subsystem” on page 49-96

Before You Begin
In this tutorial, you will use a subsystem in a Simulink model as a component
in simulations on your host computer, and also in a PIL simulation running
on your phyCORE-MPC555 board.

Before working with this tutorial, you should read and follow the procedures in
“Setting Up and Verifying Your Configuring the Host Vector CAN Application
ChannelInstallation” on page 49-10. Make sure that the target preferences
are set up appropriately for your development system (CodeWarrior or Wind
River) as described in “Setting Target Preferences for MPC5xx” on page 49-11.

Hardware Connections
The PIL target requires that you have a serial cable connection. You can also
use serial and CAN, or serial with a BDM connection.

Serial cable is required for host/target PIL communications whilst the model
is running, and downloads can occur over serial or CAN so the minimal
requirement is a single serial cable. BDM is not required but can be used if
desired.

We assume that you have made the following connection, as described
in the “Interfacing the phyCORE-MPC555 to a Host PC” section of the
phyCORE-MPC555 Quickstart Instructions manual: Host PC serial (COM1)
port to the RS232-1 (P2) connector on the phyCORE-MPC555 board.

49-85

49 Working with Freescale MPC5xx Processors

The Demo Model
The Fault-Tolerant Fuel Control System model, shown in Fault-Tolerant
Fuel Control System Model on page 49-86, consists of a plant model with a
controller subsystem, the Fuel Rate Controller subsystem.

Fault-Tolerant Fuel Control System Model

In the following sections, you will use the demo model and the PIL target to
generate the following:

• PIL code to run on the target board. The PIL target automatically invokes
the appropriate cross-development tools to compile, link, and (optionally)
download and run a target executable.

• A library containing

- The original Fuel Rate Controller subsystem block for use in
simulation.

- An S-function wrapper block, generated by coder product, that
implements the Fuel Rate Controller subsystem for use in
software-in-the-loop (SIL) simulation.

49-86

PIL Simulation

- A subsystem block that implements the Fuel Rate Controller
subsystem on the host side during simulation. This subsystem
communicates with generated PIL code running on the target board.

- A master configurable subsystem block that represents the above three
components. You will plug this block into a plant model and select each
of the three components in turn for use in a simulation.

This figure shows a library generated by the PIL target.

49-87

49 Working with Freescale MPC5xx Processors

Once you start the build process, there is almost no manual intervention
required to build all these components.

49-88

PIL Simulation

After building the components, you will use them in normal simulation,
SIL simulation, and PIL simulation. You will monitor the results of each
simulation via the Scope blocks in the model.

Setting Up the Model
In this section you will make a local copy of the demo model and configure the
model as required by this exercise:

1 Open the demo model by clicking the link or typing at the command line:

mpc555_fuelsys

2 Save a copy of the demo model, mpc555_fuelsys.mdl to your working
folder.

Next, check that the model is correctly configured for use with the coder
product.

1 Click on the Fuel Rate Controller subsystem, then choose
Configuration Parameters from the Simulation menu. The
Configuration Parameters dialog opens.

2 Select Code Generation in the tree.

3 Observe the System target file setting on the General tab. The target
configuration should be as shown in this figure.

49-89

49 Working with Freescale MPC5xx Processors

4 To see how to change target configuration settings, click the Browse
button to open the System Target File Browser, and observe the available
system target files — for algorithm export, processor-in-the-loop, and
real-time target. Leave the selected file at mpc555pil.tlc. Click Cancel
to close the Browser and return to the Code Generation pane.

5 SelectET MPC5xx (processor-in-the-loop) options in the tree.

6 Select Launch_Download_Control_Panel from the Build action
drop-down menu. This option automatically invokes the appropriate
downloading utility.

7 Click Apply. Then close the Configuration Parameters dialog box. If
needed, save the model to preserve any changes you have made.

49-90

PIL Simulation

Building PIL and Simulation Components
In this section, you will build a library of simulation, SIL, and PIL components
from the Fuel Rate Controller subsystem:

1 Right-click on the Fuel Rate Controller subsystem. A context menu
appears. Select Build Subsystem from the Code Generation submenu
of the context menu.

2 The Build code for Subsystem window opens. This window displays
information about each variable (or data object) that is referenced as a
block parameter in the subsystem. The window lets you inline or set the
storage class of individual parameters. We will not be concerned with
these features in this exercise. Click the Build button to continue the
code generation and build process.

3 The build process displays status messages in the MATLAB command
window. Intermediate Simulink windows are displayed as the build process
creates various components.

4 When the code generation process completes, the PIL target automates the
process of compiling, downloading, and executing the generated PIL code
that is to run on the target hardware. To accomplish this, the PIL target
launches your cross-development system (Wind River or CodeWarrior),

49-91

49 Working with Freescale MPC5xx Processors

compiles and makes the executable, and invokes the Download Control
Panel to download the code to the target. Click Start Download in the
Download Control Panel to complete the process.

5 At this point, the generated program is running on the target hardware and
waiting for communication to be established with Simulink on the host PC.

6 The build process has created and opened a library named Fuel_lib, as
shown in this figure.

49-92

PIL Simulation

49-93

49 Working with Freescale MPC5xx Processors

The library contains

• A copy of the original Fuel Rate Controller subsystem.

• A S-function, labeled Fuel Rate Controller (SIL).

• A subsystem block that communicates with generated PIL code running on
the target board during simulation, labeled Fuel Rate Controller (PIL).

• A master configurable subsystem block referencing the other three blocks.
The default block choice for this subsystem is the original Fuel Rate
Controller subsystem.

The configurable subsystem, when plugged into the model, lets you choose
which of the three library components will perform the controller functions in
the model. We will use the configurable subsystem in the following sections.

The library window also contains the following controls:

• A button that lets you replace the original (generating) subsystem in the
model with the generated configurable subsystem.

• A button that lets you do the inverse, i.e., remove the configurable
subsystem from the model from the original model and replace it with the
original (generating) subsystem from the library.

The library window documents the name of the original model/subsystem
from which the library was generated,

Using the Demo Model In a PIL Simulation
In this section, we will plug the configurable subsystem into the demo model,
select the PIL component, and use it in a PIL simulation:

1 Click on the Fuel_lib library window to activate it. Double-click on the
button labeled Replace the original subsystem in the model with the
configurable subsystem from this library.

2 The mpc555pil_fuelsys model window is now the active window. The
original Fuel Rate Controller subsystem has been deleted from the
model. It has been replaced by the configurable subsystem from the

49-94

PIL Simulation

Fuel_lib library. The configurable subsystem is automatically connected
to the same signals that the original Fuel Rate Controller subsystem
was connected to.

Note It is important to be aware that the insertion of the configurable
subsystem into the containing model establishes a link between the
model, mpc555pil_fuelsys, and the library, Fuel_lib. The library has
information about the model and subsystem from which it was generated.
The model, in turn, has information about the library from which the
configurable subsystem comes. This linkage is based on the names of the
library and the model, and will be broken if either is renamed. To avoid
errors, treat the model and library as a single unit, and do not rename
either.

3 Save the model.

4 Right-click on the configurable subsystem in the model. A context menu
appears. Select the Block choice menu item and observe the block choice
submenu. This figure shows the default block choice selection.

5 From the Block choice submenu of the context menu, select Fuel Rate
Controller (PIL).

6 Open the model’s two Scope blocks, if they are not already opened.

7 Make sure that Simulink is in Normal mode. For more information, see the
Simulink documentation on Simulation Modes.

8 You are now ready to run the simulation. To start the simulation, click the
Start simulation button in the Simulink toolbar.

The target system now starts executing the controller code. Observe that
the output signals computed on the target are displayed on the scopes.
The updating of the Scope blocks is slow, relative to a normal simulation,
because data is transmitted over the serial line on every model step.

49-95

49 Working with Freescale MPC5xx Processors

9 When the simulation completes, the signals displayed on the scopes should
appear as shown in Signals Displayed at End of Simulation or Simulation
on page 49-96.

Signals Displayed at End of Simulation or Simulation

10 When the simulation has completed, or has stopped or paused, the target
code enters a wait state until it receives a command to start (or resume)
from the host. Restart the simulation by clicking the Start simulation
button again. You can start, stop, restart, pause, or continue a simulation
exactly as you would a normal simulation. Try each of these operations
a few times.

Once your target has been reset, your application will be lost from memory.
In this case, you can download the application again by using the Download
Control Panel from the Start menu. Select the *.s19 file. In this case it
will be fuel_ram.s19.

See “Build Process Files and Folders” on page 49-100 for information on the
files and folders created by the build process.

Modifying the Controller Subsystem
Typically during algorithm development you will wish to make modifications
to the Controller Subsystem. You can apply your modifications to the
Controller Subsystem by changing the original model.

Note that in the mpc555_fuelsys demo model the Controller Subsystem is
actually a Simulink library block from the mpc555_fuelsys_project library,
so making modifications may require modification of the library block.

49-96

PIL Simulation

Once you have completed making your modifications to the Controller
Subsystem you can go back to step “Building PIL and Simulation Components”
in this tutorial to rebuild and download the Controller Subsystem for PIL.

Tutorial 2: Using the Demo Model in Simulation

• “Closed-Loop Simulation” on page 49-97

• “SIL Simulation” on page 49-97

Closed-Loop Simulation
In this section, you will continue to use the configurable subsystem in the
demo model, using it first in a normal closed-loop simulation and then in a
SIL simulation.

1 Right-click on the configurable subsystem and select Fuel Rate
Controller from the Block choice submenu of the context menu. This
selects the controller subsystem that was used in the original model.

2 Open the Scope blocks and start the simulation. When the simulation
completes (simulation time is set to 8 seconds), the signals displayed on
the scopes should appear identical to those displayed during the previous
simulation (see Signals Displayed at End of Simulation or Simulation on
page 49-96).

SIL Simulation

1 Right-click on the configurable subsystem and select Fuel Rate
Controller (SIL) from the Block choice submenu of the context menu.

Selecting this option directs the Simulink application to call a generated
wrapper S-function that implements the controller algorithm in highly
efficient generated code. You can now run a SIL simulation.

2 Start the simulation. You will notice that the simulation completes much
more quickly, due to the efficiency of the generated code. Also, observe that
the generated code displays results, on the scopes, that are identical to
the previous simulation and simulation (see Signals Displayed at End of
Simulation or Simulation on page 49-96).

49-97

49 Working with Freescale MPC5xx Processors

PIL Target Summary

• “Code Generation Options” on page 49-98

• “Build Process Files and Folders” on page 49-100

• “Restrictions” on page 49-101

Code Generation Options
The PIL target is an extension of the embedded real-time (ERT) target
configuration. The PIL target inherits the code generation options of the
ERT target, as well as the general code generation options. These options
are available under Code Generation, in the tree on the Configuration
Parameters dialog box.

Some code generation options of the ERT target are not relevant to the PIL
target, and are either unsupported, or restricted in their operation, by the PIL
target. See “Restrictions” on page 49-101 for details.

Target-Specific Options. The PIL target has four target-specific code
generation options: Optimize compiler for, Compiler optimization
switches, Build action and Use prebuilt (static) libraries.
To view or change the setting of these options, select ET MPC5xx
(processor-in-the-loop) options under Code Generation in the tree on
the Configuration Parameters dialog.

49-98

PIL Simulation

• Optimize compiler for— Select speed, size, debug, or custom.

This option controls compiler optimization switches used during the build
process. The exact effect of the optimization switches depends on whether
you are using the Wind River or CodeWarrior compiler. You can optimize
for performance by choosing the speed, size, or debug options, or define
your own (the custom option). You can edit these preferences here in the
Compiler optimization switches edit box if you want to apply changes
to the current model (Optimize compiler for: will change to custom). You
can also edit the defaults for these settings in the Target Preferences
dialog if you want to apply these changes to several models. See “Compiler
Optimization Switches” on page 49-14 for more information.

• The Build action menu has two options that control what action the PIL
target takes after completing the code generation process:

- Launch_Download_Control_Panel: When this option is selected, the PIL
target automatically invokes the Download Control Panel. When you
click Start Download the PIL target downloads the generated code to
the target board and begins execution of the code.

Before using this option, make sure that the target preferences (Compiler
and Debugger paths) are set correctly.

- None: When this option is selected, the PIL target does not take any
action after code generation completes. To download and run your
application, you must do so manually, using your development tools.

- Run_via_BDM — on completion of code generation download over BDM
connection automatically starts and on completion the code is run.

- Debug_via_BDM— on completion of code generation download over BDM
connection automatically starts. When the download is complete the code
stops at the first line while debugging, so you can step through the code.

• Use prebuilt (static) libraries

This check box option (selected by default) saves a considerable amount of
time during the build process, as the libraries do not need to be recompiled
every time.

49-99

49 Working with Freescale MPC5xx Processors

Manual Download. Once a subsystem has been built using the PIL target,
it is possible to use the Download Control Panel to manually download the
generated code to the target without repeating the entire build process. To
do this, use the following procedure:

1 .Enter embedded_target_download in the Command Window to open the
Download Control Panel dialog box.

2 Select the required *.s19 file, and click Start Download.

Build Process Files and Folders
The PIL target creates the following in your working folder:

• A build folder, containing generated source code, object files in their own
folder, and a makefile and other control files. The build folder also may
contain subfolders used by Stateflow software and by the HTML code
generation report generator (see “HTML Code Analysis (RAM/ROM)
Report” on page 49-104).

The naming convention for the build folder is source_mpc555pil, where
source is the first word of the generating subsystem or model. For
example, the Fuel Rate Controller subsystem used in the PIL tutorials
generates the build folder fuel_mpc555pil.

• The generated library, source_lib.mdl, and the.mexw32 components that
are bound to the generated PIL and SIL blocks in the library. Note that
if you rebuild source_lib.mdl in the same working folder, a revision
number is appended to the source string. For example, building from the
Fuel Rate Controller subsystem used in the PIL tutorials generates
Fuel_lib.mdl, fuel1_lib.mdl, fuel2_lib.mdl... fueln_lib.mdl.

• Executable PIL code in a format suitable for downloading to the target and
execution by your development system (Wind River Systems SingleStep
or CodeWarrior).

• Project files, debugging symbol files, link maps, and other files specific to
your development system (Wind River Systems SingleStep or CodeWarrior).

If you do not select the Launch_Download_Control_Panel option when you
generate code (or if you want to rerun PIL code after it is built), you can use

49-100

PIL Simulation

the Download Control Panel to manually download and run the generated
executable. To do this, see “Manual Download” on page 49-100.

Restrictions
Please note the following restrictions on the use of the PIL target:

• The PIL target does not support code generation from device driver blocks
from the block libraries. Do not include device driver blocks in your
PIL models. See mpc555_fuelsys_project.mdl for an example of PIL
modeling. This example manages multi-model modeling to deal with RT
& PIL operation.

• Do not include To File blocks in your PIL models, they will cause the build
to fail.

• Self modifying blocks (such as the Resource Configuration block and other
blocks) that modify the PIL subsystem during simulation, may cause an
error during simulation of the generated Configurable Subsystem (in
original subsystem mode).

As a workaround it is possible to set the MaskSelfModifiable parameter of
the original subsystem in the generated PIL library. To do this select the
original subsystem in the generated PIL library with the mouse, and then
run the following command in the MATLAB command prompt:

set_param (gcb, 'MaskSelfModifiable', 'on')

Note that we recommend not placing driver blocks (such as the Resource
Configuration block) inside the PIL subsystem.

• If you change the cross-compiler you use with the PIL target (from Wind
River to CodeWarrior or vice versa), you should rebuild your PIL models
in a clean folder, or delete all files from the models’ code generation
folders. The PIL build process expects to start with a clean folder, or a
folder created in the process of building with the same compiler. Leftover
components built by a different compiler cause errors.

• In a plant/controller simulation where the controller is built via the PIL
target, the plant model can contain any Simulink blocks, including a
combination of continuous-time and discrete-time blocks. However, the
controller subsystem must not include any continuous-time blocks. This
is because PIL uses the S-function Generation feature; this feature does

49-101

49 Working with Freescale MPC5xx Processors

not support continuous sample times. However, note that, standard
code generation, as used by the MPC555 RT target, does support
continuous-time blocks.

• The superseded version of the Vector CAN Configuration block should
not be placed inside a PIL subsystem. Instead, the model can be updated
to use the current Vector CAN Configuration block, which can be placed
inside a PIL subsystem.

• Parameters with the following storage requirement are not supported
for PIL. If a model contains parameters where the storage class (e.g.,
custom storage class) of the data objects requires storage in the model.c
module, then "unresolved external symbol" link errors occur during the
processor-in-the-loop (PIL) build process.

• Model folders must be located either an actual hard drive on your PC, or a
mapped drive. Do not use a UNC network path. If you run (simulate) a
model from a Universal Naming Convention (UNC) network folder (such
as \\Server\user\work), errors are produced.

• Vectors are not supported at the PIL boundary.

• Nonvirtual busses are not supported at the PIL subsystem boundary. PIL
only supports virtual buses at the PIL boundary. Note: A virtual bus at a
root level inport, with properties specified via a bus object, is treated as a
nonvirtual bus. To avoid an error, make the inport a virtual bus.

• Certain ERT code generation options are not supported by the PIL target. If
these options are selected, the PIL target either ignores the option or issues
an error message during the build process. PIL Target Restricted Code
Generation Options on page 49-102 summarizes these restricted options.

PIL Target Restricted Code Generation Options

Option Restriction

MAT-file logging Ignored if selected; build process proceeds

Generate ASAP2 file Ignored if selected; build process proceeds

External mode Error if selected; build process terminates

Generate an example
main program

This option should not be selected for the PIL
target.

49-102

PIL Simulation

PIL Target Restricted Code Generation Options (Continued)

Option Restriction

Generate reusable
code

Error if selected; build process terminates

Target function
library

C89/C90(ANSI) is the default and is not
configurable.

Algorithm Export Target
The Algorithm Export (AE) target is an aid to code analysis and interfacing.
The target generates only the code that implements the algorithm of
your model or subsystem, without any overhead for PIL host/target
communications or other operations extraneous to the model. Such purely
algorithmic code is easier to interface to your manually written or legacy code
than code generated by the PIL or RT targets.

Another application of the AE target is to use it to produce a code generation
report. Since only model code is included, you can more easily analyze the
code generated from your model.

The AE target supports both the CodeWarrior and Wind River cross-compilers,
as specified in your target preferences (see “Setting Target Preferences for
MPC5xx” on page 49-11).

To use the AE target,

1 Select Configuration Parameters from the Simulation menu. The
Configuration Parameters dialog opens.

2 Select Code Generation in the tree.

3 In the Target selection pane, click on the Browse button to open the
System Target File Browser. In the browser, select)mpc555exp.tlc.
Click OK to close the browser and return to the Configuration
Parameters dialog.

4 Select Templates in the tree and make sure Generate an example main
program is not selected.

49-103

49 Working with Freescale MPC5xx Processors

5 Follow the usual procedure for generating code from your model or
subsystem.

We recommend using the AE target in conjunction with the HTML code
generation report (see “HTML Code Analysis (RAM/ROM) Report” on page
49-104). If you select the Create Code Generation report option as
described in the next section, you can view a profiling report that includes
detailed itemization of RAM and ROM usage for all code and data sections,
and a complete memory map of the generated code. You can also easily
examine the generated code via hyperlinks in the code generation report.

HTML Code Analysis (RAM/ROM) Report
The coder product supports an extended version of the HTML code generation
report. You can generate reports for the real-time target as well as the
processor-in-the-loop (PIL) target and algorithm export (AE) target.

The extended code generation report includes an additional section, the
Code profile report for the generated application. See the product help for
information on the other report sections.

The code profile report section includes a detailed itemization of RAM and
ROM usage for all code and data sections, and a complete memory map of the
generated code. The report is generated from the memory map file (MAP file)
created during the application build process (compilation and linking). This
MAP file is appended to the end of the report to provide the complete details
of the memory layout of the application.

An example Code Profile Report is shown below.

To generate a code generation report and view the profiling report,

1 On the Code Generation options in the Configuration Parameters
dialog, make sure that the Generate code only option is not selected.

The reason for this step is that the extended code generation report obtains
information from MAP files that are created by your cross-compiler during
the build process. If the Generate code only option is on, these files are
not generated, which prevents the generation of the code generation report.

49-104

PIL Simulation

2 Select Report in the tree, and select the check box Create Code
Generation report.

3 Follow the usual procedure for generating code from your model or
subsystem.

The code generation report file is placed in the build folder. The file is
named model_codegen_rpt.html or subsystem_codegen_rpt.html.

The MATLAB Help browser automatically opens and displays the code
generation report. Alternatively, you can view the code generation report
in your Web browser.

4 To view the profiling report, click on the Code profile report link in the
Contents pane of the report.

A portion of an example code profile report is shown following. The raw
memory map (MAP file) is at the bottom of the report.

49-105

49 Working with Freescale MPC5xx Processors

Algorithm Export Target Summary

• “Code Generation Options” on page 49-106

• “Restrictions” on page 49-107

Code Generation Options
The Algorithm Export (AE) target is an extension of the embedded real-time
(ERT) target configuration. The AE target inherits the code generation
options of the ERT target, as well as the general code generation options.
These options are available under Code Generation, in the tree on the

49-106

PIL Simulation

Configuration Parameters dialog box; they are documented in the product
help.

Some code generation options of the ERT target are not relevant to the AE
target, and are either unsupported, or restricted in their operation, by the AE
target. See “Restrictions” on page 49-107 below for details.

The only target-specific option for AE target is Use prebuilt (static)
libraries. This check box option (selected by default) saves a considerable
amount of time during the build process, as the libraries do not need to be
recompiled every time.

Restrictions
Certain ERT code generation options are not supported by the AE target. If
these options are selected, the AE target either ignores the option or issues
an error message during the build process. AE Target Restricted Code
Generation Options on page 49-108 summarizes these restricted options.

49-107

49 Working with Freescale MPC5xx Processors

AE Target Restricted Code Generation Options

Option Restriction

MAT-file logging Ignored if selected; build process proceeds

Block type Error if SIL is selected; build process
terminates

Generate ASAP2 file Ignored if selected; build process proceeds

External mode Error if selected; build process terminates

You must not include driver blocks in your model for Algorithm Export. The
AE target is designed to generate only the code that implements the algorithm
of your model or subsystem, without any overhead for PIL host/target
communications or other operations extraneous to the model, so you should
not be including driver blocks.

49-108

Configuration Parameters

Configuration Parameters

In this section...

“Code Generation Pane: ET MPC5xx (Algorithm Export) Options” on page
49-109

“Code Generation Pane: ET MPC5xx (Processor-in-the-Loop) Options” on
page 49-111

“Code Generation Pane: ET MPC5xx Real-Time Options (1)” on page 49-115

“Code Generation Pane: ET MPC5xx Real-Time Options (2)” on page 49-119

Code Generation Pane: ET MPC5xx (Algorithm
Export) Options

• “ET MPC5xx (Algorithm Export) Options Tab Overview” on page 49-109

• “Use prebuilt (static) libraries” on page 49-111

ET MPC5xx (Algorithm Export) Options Tab Overview
Control recompiling of libraries for faster build times.

Configuration. This pane appears only if you specify the mpc555exp.tlc
system target file.

Tips.

• The Algorithm Export (AE) target generates only the code that implements
the algorithm of your model or subsystem. This is useful for code analysis
and interfacing to manually written or legacy code.

• Use the HTML code generation report to view a profiling report that
includes detailed itemization of RAM and ROM usage for all code and data
sections, and a complete memory map of the generated code. You can also
easily examine the generated code via hyperlinks in the code generation
report.

The Code profile report is an additional section in the HTML Code
Analysis (RAM/ROM) Report. To generate the report,

49-109

49 Working with Freescale MPC5xx Processors

1 On the Code Generation General pane, make sure Generate code only
is not selected.

2 On the Code Generation Report pane, select Create Code Generation
report.

To get help on an option.

1 Right-click the option’s text label.

2 Select What’s This from the popup menu.

See Also.

• Algorithm Export Target

• HTML Code Analysis (RAM/ROM) Report

49-110

Configuration Parameters

Use prebuilt (static) libraries
Use prebuilt rtwlib for faster build time.

Settings. Default: On

On
Use prebuilt libraries. This saves a considerable amount of time during
the build process, as the libraries do not need to be recompiled every
time.

Off
Recompile libraries and do not use prebuilt libraries.

Command-Line Information.

Parameter: STATIC_RTWLIB
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also. Algorithm Export Code Generation Options

Code Generation Pane: ET MPC5xx
(Processor-in-the-Loop) Options

• “ET MPC5xx (Processor-in-the-Loop) Options Tab Overview” on page
49-111

• “Optimize compiler for” on page 49-113

• “Compiler optimization switches” on page 49-113

• “Build action” on page 49-115

ET MPC5xx (Processor-in-the-Loop) Options Tab Overview
Specify compiler and build action code generation options for
processor-in-the-loop.

Configuration. This pane appears only if you specify the mpc555pil.tlc
system target file.

49-111

49 Working with Freescale MPC5xx Processors

To get help on an option.

1 Right-click the option’s text label.

2 Select What’s This from the popup menu.

See Also.

• Processor-in-the-Loop Code Generation Options

• Overview of PIL Simulation

49-112

Configuration Parameters

Optimize compiler for
Choose whether to optimize C compiler settings for fastest execution speed,
smallest code size, debugging, or custom settings.

Settings. Default: speed

speed
Optimize C compiler settings to minimize execution time.

size
Optimize C compiler settings to minimize code size.

debug
Optimize C compiler settings for debugging.

custom
Define your own optimization switches.

Tip. The exact effect of the optimization switches depends on whether you
are using the Wind River or CodeWarrior compiler. Consult your compiler
documentation for specific optimizations.

Dependency. Setting this parameter changes the Compiler optimization
switches to the appropriate switches, which depend on the compiler used and
may be user-defined.

Command-Line Information.

Parameter: MPC555_OPTIMIZATION_SWITCH
Type: string
Value: 'speed' | 'size' | 'debug' | 'custom'
Default: 'speed'

See Also. Processor-in-the-Loop Code Generation Options

Compiler optimization switches
Observe or edit compiler optimization switches.

Settings. Default: Depends on the toolchain, and also customizable — there
are many possibilities if you modify target preferences.

49-113

49 Working with Freescale MPC5xx Processors

Tip. To apply changes to the current model only, you can edit the switches
in the Compiler optimization switches edit box (Optimize compiler for:
changes to custom). If you want to apply these changes to several models, you
can edit the defaults for these settings in the Target Preferences dialog box.

Dependency. Editing this parameter changes the Optimize compiler
for to custom.

Command-Line Information.

Parameter: MPC555_OPTIMIZATION_FLAGS
Type: string
Value: customizable — there are many possibilities if you modify target
preferences or make custom edits
Default: depends on toolchain.

See Also. Processor-in-the-Loop Code Generation Options

49-114

Configuration Parameters

Build action
Choose action to perform after build process completes.

Settings. Default: None

None
No action after code generation.

Launch_Download_Control_Panel
Launch Download Control Panel utility on completion of code
generation.

Run_via_BDM
Download over BDM connection automatically starts on completion of
code generation. When the download is complete the code is run.

Debug_via_BDM
Download over BDM connection automatically starts on completion of
code generation. When the download is complete the code stops at the
first line while debugging, so you can step through the code.

Command-Line Information.

Parameter: BuildAction
Type: string
Value: 'None' | 'Launch_Download_Control_Panel' | 'Run_via_BDM'
| 'Debug_via_BDM'
Default: 'None'

See Also. Processor-in-the-Loop Code Generation Options

Code Generation Pane: ET MPC5xx Real-Time
Options (1)

• “ET MPC5xx Real-Time Options (1) Tab Overview” on page 49-116

• “Target Memory Model” on page 49-117

49-115

49 Working with Freescale MPC5xx Processors

ET MPC5xx Real-Time Options (1) Tab Overview
Specify compiler and build action code generation options for real-time
standalone execution.

Configuration. This pane appears only if you specify the mpc555rt.tlc or
mpc555rt_grt.tlc system target file.

To get help on an option.

1 Right-click the option’s text label.

2 Select What’s This from the popup menu.

See Also.

• Real-Time Code Generation Options

• Generating Stand-Alone Real-Time Applications

49-116

Configuration Parameters

Target Memory Model
Select either FLASH or RAM.

Settings. Default: RAM

RAM
Generate files in a format suitable for downloading into external RAM.

FLASH
Generate files in a format suitable for downloading into the MPC555
on-chip flash memory.

In both cases these two files are generated, with this naming convention:

• model_flash.s19 or model_ram.s19 — code only, for CAN download

• model_flash.elf or model_ram.elf — for BDM download, containing
code and optional debugging symbols if you choose a debug build in the
Optimize compiler for settings.

Tips.

• Loading the application code into RAM is faster than loading it into
flash memory. In addition, by using RAM you can avoid using up the
programming cycles of the flash memory; this lengthens the usable lifetime
of the flash memory. Running the application from RAM is a good option
for initial testing of the application.

• The MPC5xx flash memory has a limited lifetime, which is shortened each
time the flash memory is programmed. To extend product life, Freescale
recommends using flash programming only when necessary.

• To program applications into RAM, your target hardware must have
additional RAM external to the MPC555 on-chip RAM. The coder product
does not support downloading of code to MPC5xx on-chip RAM, because the
MPC555 has only 26K of on-chip RAM and the MPC565 has 36K.

49-117

49 Working with Freescale MPC5xx Processors

• For final deployment, or to load code onto a test board for use at a test site,
you will generally want to program your code into the nonvolatile flash
memory. 416K of flash memory is available for application code (992K
on the MPC565). Code programmed into flash memory is persistent and
restarts when the board is powered on.

Command-Line Information.

Parameter: TARGET_MEMORY_MODEL
Type: string
Value: 'RAM' | 'FLASH'
Default: 'RAM'

See Also.

• RAM vs. Flash Memory

• Overview of Memory Organization and the Boot Process

49-118

Configuration Parameters

Code Generation Pane: ET MPC5xx Real-Time
Options (2)

• “ET MPC5xx Real-Time Options (2) Tab Overview” on page 49-119

• “Maximum number of concurrent base-rate overruns” on page 49-120

• “Maximum number of concurrent sub-rate overruns” on page 49-121

• “Execution profiling” on page 49-122

• “Number of data points” on page 49-122

ET MPC5xx Real-Time Options (2) Tab Overview
Control execution profiling and scheduling overrun behavior.

Configuration. This pane appears only if you specify the mpc555rt.tlc or
mpc555rt_grt.tlc system target file.

To get help on an option.

1 Right-click the option’s text label.

2 Select What’s This from the popup menu.

See Also.

• MPC5xx Options for Execution Profiling

49-119

49 Working with Freescale MPC5xx Processors

• Execution Profiling

Maximum number of concurrent base-rate overruns
Configure allowable base-rate overruns.

Settings. Default: 5

Minimum: 0

Maximum: No maximum value — it depends on available memory.

Tips.

• Use this option to configure the behavior of the scheduler when timer based
tasks do not complete within their allowed sample time.

• It is useful to allow task overruns in the case where a task may occasionally
take longer than usual to complete (e.g. if extra processing is required
when a special event occurs); if the task overrun is only occasional then it
is possible for the scheduler to ’catch up’ after the extra processing has
been completed.

• If the maximum number of concurrent overruns for any task is exceeded,
this is deemed to be a failure and the real-time application is stopped.
This in turn will result in a watchdog timer timeout and the processor
will be reset.

• The occurrence of base-rate overruns does not affect the numerical behavior
of the algorithm (although reading/writing external devices will of course
be delayed).

Command-Line Information.

Parameter: BaseRateMaxOverrunsValue
Type: int
Value: 0 | 1 | 2...
Default: 5

See Also. MPC5xx Options for Execution Profiling

49-120

Configuration Parameters

Maximum number of concurrent sub-rate overruns
Configure allowable sub-rate overruns.

Settings. Default: 0

Minimum: 0

Maximum: No maximum value — it depends on available memory.

Tips.

• If this option is set to a value greater than zero, then the behavior of any
Rate-Transition blocks may be affected. Specifically, if the model contains a
Rate Transition block where the option "Ensure deterministic data transfer
(maximum delay)" is selected, then this setting may not be honored.

• If sub-rate overruns are allowed then the transfer of data between different
rates (via rate-transition blocks) in the model may be affected; this
causes the numerical behavior in real-time to differ from the behavior
in simulation. To see an illustration of this effect try running the demo
model mpc555rt_multitasking. To disallow sub-rate overruns and ensure
that this effect does not occur, you should set Maximum number of
concurrent sub-rate overruns to zero.

Command-Line Information.

Parameter: SubRateMaxOverrunsValue
Type: int
Value: 0 | 1 | 2...
Default: 0

See Also. MPC5xx Options for Execution Profiling

49-121

49 Working with Freescale MPC5xx Processors

Execution profiling
Specify whether to configure code for execution profiling.

Settings. Default: Off

On
Include function calls in the generated code for the model at the
beginning and end of each task or asynchronous Interrupt Service
Routine (ISR) to be profiled. When you perform an execution profiling
run, these function calls read a timer and log this reading, along with a
task identifier, for uploading and analyzing.

Off
Do not add function calls for execution profiling.

Tip. When code for the model is generated, these function calls update data
on the worst-case turnaround time for each timer-based task as well as the
worst-case number of concurrent task overruns, whenever a previous worst
case value is exceeded. Additionally, when a trigger is provided, data can be
logged over a period of time to record all task start and task finish times. The
trigger signal can be supplied by the execution profiling blocks.

See Also.

• Execution Profiling

• MPC5xx Options for Execution Profiling

Number of data points
Specify number of data points to log for execution profiling runs.

Settings. Default: 500

Minimum: This depends on the number of tasks. Three is a sensible
minimum to get useful information back.

Maximum: No maximum value - it depends on available memory.

49-122

Configuration Parameters

Tip. When a snapshot of task and ISR activity is logged this data is stored in
memory that is statically allocated at build time. Each data point requires 8
bytes on the MPC555. The larger the number of data points to be stored, the
more RAM that must be reserved for this purpose. At the end of a logging run,
the data must be uploaded to the host computer for analysis; this is typically
achieved by using the execution profiling blocks.

Command-Line Information.

Parameter: ExecutionProfilingNumSamples
Type: int
Value: 3 | 4 | 5...
Default: 500

See Also.

• Mpc5xx Options for Execution Profiling

• Execution Profiling

49-123

49 Working with Freescale MPC5xx Processors

Toolchains and Hardware
This section discusses specific settings for different cross-development
environments:

In this section...

“Setting Up Your Toolchain” on page 49-124

“Setting Up Your Installation with Wind River Compiler and Wind River
Systems SingleStep Debugger” on page 49-124

“Setting Up Your Installation with Freescale CodeWarrior” on page 49-129

“Setting Up Your Target Hardware” on page 49-133

“CAN Hardware and Drivers” on page 49-139

“Configuration for Nondefault Hardware” on page 49-141

“Integrating External Blocksets” on page 49-144

Setting Up Your Toolchain
The currently supported toolchains are WindRiver (Wind River Compiler and
Wind River Systems SingleStep) and Freescale CodeWarrior. You must first
install and configure your toolchain to work with the coder product. The
necessary steps are described in the following sections:

• “Setting Up Your Installation with Wind River Compiler and Wind River
Systems SingleStep Debugger” on page 49-124

• “Setting Up Your Installation with Freescale CodeWarrior” on page 49-129

Setting Up Your Installation with Wind River Compiler
and Wind River Systems SingleStep Debugger

• “Required Hardware and Software” on page 49-125

• “Procedure” on page 49-125

49-124

Toolchains and Hardware

Required Hardware and Software
To use the coder product with the Wind River Compiler, you need the
following:

• An MPC5xx development board (such as the phyCORE-MPC555
development board, or an Axiom board) and a debugger connector (such
as the WindRiver visionPROBE or the BDM Wiggler from Macraigor
Systems). Note the phyCORE-MPC555 board comes with built-in debugger
connector into which you can directly plug a parallel port connector, in
which case you may not require a BDM connector. See “Setting Up Your
Target Hardware” on page 49-133.

• Wind River Systems Wind River Compiler and Wind River Systems
SingleStep debugger, as detailed in “Supported Cross-Development Tools
for Freescale MPC5xx” on page 49-9.

Procedure

• “Install Wind River Compiler” on page 49-125

• “Install Wind River Systems SingleStep Debugger” on page 49-126

• “Setting Target Preferences for Wind River Compiler and Wind River
Systems SingleStep” on page 49-126

• “Initialize visionPROBE” on page 49-128

• “Configure MPC5xx Jumpers” on page 49-128

Install Wind River Compiler. If you have not already done so, install the
Wind River Compiler, following the installation instructions provided by
Wind River Systems.

You do not need to set a default processor or other compiler defaults. During
the code generation and build process, the coder product will generate a
makefile that sets the correct options.

You will need to note the path to the installed compiler in order to configure
your target preferences (see “Setting Target Preferences for Wind River
Compiler and Wind River Systems SingleStep” on page 49-126).

49-125

49 Working with Freescale MPC5xx Processors

Install Wind River Systems SingleStep Debugger. The Wind River
Systems SingleStep debugger, in conjunction with the coder product, lets you
download, run and debug generated code.

Follow the instructions of the Wind River Systems SingleStep installer.

To resolve questions or difficulties with Wind River Systems SingleStep, refer
to the documentation, or contact Wind River Systems.

You will need to note the path to the installed Wind River Systems SingleStep
debugger in order to configure your target preferences (see “Setting Target
Preferences for Wind River Compiler and Wind River Systems SingleStep”
on page 49-126).

Setting Target Preferences for Wind River Compiler and Wind River
Systems SingleStep. After installing your development tools, the next step
is to configure your target preferences for the Wind River Compiler and Wind
River Systems SingleStep debugger (read “Setting Target Preferences for
MPC5xx” on page 49-11, if you have not yet done so).

1 Open the Utilities for Use with MPC555 dialog box by entering
mpc555utils in the Command Window.

2 Select Target Preferences from the drop-down list, and click OK. This
opens the Target Preferences dialog box, which allows you to edit settings
for your cross-development environment.

3 Select Diab from the Toolchain menu (the Wind River Compiler was
formerly known as Diab).

4 Expand the ToolChainOptions by clicking the plus sign,
and type the correct path into CompilerPath. For example
"d:\applications\WindRiver\4.3g".

5 For Wind River Systems SingleStep you must also type the correct path
into DebuggerPath. For example "d:\applications\sds".

6 The defaults for DebuggerSwitches and DebuggerExecutable are set
up for use of Wind River Systems SingleStep (using a visionPROBE BDM
connection). You may need to change LPT1 to whatever port you connect to.

49-126

Toolchains and Hardware

Note, once you have set target preferences, you must initialize the device.
See “Initialize visionPROBE” on page 49-128.

7 To use any other BDM device than the visionPROBE (such as the Wiggler,
Raven/Blackbird or OnBoard BDM with Wind River Systems SingleStep),
you must change two target preferences from the defaults:

a Change the DebuggerSwitches target preference to the following:

-g -V mpc555 -r - -p LPT1=1

If necessary you can change LPT1 to whatever port you connect the
probe to.

b Change the DebuggerExecutable from the default to:

bdmp58.exe

The DebuggerSwitches target preference is specific to Wind River Systems
SingleStep. If you want to change the default debug settings, type

help debug

at the Wind River Systems SingleStep command line to see the options
available. For example you can change parallel port here. The default is -p
LPT1=1 which specifies port 1 on your host PC at speed 1. You could change it
to -p LPT2=2 to specify port 2 at speed 2.

Other debugger executables are supplied with Wind River Systems SingleStep
— if you want to change the defaults to use a different connection device
and different debug settings, consult the Wind River Systems SingleStep
documentation.

49-127

49 Working with Freescale MPC5xx Processors

Note that the path to the Wind River Systems SingleStep debugger, specified
in DebuggerPath in the Target Preference GUI, is the root folder of your
Wind River Systems SingleStep installation, on either an actual hard drive
on your PC, or a mapped drive. Do not use a Universal Naming Convention
(UNC) path. For most purposes, the other target preferences fields can be
left at their defaults. Once you have set these target preferences, the build
process will automatically invoke your compiler and debugger when required
for downloading code.

Initialize visionPROBE. Before using the visionPROBE (and after setting
target preferences), you must initialize the device:

1 Open the Utilities for Use with MPC555 dialog box by entering
mpc555utils in the Command Window.

2 Select Initialize visionPROBE for Selected Target Board
(WindRiver Only) from the drop-down list, and click OK.

You mustcarry out the initialization procedure again if you change the target
processor..

Note that for the visionPROBE, you must configure the parallel port BIOS
settings as follows:

• ECP mode

• Enabled (as opposed to Auto)

• IRQ and address of the parallel port specified in the BIOS must match
that in the visionPROBE comdll.cfg file - edit the cfg file if necessary.
Default parallel port I/O address = 0x378; IRQ=7, communicating over
PAR1 (LPT1).

Configure MPC5xx Jumpers. Make sure that the jumpers on the MPC5xx
board are set as described in “Jumper Settings” on page 49-134. The correct
jumper configuration is required when downloading to flash memory. Any
other jumper settings may cause downloading to flash memory to fail, or
cause other problems when operating with the coder product. For additional
information on jumper settings, consult the MPC5xx documentation and the
Wind River Systems SingleStep manual.

49-128

Toolchains and Hardware

The next step is to verify your installation:

1 You can download and run the test program supplied. See “Run Test
Program” on page 49-15.

2 You must then follow the instructions to download boot code (“Download
Boot Code to Flash Memory” on page 49-16). Once you have completed
these steps, you can begin working with the coder product.

Setting Up Your Installation with Freescale
CodeWarrior

• “Required Hardware and Software” on page 49-129

• “Procedure” on page 49-129

• “Limitations” on page 49-132

Required Hardware and Software
To use the coder product with Freescale CodeWarrior, you need the following:

• An MPC5xx development board (such as the phyCORE-MPC555
development board) and a debugger connector (such as the BDM Wiggler
from Macraigor Systems). Note the phyCORE-MPC555 board comes with
built-in debugger connector which you can plug a parallel port connector
into directly, in which case you may not require a BDM connector.

• Freescale CodeWarrior Development Studio, MPC5xx Edition, as detailed
in “Supported Cross-Development Tools for Freescale MPC5xx” on page
49-9.

Procedure

• “Install Freescale CodeWarrior IDE” on page 49-130

• “Configure Freescale CodeWarrior Debugger” on page 49-130

• “Set Target Preferences for CodeWarrior” on page 49-131

• “Configure MPC5xx Jumpers” on page 49-132

49-129

49 Working with Freescale MPC5xx Processors

Install Freescale CodeWarrior IDE. The first step is to install the Freescale
CodeWarrior IDE:

1 If you have previously installed an older version of Freescale CodeWarrior
for Embedded PowerPC , uninstall it.

2 Install Freescale CodeWarrior Development Studio, MPC5xx Edition, v8.7
using the setup program provided on your Freescale CodeWarrior CD (or
on your network). Run Setup.exe and follow the prompts.

3 Open CodeWarrior IDE. You can use the Windows Start menu (Start >
Programs > CodeWarrior > CodeWarrior IDE).

4 Select Edit > Preferences > Build Settings > Build Before Running

5 Select the option Never and click Apply.

It is vital you set this to avoid errors when building and automatically
downloading code with the coder product.

Configure Freescale CodeWarrior Debugger. The next step is to
configure the CodeWarrior debugger to communicate with the MPC5xx board
over the parallel port:

1 From the Freescale CodeWarrior IDE, select the Edit menu, and open the
IDE Preferences dialog box. In the IDE Preference Panels pane, click
on the plus sign next to Debugger.

2 A list of choices opens below Debugger. Select Remote Connections. The
Remote Connections panel is displayed on the right.

3 If no MPC555DK Wiggler configuration exists, create one as follows:

a Click the Add... button. The New Connection configuration dialog box
opens. Set the Name property to MPC555DK Wiggler.

b If you are using a Raven or Blackbird BDM device, set the Debugger
property to EPPC - MSI BDM Raven.

c If you are using a Wiggler or On-Board BDM, set the Debugger property
to EPPC MSI Wiggler.

d Set the Connection Type property to Parallel.

49-130

Toolchains and Hardware

e Set the Connection Port property to match the port to which you have
connected your MPC5xx board (the default is LPT1).

f Set the Speed property to 1.

g Set the FPU Buffer Address property to 0x3f9800.

h Click OK and skip to step 5.

4 If a MPC555DK Wiggler exists, click the Change button. The MPC555DK
Wiggler configuration dialog box opens. By default, the Parallel Port
property is set to LPT1. If you have connected your MPC5xx board to a
different port, change the Parallel Port setting accordingly. Then click
OK to close theMPC555DK Wiggler configuration dialog box.

5 Click Apply and close the IDE Preferences dialog box.

Set Target Preferences for CodeWarrior. The next step is to configure
your target preferences for Freescale CodeWarrior (read “Setting Target
Preferences for MPC5xx” on page 49-11 if you have not yet done so). Follow
these steps:

1 Open the Utilities for Use with MPC555 dialog box by entering
mpc555utils in the Command Window.

2 Select Target Preferences from the drop-down list, and click OK.

This opens the Target Preferences dialog box, which allows you to edit
settings for your cross-development environment.

3 Select CodeWarrior from the Toolchain menu.

4 Expand the ToolChainOptions by clicking the plus sign, and type the
correct path into CompilerPath. Do not use a UNC path, use only local or
mapped drives.

Note that when using CodeWarrior, you do not also have to specify the
DebuggerPath, as the compiler and debugger are integrated. When required,
the build process will automatically invoke the CodeWarrior debugger.

For most purposes, the other target preferences fields can be left at their
defaults.

49-131

49 Working with Freescale MPC5xx Processors

Note If you have multiple versions of the CodeWarrior IDE installed, the
version launched may not be the version you expect. The CodeWarrior IDE is
launched using the CodeWarrior COM API, and depends on installation order,
not your setting in the Target Preferences. You can correct this problem by
running the regservers.bat script, which is located in the bin folder of your
CodeWarrior installation. This registers the correct CodeWarrior application
to be launched.

Configure MPC5xx Jumpers. Make sure that the jumpers on the MPC5xx
board are set as described in “Jumper Settings” on page 49-134. The correct
jumper configuration is required.

The next step is to verify your installation.

1 You can download and run the test program supplied. See “Run Test
Program” on page 49-15.

2 You must then follow the instructions to download boot code (“Download
Boot Code to Flash Memory” on page 49-16). Once you have completed
these steps, you can begin working with the coder product.

Limitations

Limitation with S-functions and the CodeWarrior Compiler. If you try to
build a model including a non-inlined generated S-function and are using the
CodeWarrior compiler, you see an error like the following during compilation.

Error:
the file 'Subsystem_sf_types.h' cannot be opened
(included from:
C:\Work\Subsystem_sf.h:12
C:\Work\finalSubsystem_mpc555rt\finalSubsystem.h:33
C:\Work\finalSubsystem_mpc555rt\mpc555_main.c:17)

Errors caused tool to abort.
matlab\bin\win32\gmake.exe: ***
[bin/CODE_WARRIOR/555/mpc555_main.o] Error 1

49-132

Toolchains and Hardware

You can work around this problem by editing the model’s configuration
parameters. In the Custom Code settings, add the path of the S-function build
folder to the list of additional include folders.

Alternatively you can avoid this problem by compiling with the Wind River
Systems Wind River Compiler.

Setting Up Your Target Hardware

• “Communications Ports” on page 49-133

• “Jumper Settings” on page 49-134

This section describes the required connections and jumper settings for
the following development boards: Phytec phyCORE-MPC555, the Phytec
MPC565 and the Axiom MPC555, MPC564, and MPC566.

If you are using other development boards you may need to see “Configuration
for Nondefault Hardware” on page 49-141.

Communications Ports
Before you begin working with the coder product, you should set up your
target board and connect it to your host computer. For example, the hardware
setup is described in the phyCORE-MPC555 Quickstart Instructions manual
on the Phytec Spectrum CD. See the "Interfacing the phyCORE-MPC555 to a
Host PC" section of the "Getting Started" chapter.

In this document, we assume that you have connected your board to the same
serial (COM1) and parallel (LPT1) ports described in the phyCORE-MPC555
Quickstart Instructions. Note that you must ensure your computer’s LPT
parallel port for BDM interface is set to EPP mode and Auto (as opposed to
Enabled). This is generally a BIOS level configuration. If you are using a
visionPROBE you must configure the parallel port as detailed in “Initialize
visionPROBE” on page 49-128.

49-133

49 Working with Freescale MPC5xx Processors

Jumper Settings

Note You MUST check your jumper settings. Do not assume hardware is
supplied with jumpers set as documented by the manufacturer. Incorrect
operation or even hardware damage may occur if you do not check jumper
settings.

Use the following settings for these boards:

• “Phytec MPC555 Jumper Settings” on page 49-134

• “Phytec MPC565 Jumper Settings” on page 49-137

• “Axiom MPC555 Jumper Settings” on page 49-138

• “Axiom MPC564EVB Jumper Settings” on page 49-139

• “Axiom MPC566EVB Jumper Settings” on page 49-139

Phytec MPC555 Jumper Settings. The coder product has been tested
by the MathWorks with the Phytec phyCORE-MPC555 board, using the
jumper settings indicated in the table below. MathWorks has tested the PCB
1174.0 board. If you are using a PCB 1174.2 board you may also have to
alter settings such as jumper 19. Please see your Phytec development board
manual for details.

For jumper locations and pin numbers, see Jumper Layout section of the
Development Board for phyCORE-MPC555 Hardware Manual, "L-525E.pdf".

The following table summarizes the correct jumper settings to use when your
host PC is connected to the on-board BDM port, or via visionPROBE, Wiggler,
Raven, or Blackbird devices.

49-134

Toolchains and Hardware

Jumper Description

visionPROBE,
Raven
or Blackbird Wiggler

On-Board
BDM

JP1 On-board BDM
reset signal
connection

Open as Raven 3+4 closed

JP2 Power supply for
external BDM

Open (unless BDM
device requires
supply voltage
from development
board)

1+2 closed 1+2 closed

JP3 Connect push
button to different
reset signals

1+2 (/HRESIN
connected to push
button)

as Raven as Raven

JP4 Programming of
Internal MPC555
Flash internal
memory enabled

Closed as Raven as Raven

JP5,JP7,
JP8,JP9

Jumpers relating
to on-board BDM

Open as Raven All closed

JP6 See note below. Open as Raven Closed

JP10 Connect one of the
LEDs to supply
voltage

Closed as Raven as Raven

JP11 Connect 5V supply
voltage

Closed as Raven as Raven

JP12 Connect 3V3
supply voltage

Closed as Raven as Raven

JP13 CAN A bus
termination

Closed (apply 120
Ohm termination)

as Raven as Raven

JP14 CAN B bus
termination

Closed (apply 120
Ohm termination)

as Raven as Raven

49-135

49 Working with Freescale MPC5xx Processors

Jumper Description

visionPROBE,
Raven
or Blackbird Wiggler

On-Board
BDM

JP15 Select boot
memory

1+2 (boot from
internal flash
memory)

as Raven as Raven

JP16 Use J5 as source
of Hard-Reset-
Configuration

Open as Raven as Raven

JP17 Connect /HRESET
or /SRESET to
external BDM
interface logic

1+2 (/HRESET
connected to BDM
interface logic)

as Raven as Raven

JP18 Connect interrupt
to push button

Default 1+2 as Raven as Raven

JP19 See note below.

Note Jumper 6 must be open unless using an On-Board BDM.

When using the On-Board BDM connection, if you then want to run the
target stand-alone (disconnected from the debugger) you must also disconnect
(open) jumper 6. This only affects the on-Board BDM, all other configurations
always have jumper 6 open. Use the On-Board BDM settings in the table if
you are using the BDM connection for debugging, but remember you must
make this change to run stand-alone:

For debugging: Jumper 6 must be closed (target stops while debugging after
reset); connect parallel cable to target.

For stand-alone: Jumper 6 must be open (target runs in normal mode after
reset); disconnect parallel cable from target.

49-136

Toolchains and Hardware

Note The jumper 19 setting may need to be altered if you are using a PCB
1174.2 board. See the Phytec documentation for more information.

Phytec MPC565 Jumper Settings. These settings are for EXTERNAL
BDM device only, NOT On-Board BDM.

Make sure you use the default Phytec documented MPC565 jumper settings
and the following additional changes :

General:

JP28: 2-3

JP29: Closed

BDM Related:

JP32: Open

JP33: Open

JP34: Open

JP35: Open

JP36: Open

JP37: Open

JP38: Open

Additional warning - JP20:

Closing JP20 on the Phytec MPC565 development board connects the MPC565
MDA27 to the ZZ - "Snooze Enable of the burst-RAM". If you wish to use
MDA27 on the MPC565 development board then JP20 must be left open.

49-137

49 Working with Freescale MPC5xx Processors

Please either do not use module 27 with the MIOS Waveform Measurement
block or open JP20 on your development board.

Jumper 33 warning: When using the onboard BDM and the download control
panel of the coder product, you might see the download timeout as the target
is halted, if Jumper 33 is not correctly set. Perform these debugging steps:

• If you download code for debugging: Connect parallel cable to target and
make sure Jumper 33 is closed (target stops always while debugging after
reset).

• If you download code for stand-alone execution: Disconnect the parallel
cable from the target and make sure Jumper 33 is open (target runs in
normal mode after reset).

• If you cannot download code, but can debug:

1 Check if you are using the onboard BDM.

2 Check the setting of Jumper 33 and state of parallel cable, as stated
above.

3 If this does not resolve the issue, check the other jumper settings.

Axiom MPC555 Jumper Settings. These jumper settings work with an
external BDM device.

Make sure you use the default Axiom documented jumper settings and the
following additional changes:

Config Switch Mode Switch 1 Mode Switch 2 Other

1 : Off
2 : On
3 : Off
4 : On
5 : On
6 : On

1 : Off
2 : Off
3 : Off
4 : Off
5 : Off
6 : Off
7 : Off
8 : Off

1 : On
2 : Off
3 : Off
4 : Off
5 : Off
6 : Off
7 : Off
8 : Off

M-SEL Jumper - Open
FLSH-SEL Jumper - Open
RAM-SEL Jumper - 2 Closed
MEM-OPT Jumper - 5, 7
Closed

49-138

Toolchains and Hardware

Axiom MPC564EVB Jumper Settings. These settings work with an
external BDM device.

Make sure you use the default Axiom documented jumper settings and the
following additional changes:

MAP_SW CONFIG_SW

1: off
2: on
3: on
4: off
5: on
6: on
7: on
8: on

1: on
2: off
3: on
4: off
5: off
6: off
7: on
8: on

Axiom MPC566EVB Jumper Settings. Make sure you use the default
Axiom documented jumper settings and the following additional changes:

MAP_SW CONFIG_SW

5: off
8: on

7: on
8: on

CS0 > Ext_Flash

CS1 > Ext_SRAM

IP bit off (execute from 0x0000_0100 on reset)

Internal chip Flash enabled

Check the oscillator frequency Target Preference is configured correctly to
4MHz for the 566 board (check the board manual).

CAN Hardware and Drivers

• “Configuring CAN Channels” on page 49-140

49-139

49 Working with Freescale MPC5xx Processors

• “Creating and Assigning Application Channels” on page 49-140

Configuring CAN Channels
Similarly to the Vector CAN blocks, the Download Control Panel is based on
the Vector CAN Driver Programming Library. The Download Control Panel
uses the Application Channel mechanism used by the Vector CAN Blocks.

You can use the CAN Driver Configuration Tool from Vector to select a
CAN channel (installed CAN hardware or a virtual CAN channel) and set the
speed of the connection. You can access this tool by clicking Configure on the
Communication Options tab of the Download Control Panel. Also this tool
is opened automatically when you open the Vector CAN Configuration block
if you have installed Vector drivers.

Creating and Assigning Application Channels

1 Open the Utilities for Use with MPC555 dialog box by entering
mpc555utils in the Command Window.

2 Select Download RAM / FLASH Based Application (via CAN / Serial)
from the drop-down list, and click OK. This opens the Download Control
Panel.

3 On the Communications Options tab, select CAN from the Connection
type drop-down menu.

4 Select from the drop-down menu one of the MATLAB application channels
(1-10).

Use the Vector CAN Driver Configuration Tool to create and assign the
selected MATLAB application channel to the required CAN hardware
device or virtual channel as follows.

5 Click Configure on the Download Control Panel to open the Vector CAN
Driver Configuration Tool.

6 Click App. Settings in the Vector CAN Driver Configuration Tool.

7 Click Add in the Application Settings dialog that appears.

49-140

Toolchains and Hardware

8 Enter MATLAB in the edit box for the new application name and click OK.

9 Click Done to leave the Application Settings dialog.

10 Click to select the CAN hardware device or virtual channel you want to use
(for example, Channel 1 of a CAN-AC2-PCI card).

11 Click Assign to application (or right-click on the required channel).

12 Select MATLAB 1 or MATLAB 2 from the list.

Make sure you select the same MATLAB application channel in the Vector
CAN Configuration block. If your model requires more than one application
channel take care to assign a different channel to each Vector CAN
Configuration block.

See the Vector Help for the CAN Driver Configuration Tool to find out more
about how to select the CAN channel, bit rate, synchronization jump width,
sample point and number of samples per bit.

Refer also to “Vector CAN Blocks Hardware and Drivers” for more information
on configuring your hardware and software drivers.

Configuration for Nondefault Hardware

• “Hardware Clock Configuration” on page 49-142

• “Other Configuration Changes for Nondefault Hardware” on page 49-143

The coder product has been developed and fully tested using the development
boards described in “Setting Up Your Target Hardware” on page 49-133.
We recommend the use of these boards for getting started. If you are using
different MPC5xx hardware, it may be necessary to perform some additional
manual configuration.

The following sections provide information about where to make changes for
hardware clock configuration and other hardware-specific configurations.

49-141

49 Working with Freescale MPC5xx Processors

Hardware Clock Configuration
The coder product uses the Periodic Interrupt Timer (PIT) to support a range
of sample times. Note that the PIT is driven by the crystal frequency. This
results in the following possible sample time ranges:

For a crystal frequency of 20Mhz:

• Fastest sample time = 1.28e-5 seconds.

• Slowest sample time = 0.8388 s.

For a crystal frequency of 4 MHz:

• Fastest sample time = 6.4e-5 s.

• Slowest sample time = 4.1942 s.

Note that if you select a sample time slower than the slowest possible for your
clock frequency, Simulink issues a warning message.

Also note that the fastest sample time may not be achievable because timer
overruns may occur, depending on your model.

The coder product uses the main system oscillator (OSCM) to provide the
system clock. The OSCM uses either a 4-MHz or 20-MHz crystal to generate
the PLL reference clock. The next section describes how to configure the
real-time target for use on hardware with 4MHz crystal frequency (the default
is 20 MHz).

Note External clock inputs are not supported.

Configuring for a Crystal Frequency Other Than 20 MHz. The MPC555
can operate with a crystal frequency of either 4 MHz or 20 MHz. By default,
the coder product is configured for a crystal frequency of 20 MHz.

You can use the Target Preferences dialog box to change to a 4MHz oscillator
frequency.

49-142

Toolchains and Hardware

1 Open the Utilities for Use with MPC555 dialog box by entering
mpc555utils in the Command Window.

2 Select Target Preferences from the drop-down list, and click OK. This
opens the Target Preferences dialog box.

3 Use the drop-down menu for OscillatorFrequency to change from 20
(the default) to 4.

4 Now install the appropriate bootcode for your hardware. Open the Utilities
for Use with MPC555 dialog box. Select Install MPC5xx Bootcode from
the drop-down list, and click OK.

The correct bootcode is installed for the oscillator frequency and processor
variant that you have selected in the Target Preferences. See the Target
Preferences section “Target Board” on page 49-14.

Note that you must also change the oscillator frequency and processor
variant in your models. Use the Resource Configuration block. The oscillator
frequency and processor set here must match the Target Preferences, or you
will see warnings.

The default value for Oscillator_Frequency is 20. If you are using 4MHz
hardware, you must change the value for Oscillator_Frequency to 4 in
every model.

See also “System Clock and Related Parameters ” for information
on changing the system clock speed, and the block MPC5xx Switch
Target Configuration to easily switch between a selection of preset target
configurations with different processors and system frequencies.

Other Configuration Changes for Nondefault Hardware
Depending on your target hardware, it may be necessary to make changes to
configure settings such as the size and type of external memory.

If you are downloading using the Freescale CodeWarrior development
environment, the relevant hardware configuration settings are contained in
matlabroot\toolbox\rtw\targets\mpc555dk\mpc555dk\:

@codewarrior_tgtaction\mpc5xx_osc20.cfg

49-143

49 Working with Freescale MPC5xx Processors

@codewarrior_tgtaction\mpc5xx_osc4.cfg

If you are downloading using the Wind River Compiler and Wind River
Systems SingleStep development environment, the configuration settings are
contained in matlabroot\toolbox\rtw\targets\mpc555dk\mpc555dk\:

@diab_tgtaction\mpc5xx_osc20.cfg
@diab_tgtaction\mpc5xx_osc4.cfg
@diab_tgtaction\mpc555.wsp

Note that there is now only one Wind River Systems SingleStep workspace
file for RAM and flash memory.

The necessary changes to these files depend on the hardware that you are
using. Depending on your hardware, you may also need to configure switches
and jumper settings. Consult the documentation for your development board.

If you are generating stand-alone real-time applications, you may also need
to make changes to settings that are contained in the startup code. These
are contained in

matlabroot\toolbox\rtw\targets\mpc555dk\drivers\src\applications
\bootcode\bootcode_init.s.t

Note that after making any changes to bootcode_init.s.t, you must
recompile the boot code as described in “Rebuilding the Boot Code and Device
Driver Libraries” on page 49-51.

Integrating External Blocksets

• “Introduction” on page 49-144

• “Example External Blockset Folder Structure and rtwmakecfg.m” on page
49-145

Introduction
You can configure a rtwmakecfg.m file to seamlessly integrate custom
third-party Simulink blocks with the coder product. You must provide the
rtwmakecfg.m file along with the third party S-function block DLLs and

49-144

Toolchains and Hardware

associated files. rtwmakecfg.m files are widely used throughout the coder
product and they allow you to:

• Specify include paths to add to the list of includes used in the generated
makefiles.

• Specify precompiled libraries to add to the list of libraries used in the
generated makefiles.

• Specify TLC include paths to be searched for block TLC files during code
generation.

For a general explanation of how to use rtwmakecfg.m files, please see the
section "Customizing and Creating Template Makefiles" in the Simulink
Coder documentation."

For a detailed explanation of using the rtwmakecfg.m file please consult
the section on "Using the rtwmakecfg.m API" in the Simulink Coder
documentation.

The next section contains a detailed explanatory example for the MPC5xx
build process.

These steps are required:

• Add the location of the rtwmakecfg.m file to the MATLAB path.

• Make sure this file is located in the same folder as the S-function DLLs.

Example External Blockset Folder Structure and rtwmakecfg.m
To understand how the rtwmakecfg.m file works, imagine a set of S-functions,
comprising a Simulink library, provided by an external supplier, and how
they can be integrated into the MPC5xx build process.

Example folder structure for an external (plugin) blockset:

C:\externalblocks
C:\externalblocks\tlc_c
C:\externalblocks\include
C:\externalblocks\lib

49-145

49 Working with Freescale MPC5xx Processors

Note: Only the root folder C:\externalblocks needs to be on the MATLAB
path.

C:\externalblocks will contain files such as:

• Rtwmakecfg.m— rtwmakecfg.m defining MPC5xx Plugins

• Blocklibrary.mdl — Simulink block library containing Sfun_a and Sun_b

• Sfun_a.mexw32 — S-function member of Blocklibrary.mdl

• Sfun_b.mexw32— S-function member of Blocklibrary.mdl

C:\externalblocks\tlc_c will contain files such as:

• Sfun_a.c — S-function source for simulation.

• Sfun_b.c — S-function source for simulation.

• Sfun_a.tlc — S-function TLC for code generation

• Sfun_b.tlc — S-function TLC for code generation

Note: tlc_c folders in the same folder as the S-function DLLs are
automatically added to the TLC include path.

C:\externalblocks\include will contain files such as:

• Blocksetheader.h— Header file used in the generated code

C:\externalblocks\lib will contain files such as:

• Blocksetlibrary_5xx_CODEWARRIOR.a and
Blocksetlibrary_5xx_DIAB.a — Different versions of the library
are required depending on which toolchain is being used. The variable
mpc5xx_tool_chain (see example rtwmakecfg.m below) enables different
versions of the library to be selected during the build process, based on
the target toolchain.

An example rtwmakecfg.m that will add the Blocksetheader.h parent folder
to the list of include paths and Blocksetlibrary_ToolChain.a to the list of
libraries follows:

49-146

Toolchains and Hardware

% RTWMAKECFG adds include and source folders to rtw make files.

% makeInfo=RTWMAKECFG returns a structured array containing build info.

% Please refer to the rtwmakecfg API section in the Simulink Coder

% Documentation for details on the format of this structure.

% Get hold of the fullpath to this file, without the filename itself

rootpath = fileparts(mfilename('fullpath'));

% Get hold of the toolchain token to uniquely indentify libraries

prefs = RTW.TargetPrefs.load('mpc555.prefs');

mpc5xx_tool_chain = upper(prefs.ToolChain);

% External blocks need the following include path added

% Add the header file

makeInfo.includePath = { fullfile(rootpath, 'include') };

% External blocks reference the following precompiled library

% Add the precompiled libraries

makeInfo.linkLibsObjs = { fullfile(rootpath, 'lib',...

['Blocksetlibrary_' mpc5xx_tool_chain '.a']) };

49-147

49 Working with Freescale MPC5xx Processors

49-148

50

Working with Green Hills
MULTI IDE

• “Getting Started” on page 50-2

• “Automation Interface” on page 50-10

• “Project Generator” on page 50-33

• “Breakpoints and PIL” on page 50-44

50 Working with Green Hills® MULTI® IDE

Getting Started

In this section...

“Overview” on page 50-2

“Software Structure and Components” on page 50-3

Overview
Embedded Coder software provides an interface between MATLAB and the
Green Hills MULTI IDE software. The software enables you to

• Access the processor

• Manipulate data on the processor

• Manage projects within the IDE

while using the MATLAB numerical analysis and simulation functions.

Embedded Coder software connects MATLAB and Simulink with Green Hills
MULTI integrated development and debugging environment from Green
Hills®. The software enables you to use MATLAB and Simulink to debug
and verify embedded code running on many microprocessors that Green
Hills MULTI software supports, such as the ARM, Freescale MPC5500 and
MPC7400, Blackfin, and NEC® V850 families.

Using the software, you can perform the following tasks and others related to
Model-Based Design:

• Function calls — Write scripts in MATLAB to execute any function in the
Green Hills MULTI IDE

• Automation — Write automated tests in MATLAB to execute on your
processor, including control and verification operations

• Host-Processor Communication — Communicate with the processor
directly from MATLAB, without going to the IDE

• Verification and Validation

50-2

Getting Started

- Load and execute projects into the Green Hills MULTI IDE software
from the MATLAB command line

- Build and compile code, and then use vectors of test data and parameters
to test the code

- Build and compile your code, and then download the code to the
processor and execute it

• Design models — Design models and algorithms in MATLAB and Simulink
and run them on the processor

• Generate code — Generate executable code for your processor directly from
the models designed in Simulink, and execute it

Embedded Coder software includes a project generator component. With the
project generator component, you can generate a complete project file for
Green Hills MULTI software from Simulink models, using C code generated
with Embedded Coder software. Thus, you can use both Simulink Coder
and Embedded Coder software to generate generic ANSI C code projects for
Green Hills MULTI from Simulink models. You can then build and run the
code on supported processors.

The following list suggests some of the uses for Embedded Coder software:

• Create test benches in MATLAB and Simulink for testing your manually
written or automatically generated code running on a variety of DSPs

• Generate code and project files for Green Hills MULTI software from
Simulink models using both Simulink Coder and Embedded Coder software
for rapid prototyping or deployment of a system or application

• Build, debug, and verify embedded code on supported processors with
MATLAB, Simulink, and Green Hills MULTI software

• Perform processor-in-the-loop (PIL) testing of embedded code

Software Structure and Components

• “Components” on page 50-4

• “Automation Interface” on page 50-4

• “Project Generator” on page 50-5

50-3

50 Working with Green Hills® MULTI® IDE

• “Verification” on page 50-5

• “Configuring Your Software” on page 50-5

• “Configuring Green Hills® MULTI to use Full Folder Paths” on page 50-8

Components
Embedded Coder software comprises these components

• Automation Interface — Enables communication between MATLAB and
Green Hills MULTI software.

• Project Generation — Uses Simulink to let you build models, simulate
them, and generate code from the models directly to the processor.

• Verification — Validate and verify your projects. You can simulate
algorithms and processes in Simulink models and concurrently on your
processor. Comparing the concurrent simulation results helps verify the
fidelity of your model or algorithm code.

Automation Interface
The Automation Interface component enables you to use MATLAB functions
and methods to communicate with the Green Hills MULTI IDE software.
With the MATLAB functions, you can perform the following program
development tasks:

• Automate project management.

• Debug projects by manipulating the data in the processor memory (internal
and external) and registers.

• Exercise functions from your project on the processor.

• Communicate between the host and processor applications.

The Automation Interface component provides the following functionality
in the Debug component—methods and functions for project automation,
debugging, and data manipulation.

50-4

Getting Started

Project Generator
The Project Generator component is a collection of methods that use the
Green Hills MULTI API to create projects in Green Hills MULTI and generate
code. With the interface, you can do the following:

• Automatic project-based build process — Automatically create and build
projects for code generated by Simulink Coder or Embedded Coder.

• Custom code generation — Use System Target Files (STF) to generate both
processor-specific and optimized code.

• Automatic downloading and debugging — Debug generated code in the
Green Hills MULTI debugger, using either the instruction set simulator or
real hardware.

• Create and build projects for Green Hills MULTI from Simulink models
— Project Generator uses Simulink Coder or Embedded Coder to build
projects that work with supported processors.

• Generate custom code using the Configuration Parameters in your model
with the system target files multilink_ert.tlc and multilink_grt.tlc.

Verification
Verifying your processes and algorithms is an essential part of developing
applications. The components of Embedded Coder software provide the
following verification tools.

• Processor in the loop (PIL) simulation— Use simulation techniques
to verify generated code running in an instruction set simulator or real
hardware environment.

• Execution profiling — Gather execution profiling measurements with
Green Hills MULTI instruction set simulator to establish the timing
requirements of your algorithm.

Configuring Your Software
Embedded Coder software requires some information about your MULTI
installation before you can use the software to develop projects in MULTI
from MATLAB. To configure the interface between MATLAB and MULTI,
provide the information in the following table. Embedded Coder software

50-5

50 Working with Green Hills® MULTI® IDE

provides a GUI-based configuration utility to help you configure the software
and interface.

GUI
Parameter

Configuration
Information

Description

Directory MULTI
installation
folder

Identifies the path to your Green Hills
software.

Configuration Primary
processor

Identifies the processor on which you
are developing.

Debug
server

Debug server
type

Specifies the type of debug server to use.

Host name Host name Specifies the name of the machine that
runs your IDE Link service.

Port number Port number Specifies the port for communicating
with the host and IDE Link service. The
service listens on this port.

Configuring Embedded Coder Software. You must configure your
installation before you start working with the software and MULTI.

To generate code for Blackfin processors, the software supports only the
Green Hills version of the Blackfin compiler.

Note The software does not support using Analog Devices Blackfin
compiler. When you select your configuration during the configuration
process, do not select bfadi_standalone.tgt from the Configuration list.
bfadi_standalone.tgt uses the ADI compiler.

Follow these steps to open the Embedded Coder configuration utility:

Note You must perform this configuration process before using Embedded
Coder software.

50-6

Getting Started

1 Enter ghsmulticonfig at the MATLAB prompt.

The Embedded Coder Configuration dialog box opens, as shown in the
following figure.

2 In the Directory field, enter the path to the executable file multi.exe
for your Green Hills MULTI installation. Click Browse to search for the
file if necessary.

3 From the Configuration list, select your primary processor.
Embedded Coder software supports a variety of processors. Choose
one that matches your development platform. In many cases, the
processor_standalone.tgt variants, such as ppc_standalone.tgt, work
well. Refer to your Green Hills MULTI documentation for more information
about the configuration options for processors.

4 Enter the debug server string in Debug server. The string you enter
sets specific values for processors, such as the board support library and
whether the processor is big or little endian.

The standard input string is debugconnection. To use a processor
simulator, such as the MPC5554 simulator, enter the string

50-7

50 Working with Green Hills® MULTI® IDE

simppc -cpu=ppc5554 -fast -dec-rom_use_entry

Your MULTI documentation provides more information about the debug
server options and how to use them. You can find more debug server string
for simulators in the reference material for ghsmulticonfig.

Note If you use a custom board, add the -bsp option to the Debug server
string to specify your processor. For example, add -bsp=mpc5554 if you use
the MPC5554 EVB.

5 In Host name, enter the name of the machine that is going to run the IDE
Link service. When you construct a ghsmulti object, the ghsmulti function
starts the IDE Link service. To launch the service, the function needs to
know where the service will run. The Host name string identifies that
location. The default value is localhost, meaning the service runs on the
local machine. No other input is valid.

6 Enter the port number for the service in Port number.

Port number 4444 is the default port value. To change the port used, enter
a different value in this field. Verify that the port you enter is available.
If the port number you enter is not available, the IDE Link service does
not start. Thus, you get an error message in MATLAB when you try to
construct a ghsmulti object.

7 Select or clear Show server status window to specify whether the IDE
Link service status appears in the task bar. The default value is to show
the service status. Clearing Show server status window hides the status
in the task bar. Select this option as a best practice. Keeping this option
selected enables the software to shut down the communication services
for Green Hills MULTI completely.

8 Click OK to complete the configuration process and close the dialog box.

Configuring Green Hills MULTI to use Full Folder Paths
When you install MULTI to use with the software, MULTI sets the Show
Paths option to use relative file paths. To ensure that projects and programs

50-8

Getting Started

build correctly, configure MULTI to use full folder paths. Follow these steps
to change the configuration in MULTI.

1 Start MULTI from your desktop.

2 Switch to the Project Manager tool.

3 Select View > Show Paths > Full Paths.

50-9

50 Working with Green Hills® MULTI® IDE

Automation Interface

In this section...

“Getting Started with Automation Interface” on page 50-10

“Constructing Objects” on page 50-26

“Properties and Property Values” on page 50-27

“ghsmulti Object Properties” on page 50-30

Getting Started with Automation Interface

• “Introducing the Automation Interface Tutorial” on page 50-10

• “Starting and Stopping Green Hills MULTI From the MATLAB Desktop”
on page 50-12

• “Running the Interactive Tutorial” on page 50-16

• “Querying Objects for Green Hills MULTI Software” on page 50-16

• “Loading Files into Green Hills MULTI Software” on page 50-17

• “Running the Project” on page 50-19

• “Working With Data in Memory” on page 50-20

• “More Memory Data Manipulation” on page 50-22

• “Closing the Connections to Green Hills MULTI Software” on page 50-25

• “Tasks Performed During the Tutorial” on page 50-25

Introducing the Automation Interface Tutorial
Embedded Coder software provides a connection between MATLAB software
and a processor in Green Hills MULTI development environment. You
use MATLAB objects as a mechanism to control and manipulate a signal
processing application using the computational power of MATLAB software.
This approach can help you while you debug and develop your application.
Another possible use for automation is creating MATLAB scripts that verify
and test algorithms that run in their final implementation on your production
processor.

50-10

Automation Interface

Note Before using the functions available with the objects, you must
designate a server and processor in Green Hills MULTI software. The object
you create is specific to the server and processor you specify.

To help you start using objects in the software, Embedded Coder software
includes a tutorial—multilinkautointtutorial.m. As you work through
this tutorial, you perform the following tasks that step you through creating
and using objects to interact with the Green Hills MULTI IDE:

1 Select your primary server and port.

2 Create and query objects to Green Hills MULTI IDE.

3 Use MATLAB to load files into Green Hills MULTI IDE.

4 Work with your Green Hills MULTI IDE project from MATLAB.

5 Close the connections you opened to Green Hills MULTI IDE.

The tutorial covers some methods and functions for the software. The
following tables show functions and methods for the software. The functions
do not require an object. The methods require an existing ghsmulti object to
use as an input argument for the method.

Functions for Working with Green Hills MULTI. The following table
shows functions that do not require an object.

Function Description

ghsmulti Construct an object that refers to a Green Hills
MULTI IDE instance. When you construct the
object you specify the IDE instance by host and
port.

ghsmulticonfig Set Embedded Coder software preferences.

Methods for Working with ghsmulti Objects in Green Hills MULTI. The
following table presents some of the methods that require a ghsmulti object.

50-11

50 Working with Green Hills® MULTI® IDE

Methods Description

add Add file to project

address Return address and page for entry in symbol
table in Green Hills MULTI IDE

build Build project in Green Hills MULTI

cd Change working folder

connect Connect IDE to processor

display Display properties of object that references Green
Hills MULTI IDE

halt Terminate execution of process running on
processor

isrunning Test whether processor is executing process

load Load built project to processor

open Open file in project

read Retrieve data from memory on processor

regread Read values from processor registers

regwrite Write data values to registers on processor

reset Restore program counter (PC) to entry point for
current program.

restart Restore processor to program entry point

run Execute program loaded on processor

write Write data to memory on processor

Starting and Stopping Green Hills MULTI From the MATLAB
Desktop
Embedded Coder software provides you the ability to control MULTI software
from the MATLAB command window. When you create a ghsmulti object,
MATLAB starts the services shown in the following table to enable MATLAB
to communicate with the Green Hills MULTI IDE:

50-12

Automation Interface

Service Type for
Each Port

Process Name Description

Python Service mpythonrun.exe Python is a programming
language the software uses
to establish a connection
between MATLAB and
MULTI.

Python Service svc_python.exe Connection to IDE.

Python Service svc_router.exe Connection to IDE.

Python Service svc_statemgr.exe Connection to IDE

Python Service svc_window.exe Connection to IDE.

IDE Link service Not applicable Enables MATLAB to send
commands to the Green
Hills MULTI development
environment. This is a child
process of the python services.

Each time you create a ghsmulti object, the software starts another set of the
python services shown in the table.

Starting Green Hills MULTI From MATLAB. When you use the ghsmulti
function, the software starts two classes of services—python services and the
IDE Link service for each new port. The entries in the following table describe
how the software controls the IDE when you create a ghsmulti object:

Create ghsmulti Object with ghsmulti
Function

Status
of IDE

Result

id=ghsmulti
Not
running

The software starts the IDE Link
service and the IDE connects to
the default host name and port
number—localhost and 4444 as set
in the configuration options.

50-13

50 Working with Green Hills® MULTI® IDE

Create ghsmulti Object with ghsmulti
Function

Status
of IDE

Result

id=ghsmulti('hostname','localhost','portnum',4444)

Not
running

The software starts the IDE Link
service and the IDE and connects
to the specified host name and port
number—localhost and 4444.

id2=ghsmulti
Running The software connects to the existing

IDE Link service connected to the
default host name and port.

id2=ghsmulti('hostname','localhost','portnum',4446)

Running The software starts a new the IDE
Link service connected to the specified
host name and port number.

When the software starts the IDE Link service, the following service dialog
box appears on your desktop:

Information in the window provides details about the service. Clicking
Launcher opens the MULTI Launcher utility.

Stopping Green Hills MULTI From MATLAB. After you complete your
development work with the software, best practice suggests that you close the
IDE from MATLAB. Two conditions control how you close the IDE, as shown
in the following table:

50-14

Automation Interface

The IDE Link Service State To Close the IDE

One or more services appear in the
task bar and the IDE Link service
dialog boxes are visible.

Perform these steps:

1 Enter clear all in MATLAB to
remove the ghsmulti objects from
your workspace.

2 Verify that the MULTI clients are
no longer connected by checking
that #Clients in each service
dialog box is 0.

3 Close the service dialog boxes.

Services appear in the task bar
but the service dialog boxes are not
visible.

Perform these steps:

1 Enter clear all inMATLAB to
remove the ghsmulti objects from
your workspace.

2 Open the MicrosoftWindows Task
Manager.

3 Click Processes.

4 Select svc_router.exe from
the list. Closing this service
stops mpythonrun.exe,
svc_window.exe, and
svc_statemgr.exe.

5 Click End Now.

6 Select svc_python.exe from the
list.

7 Click End Now.

50-15

50 Working with Green Hills® MULTI® IDE

Note Clicking the task bar icon for the service and selecting close does not
close the IDE correctly.

Running the Interactive Tutorial
You have the option of running this tutorial from the MATLAB command line
or entering the functions as described in the following tutorial sections.

To run the tutorial in MATLAB, click run multilinkautointtutorial. This
command launches the tutorial in an interactive mode where the tutorial
program provides prompts and text descriptions to which you respond to move
to the next section. The interactive tutorial covers the same information
provided by the following tutorial sections. You can view the tutorial
MATLAB file used here by clicking multilinkautointtutorial.m.

Querying Objects for Green Hills MULTI Software
In this tutorial section you create the connection between MATLAB and
Green Hills MULTI IDE. This connection, or ghsmulti object, is a MATLAB
object that you save as variable id. You use function ghsmulti to create
ghsmulti objects. ghsmulti supports input arguments that let you specify
values for ghsmulti object properties, such as the global timeout. Refer to the
ghsmulti reference information for more about the input arguments.

Use the generated object id to direct actions to your project and processor. In
the following tasks, id appears in all method syntax that interact with the
IDE primary target and the processor: The object id identifies and refers to a
specific instance of the IDE.

You must include the object in any method syntax you use to access and
manipulate a project or files in a session in Green Hills MULTI software:

1 Create an object that refers to your selected service and port. Enter the
following command at the prompt.

id = ghsmulti('hostname','localhost','portnum',4444)

2 Next, enter display(id) at the prompt to see the status information.

50-16

Automation Interface

MULTI Object:
Host Name : localhost
Port Num : 4444
Default timeout : 10.00 secs
MULTI Dir : C:\ghs\multi500\ppc\

Embedded Coder software provides three methods to read the status of
a processor:

• info— Return a structure of testable session conditions.

• display— Print information about the session and processor.

• isrunning— Return the state (running or halted) of the processor.

3 Verify that the processor is running by entering

runstatus = isrunning(id)

The MATLAB prompt responds with message that indicates the processor
is stopped:

runstatus =

0

Loading Files into Green Hills MULTI Software
You have established the connection to a processor and board. Using three
methods you learned about the hardware, and whether it was running. Next,
give the processor something to do.

In this part of the tutorial, you load the executable code for the CPU in the
IDE. Embedded Coder software includes a tutorial project file for Green Hills
MULTI. Through the next commands in the tutorial, you locate the tutorial
project file and load it into Green Hills MULTI. The open method directs
Green Hills MULTI to load a project file or workspace file.

50-17

50 Working with Green Hills® MULTI® IDE

Note To continue the tutorial, you must identify or create a folder to which
you have write access. Embedded Coder software cannot create a folder for
you. Create one in the Microsoft Windows folder structure before you proceed
with the this tutorial.

Green Hills MULTI has its own workspace and workspace files that are
quite different from MATLAB workspace files and the MATLAB workspace.
Remember to monitor both workspaces. To change the working folder to your
writable folder:

1 Use cd to switch to the writable folder

prj_dir=cd('C:\ide_link_mu_demo')

where the name and path to the writable folder is a string,
such as C:\ide_link_mu_demo as used in the example. Replace
C:\ide_link_mu_demo with the full path to your writable folder.

2 Change your working folder to the new folder by entering the following
command:

cd(id,prj_dir)

3 Use the following command to create a new Green Hills MULTI project
named debug_demo.gpj in the new folder:

new(id,'debug_demo.gpj')

Switch to the IDE to verify that your new project exists. Next, add source
files to your project.

4 Add the provided source file—multilinkautointtutorial.c to the project
debug_demo.gpj using the following command:

add(id,'multilinkautointtutorial.c')

5 Save your project.

save(id,'my_debug_demo.gpj','project')

50-18

Automation Interface

Your IDE project is saved with the name my_debug_demo.gpj in your
writable folder. The input string ’project’ specifies that you are saving a
project file.

6 Next, set the build options for your project. Use the following command to
set the compiler build options to use and specify a processor (optional).

setbuildopt(id,'Compiler','-G -cpu=V850')

The input argument -cpu=V850 is optional to specify the processor. Change
to processor designation to match your processor if necessary.

Running the Project
After you create dot_project_c.gpj in the IDE, you can use Embedded
Coder software functions to create executable code from the project and load
the code to the processor.

To build the executable and download and run it on your processor:

1 Use the following build command to build an executable module from the
project debug_demo.gpj.

build(id,'all',20) % Set optional time-out period to 20 seconds.

2 To load the new executable to the processor, use load with the project file
name and the object name. The name of the executable is debug_demo.

load(id,'debug_demo',30); % Set time-out value to 30 seconds.

Embedded Coder software provides methods to control processor
execution—run, halt, and reset. To demonstrate these methods, use run to
start the program you just loaded on to the processor, and then use halt
to stop the processor.

1 Enter the following methods at the command prompt and review the
response in the MATLAB command window.

run(id) % Start the program running on the processor.

halt(id) % Halt the processor.

reset(id) % Reset the program counter to start of program.

50-19

50 Working with Green Hills® MULTI® IDE

Use isrunning after the runmethod to verify that the processor is running.
After you stop the processor, isrunning can verify that the processor has
stopped.

Working With Data in Memory
Embedded Coder software provides methods that enable you to read and
write data to memory on the processor. Reading and writing data depends
on the symbol table for your project. The symbol table is available only after
you load the executable into the debugger. This sections introduces address
and dec2hex. Use them to read the addresses of two global variables—ddat
and idat.

1 After you load debug_demo into the debugger, enter the following commands
to read the addresses of ddat and idat:

ddatA=address(id,'ddat')
ddatA =

3145744 0

ddatI=address(id,'idat')

ddatI =

3145728 0

2 Review the results in hexadecimal representation.

dec2hex(ddatA)

ans =

300010
000000

dec2hex(ddatI)

ans =

300000
000000

50-20

Automation Interface

After you load the target code to the processor, you can examine and modify
data values in memory, as the previous read function examples demonstrated.

For non-changing data values in memory (static values), the values are
available immediately after you load the program file.

A more interesting case is looking at variable values that change during
program execution. Manipulating changing data values at intermediate points
during execution can provide helpful analysis and verification information.

To enable you to read and write data while your program is running, the
software provides methods to insert and delete breakpoints in the source
programs. Inserting breakpoints lets you pause program execution to read or
change variable data values. You cannot change values while your program is
running.

The method insert creates a new breakpoint at either a source file locations,
such as a line number, or at a physical memory address. insert takes either
the line number or the address as an input argument.

To read the values in the next section of this tutorial, use the following
methods to insert breakpoints at lines 24 and 29 in the source file
multilinkautointtutorial.c

1 Change folders to your original working folder.

cd(id,proj_dir);

2 (Optional for convenience) Create variables for the line numbers in the
source file.

brkpt24 = 24;
brtpt29 = 29;

3 Use the following commands to insert breakpoints on line 24 and line 29 of
the source file:

insert(id,'multilinkautointtutorial',brkpt24); % Insert breakpoint on line 24.

insert(id,'multilinkautointtutorial',brkpt29); % Insert breakpoint on line 29.

50-21

50 Working with Green Hills® MULTI® IDE

4 Open and activate the file in the IDE from the MATLAB command window
by issuing the following commands:

open(id,'multilinkautointtutorial');

activate(id,'multilinkautointtutorial');

Activating multilinkautointtutorial.c transfers focus in the IDE to the
activated file. Switch to the IDE to verify that the file is in your project
and open.

When you look in the IDE debugger window, the breakpoints you added to
multilinkautointtutorial.c are marked by a STOP sign icon on lines 24
and 29.

A similar method, remove, deletes breakpoints.

To help you inspect the source file in the IDE and verify the breakpoints, the
open and activate methods display the file multilinkautointtutorial.c
in the IDE and force the source file to the front.

One final method actually connects the IDE to your hardware or simulator.
connect takes a ghsmulti object as an input argument to connect the specific
IDE primary target referenced by id to the associated processor.

More Memory Data Manipulation
The source file multilinkaautointtutorial.c defines two 1-by-4 global data
arrays—ddat and idat. You can locate the declaration in the file. Embedded
Coder software provides the read and write methods so you can access the
arrays from MATLAB. Find the declaration and note the initialization values.

This tutorial section demonstrates reading and writing data in memory, and
controlling the processor.

1 Get the address of the symbols ddat and idat. Enter the following
commands at the prompt.

ddat_addr=address(id,'ddat'); % Get address from symbol table.
idat_addr=address(id,'idat');

2 Create two MATLAB variables to specify the data types for ddat and idat.

50-22

Automation Interface

ddat_type-'double';
idat_type='int32';

3 Declare some values in two MATLAB variables.

ddat_value=double([pi 12.3 exp(-1) sin(pi/4)]);
idat_value=int32(1:4);

4 Stop the processor.

halt(id)

5 Reload the project. If you did not save the source file in the project,
reloading the project removes the breakpoints you added and move the
program counter (PC) to the start of the program.

% Reload program file (.gpj). Reset PC to program start.
reload(id,100);

6 Use the following commands to restore the breakpoints on line 24 and 29.

insert(id,'multilinkautointtutorial.c',brkpt24);
insert(id,'multilinkautointtutorial.c',brkpt29);

7 Use the following method to connect the IDE to the processor:

connect(id);

8 With the breakpoints in the code, run the program until it stops at the
first breakpoint on line 24.

run(id,'runtohalt',30); % Set time-out to 30 seconds.

9 Check the current values stored in ddat and idat. Later in this tutorial
you change these values from MATLAB.

% Do ddat values match initialization values in the source?
ddatV=read(id,address(id,'ddat',ddat_type,4)
idatV=read(id,address(id,'idat',idat_type,4)

MMATLAB displays the values of ddatV and idatV.

ddatV=

50-23

50 Working with Green Hills® MULTI® IDE

16.300 -2.1300 5.1000 11.8000

idatV=

1 508 646 7000

10 Change the values in ddat and idat by writing new values to the memory
addresses.

% Write pi, 12.3, exp(-1), and .7070 to memory.
write(id,address(id,'ddata'),ddat_value)
% Write vector [1:4] to memory.
write(id,address(id,'idat'),idat_value)

11 Resume the program execution from the breakpoint and run until the
program stops.

run(id,'runtohalt','30); % Stop at next breakpoint (line 29).

12 Read the values in memory for ddat and idat to verify the changes.

% Read the data as double data type.

ddatV = read(id,address(id(id,'ddat'),ddat_type,4)

ddatV=

3.1416 12.3000 0.3679 0.7071

% Read the data as int32 data type.

idatV = read(id,address(id,'idat'),idat_type,4)

idatV=

1 2 3 4

The data stored in ddat and idat are what you wrote to memory.

13 After you review the data, restart the processor to run to return the PC
to the program start.

restart(id);

50-24

Automation Interface

Closing the Connections to Green Hills MULTI Software
Objects that you create in Embedded Coder software have connections to
Green Hills MULTI IDE. Until you delete these objects, the Green Hills
MULTI process (Idde.exe in the Windows Task Manager) remains in
memory. Closing MATLAB removes these objects automatically, but there
may be times when it helps to delete the handles manually, without quitting
MATLAB.

Note When you clear the last ghsmulti object, the software does not close
the running IDE Link service. When it does close the IDE, it does not save
current projects or files in the IDE, and it does not prompt you to save them.

A best practice is to save your projects and files before you clear ghsmulti
objects from your MATLAB workspace.

Use the following commands to close the project files in Green Hills MULTI
IDE and remove the breakpoints you added to the source file.

close(id,'debug_demo.gpj','project') % Close the project file.
remove(id,'multilinkautointtutorial.c',brkpt24);

remove(id,'multilinkautointtutorial.c',brkpt29);

Finally, to delete your link to Green Hills MULTI use clear id.

You have completed the Automation Interface tutorial using Embedded
Coder software.

Tasks Performed During the Tutorial
During the tutorial you performed the following tasks:

1 Created and queried objects that refer to a session in Embedded Coder
software to get information about the session and processor.

2 Used MATLAB software to load files into the Green Hills MULTI IDE and
used methods in MATLAB software to run that file.

3 Closed the links you opened to Green Hills MULTI software.

50-25

50 Working with Green Hills® MULTI® IDE

This set of tasks is used in any development work you do with signal
processing applications. Thus, the tutorial gives you a working process for
using Embedded Coder software and your signal processing programs to
develop programs for a range of processors.

Constructing Objects
When you create a connection to a session in Green Hills MULTI using the
ghsmulti function, you create a ghsmulti object (in object-oriented design
terms, you instantiate the ghsmulti object). The object implementation relies
on MATLAB object-oriented programming capabilities like the objects in
MATLAB or DSP System Toolbox software.

The discussions in this section apply to the objects in Embedded Coder
software. Because ghsmulti objects use the MATLAB software techniques,
the information about working with the objects, such as how you get or set
object properties or use methods, apply to the ghsmulti objects in Embedded
Coder software.

Like other MATLAB structures, ghsmulti objects have predefined fields
referred to as object properties.

You specify object property values by the following methods:

• Specifying the property values when you create the object

• Creating an object with default property values, and changing some or all
of these property values later

For examples of setting link properties, refer to “Setting Property Values
with set”.

Example — Constructor for ghsmulti Objects
The easiest way to create an object is to use the function ghsmulti to create
an object with the default properties. Create an object named id referring to a
session in Green Hills MULTI by entering the following syntax:

id = ghsmulti

50-26

Automation Interface

MATLAB responds with a list of the properties of the object id you created
along with the associated default property values.

MULTI Object:
Host Name : localhost
Port Num : 4444
Default timeout : 10.00 secs
MULTI Dir : C:\ghs\multi500\ppc\

The object properties are described in the ghsmulti documentation.

Note These properties are set to default values when you construct links.

Properties and Property Values

• “Working with Properties” on page 50-27

• “Setting and Retrieving Property Values” on page 50-28

• “Setting Property Values Directly at Construction” on page 50-28

• “Setting Property Values with set” on page 50-29

• “Retrieving Properties with get” on page 50-29

• “Direct Property Referencing to Set and Get Values” on page 50-30

• “Overloaded Functions for ghsmulti Objects” on page 50-30

Working with Properties
Links (or objects) in this Embedded Coder software have properties associated
with them. Each property is assigned a value. You can set the values of
most properties, either when you create the link or by changing the property
value later. However, some properties have read-only values. Also, a few
property values, such as the board number and the processor to which the link
attaches, become read-only after you create the object. You cannot change
those after you create your link.

50-27

50 Working with Green Hills® MULTI® IDE

Setting and Retrieving Property Values
You can set ghsmulti object property values by either of the following
methods:

• Directly when you create the link — see “Setting Property Values Directly
at Construction”

• By using the set function with an existing link — see “Setting Property
Values with set”

Retrieve ghsmulti object property values with the get function.

Direct property referencing lets you either set or retrieve property values
for ghsmulti objects.

Setting Property Values Directly at Construction
To set property values directly when you construct an object, include the
following entries in the input argument list for the constructor method
ghsmulti:

• A string for the property name to set, followed by a comma. Enclose the
string in single quotation marks as you do any string in MATLAB.

• The property value to associate with the named property. Sometimes this
value is also a string.

You can include as many property names in the argument list for the object
construction command as there are properties to set directly.

Example — Setting Link Property Values at Construction. Create
a connection to an instance of the IDE in Green Hills MULTI software and
set the following object properties:

• Link to the specified MULTI instance and host.

• Specify the communication port on the host.

• Set the global timeout to 5 s. The default is 10 s.

Set these properties when you construct the object by entering

50-28

Automation Interface

id = ghsmulti('hostname','localhost','portnum',4444,'timeout',5);

The localhost, portnum, and timeout properties are described in Link
Properties, as are the other properties for links.

Setting Property Values with set
After you construct an object, the set function lets you modify its property
values.

Using the set function, you can Set link property values.

Example — Setting Link Property Values Using set. To set the timeout
specification for the link id from the previous section, enter the following
syntax:

set(id,'timeout',8);

get(id,'timeout');
ans=

8

The display reflects the changes in the property values.

Retrieving Properties with get
You can use the get command to retrieve the value of an object property.

Example — Retrieving Link Property Values Using get. To retrieve
the value of the hostnameproperty for id, and assign it to a variable, enter
the following syntax:

host=get(id,'hostname')

host =

localhost

50-29

50 Working with Green Hills® MULTI® IDE

Direct Property Referencing to Set and Get Values
You can directly set or get property values using MATLAB structure-like
referencing. Do this by using a period to access an object property by name,
as shown in the following example.

Example — Direct Property Referencing in Links. To reference an object
property value directly, perform the following steps:

1 Create a link with default values.

2 Change its time out and number of open channels.

id = ghsmulti;
id.time = 6;

Overloaded Functions for ghsmulti Objects
Several methods and functions in Embedded Coder software have the same
name as functions in other MathWorks products. These functions behave
similarly to their original counterparts, but you apply them to an object. This
concept of having functions with the same name operate on different types of
objects (or on data) is called overloading of functions.

For example, the set command is overloaded for objects. After you specify
your object by assigning values to its properties, you can apply the methods
in this toolbox (such as address for reading an address in memory) directly
to the variable name you assign to your object. You do not have to specify
your object parameters again.

For a list of the methods that act on ghsmulti objects, refer to the Green Hills
MULTI in the function reference pages.

ghsmulti Object Properties

• “Quick Reference to ghsmulti Properties” on page 50-31

• “Details About ghsmulti Object Properties” on page 50-31

50-30

Automation Interface

Quick Reference to ghsmulti Properties
The following table lists the properties for the links in Embedded Coder
software. The second column indicates to which object the property belongs.
Knowing which property belongs to each object in an interface tells you how
to access the property.

Property
Name User Settable? Description

hostname At construction
only

Reports the name of the host the IDE
Link service in Green Hills MULTI that
the object references.

portnum At construction
only

Stores the number of the port to
communicate with MULTI.

timeout Yes/default Contains the global timeout setting for
the link.

Some properties are read only. Thus, you cannot set the property value.
Other properties you can change at any time. If the entry in the User Settable
column is “At construction only,” you can set the property value only when
you create the object. Thereafter, it is read only.

Details About ghsmulti Object Properties
To use the objects for Green Hills MULTI interface, set values for the
following:

• hostname— Specify the session with which the object interacts.

• portnum— Specify the processor in the session. If the board has multiple
processors, procnum identifies the processor to use.

• timeout— Specify the global timeout value. (Optional. Default is 10 s.)

Details of the properties associated with ghsmulti objects appear in the
following sections, listed in alphabetical order by property name.

hostname. Property hostname identifies the host that is running the IDE
Link service. Use hostname to specify the machine to host your service.

50-31

50 Working with Green Hills® MULTI® IDE

To work with a service, you need the hostname and portnum values. Hostname
supports the string localhost only.

portnum. Property portnum specifies the port for communicating with the
IDE Link service. MATLAB uses sockets to communicate with Green Hills
MULTI. The portnum property value specifies the port, with a default value
of 4444. When you create a new ghsmulti object, Embedded Coder software
assumes the port value is 4444 unless you enter a different value when you
configure the software or use the portnum input argument with ghsmulti.

timeout. Property timeout specifies how long Green Hills MULTI waits for
any process to finish. You set the global timeout when you create an object for
a session in Green Hills MULTI. The default global timeout value 10 s. The
following example shows the timeout value for object id2.

display(id2)

MULTI Object:
Host Name : localhost
Port Num : 4444
Default timeout : 10.00 secs
MULTI Dir : C:\ghs\multi500\ppc\

50-32

Project Generator

Project Generator

In this section...

“Introducing Project Generator” on page 50-33

“Project Generator Tutorial” on page 50-34

“Model Reference” on page 50-39

Introducing Project Generator
Project generator provides the following features for developing projects and
generating code:

• Automated project building for Green Hills MULTI that lets you create
MULTI projects from code generated by Simulink Coder and Embedded
Coder. Project generator populates projects in the MULTI development
environment.

• Blocks in the library idelinklib_ghsmulti for controlling the scheduling
and timing in generated code.

• Highly configurable code generation using model configuration parameters
and Target Preferences block options.

• Ability to use one of two system target files to generate code specific to
your processor.

• Highly configurable project build process.

• Automatic downloading and running of your generated projects on your
processor.

To configure your Simulink models to use the Project Generator component,
do one or both of the following tasks:

• Add a Target Preferences block to your model.

• To use the asynchronous scheduler capability in Embedded Coder software,
add a hardware interrupt block or idle task block.

The following sections describe the blockset and the blocks in it, the scheduler,
and the Project Generator component.

50-33

50 Working with Green Hills® MULTI® IDE

Project Generator Tutorial

• “Process for Building and Generating a Project” on page 50-34

• “Create the Model” on page 50-35

• “Adding the Target Preferences Block to Your Model” on page 50-36

• “Specifying Simulink Configuration Parameters for Your Model” on page
50-36

• “Creating Your Project” on page 50-39

Process for Building and Generating a Project
In this tutorial, you build a model and generate a project from the model into
Green Hills MULTI.

Note The model shows project generation only. You cannot build and run
the model on your processor without additional blocks.

This is an overview of the process for generating a project from a model:

1 Use Simulink blocks, DSP System Toolbox blocks, and blocks from other
blocksets to create the model application.

2 Add the Target Preferences block from the idelinklib_common library to
your model, as described in “Target Preferences” on page 43-4..

3 Set the configuration parameters for your model, including the following
parameters:

• Solver parameters such as simulation start and solver options. Choose
the discrete solver when you generate executables. If you are using PIL,
select any setting from the Type and Solver lists.

• Simulink Coder options such as processor configuration and processor
compiler selection

4 Generate your project.

5 Review your project in MULTI.

50-34

Project Generator

Create the Model
To build the model for this tutorial, follow these steps:

1 Use Simulink blocks, DSP System Toolbox blocks, and blocks from other
blocksets to create the model application.

2 Add the Target Preferences block from the idelinklib_common library to
your model, as described in “Target Preferences” on page 43-4..

3 Set the configuration parameters for your model, including the following
parameters:

• Solver parameters such as simulation start and solver options. Choose
the discrete solver when you generate executables. If you are using PIL,
select any setting from the Type and Solver lists.

• Simulink Coder options such as processor configuration and processor
compiler selection

4 Generate your project.

5 Review your project in MULTI.

1 Start Simulink.

2 Create a new model by selecting File > New > Model from the Simulink
menu bar.

3 Use Simulink blocks and DSP System Toolbox blocks to create the following
model.

50-35

50 Working with Green Hills® MULTI® IDE

Look for the Integer Delay block in the Discrete library of Simulink and the
Gain block in the Commonly Used Blocks library. This model implements
an audio signal reverberation scheme. Part of the input audio signal passes
directly to the output. A delayed version passes through a feedback loop
before reaching the output. The result is an echo, or reverberation, added
to the audio output.

4 Save your model with a suitable name before continuing.

Adding the Target Preferences Block to Your Model
To configure your model to work with the processors your IDE supports, add a
Target Preferences block to your model, as described in “Target Preferences”
on page 43-4.

You have completed the model. Next, configure the model configuration
parameters to generate a project in Green Hills MULTI from your model.

Specifying Simulink Configuration Parameters for Your Model
The following sections describe how to configure the build and run parameters
for your model. Generating a project, or building and running a model on
the processor, starts with configuring model options in the Configuration
Parameters dialog box in Simulink.

50-36

Project Generator

Setting Solver Options. After you have designed and implemented your
digital signal processing model in Simulink, complete the following steps to
set the configuration parameters for the model:

1 Open the Configuration Parameters dialog box and set the appropriate
options on the Solver category for your model and for Embedded Coder
software.

• Set Start time to 0.0 and Stop time to inf (model runs without
stopping). If you set a stop time, your generated code does not honor the
setting. Set this parameter to inf for completeness.

• Under Solver options, select the fixed-step and discrete settings
from the lists. When you use PIL, select any setting on the Type and
Solver lists.

• Set the Fixed step size to Auto and the Tasking Mode to Single
Tasking.

Note Generated code does not honor Simulink stop time from the simulation.
Stop time is interpreted as inf. To implement a stop in generated code, you
must put a Stop Simulation block in your model.

Ignore the Data Import/Export, Diagnostics, and Optimization categories
in the Configuration Parameters dialog box. The default settings are correct
for your new model.

Setting Simulink Coder Code Generation Options. To configure
Simulink Coder software to use the correct processor files, compile your model,
and run your model executable file, set the options in the Code Generation
category of the model Configuration Parameters. Follow these steps to set the
Simulink Coder software options to generate code tailored for your processor:

1 Select Code Generation on the Select tree.

2 In Target selection, click Browse to select the appropriate system target
file for code generation—multilink_grt.tlc or multilink_ert.tlc (if
you use Embedded Coder software). The correct target file might already
be selected.

50-37

50 Working with Green Hills® MULTI® IDE

Clicking Browse opens the System Target File Browser to allow you to
change the system target file.

3 On the System Target File Browser, select the proper system target
file multilink_grt.tlc or multilink_ert.tlc, and click OK to close
the browser.

Setting Embedded Coder Code Generation Options. After you set the
Simulink Coder options for code generation, set the options that apply to your
Embedded Coder software run-time and build processes.

1 From the Select tree, choose IDE Link to specify code generation options
that apply to the processor.

2 Set the following Runtime options:

• Build action: Create_project.

• Interrupt overrun notification method: Print_message.

3 (optional) Under Link Automation, verify that Export MULTI link
handle to base workspace is selected and provide a name for the handle
in MULTI link handle name.

4 If you are using an actual board, identify a Board Support Package (BSP)
in the Compiler options string (under Project options). For example,
enter “-bsp=at91rm9200”. If you do not provide this type of information,
the software can generate errors that do not identify the absence of linker
directives as the cause.

5 Under Code Generation, clear all of the options.

6 Change the category on the Select tree to Hardware Implementation.

7 Verify that the Device type is the correct value for your processor—Analog
Devices, NEC, or Freescale.

You have configured the Simulink Coder options that let you generate a
project for your processor. A few Simulink Coder categories on the Select tree,
such as Comments, Symbols, and Optimization do not require configuration
for use with Embedded Coder software. In some cases, set options in the other
categories to configure other code generation features.

50-38

Project Generator

For your new model, the default values for the options in these categories are
correct. For other models you develop, setting the options in these categories
provides more information during the build process. Some of the options
configure the model to run TLC debugging when you generate code. Refer to
your Simulink and Simulink Coder documentation for more information about
setting the configuration parameters.

Creating Your Project
After you set the configuration parameters and configure Simulink Coder to
create the files you need, you direct Simulink Coder to create your project:

1 Click OK to close the Configuration Parameters dialog box.

2 To verify that you configured your Embedded Coder software correctly,
issue the following command at the prompt to open the IDE Link
Configuration dialog box.

ghsmulticonfig

3 Verify the settings in the Embedded Coder dialog box.

4 After you verify the settings, click OK to close the dialog box.

5 Enter cd at the prompt to verify that your working folder is the right one to
store your project results.

6 Click Incremental Build () on the model toolbar to generate your
project into Green Hills MULTI IDE.

When you press with Create_project selected for Build action, the
build process starts the Green Hills MULTI application and populates a
new project.

Model Reference

• “About Model Reference” on page 50-40

• “How Model Reference Works” on page 50-40

• “Using Model Reference” on page 50-41

50-39

50 Working with Green Hills® MULTI® IDE

• “Configuring Targets to Use Model Reference” on page 50-42

About Model Reference
Model reference lets your model include other models as modular components.
This technique is useful because it provides the following capabilities:

• Simplifies working with large models by letting you build large models
from smaller ones, or even large ones.

• Lets you generate code once for all the modules in the entire model and
then only regenerate code for modules that change.

• Lets you develop the modules independently.

• Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

Your Simulink Coder documentation provides much more information about
model reference.

How Model Reference Works
Model reference behaves differently in simulation and in code generation.
This discussion uses the following terms:

• The Top model is the root model block or model. It refers to other blocks or
models. In the model hierarchy, this model is the topmost model.

• Referenced models are blocks or models that other models reference, such
as models the top model refers to. All models or blocks below the top model
in the hierarchy are reference models.

The following sections describe briefly how model reference works. More
details are available in your Simulink Coder documentation in the online
Help system.

50-40

Project Generator

Model Reference in Simulation. When you simulate the top model,
Simulink Coder detects that your model contains referenced models. Simulink
generates code for the referenced models and uses the generated code to build
shared library files for updating the model diagram and simulation. It also
creates an executable (.mex file) for each reference model that is used to
simulate the top model.

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink rebuilds the model reference files. Whether reference
files or models are rebuilt depends on whether and how you change the models
and on the Rebuild options settings. You can access these settings through
theModel Reference pane of the Configuration Parameters dialog box.

Model Reference in Code Generation. Simulink Coder requires
executables to generate code from models. If you have not simulated your
model at least once, Simulink Coder creates a .mex file for simulation.

Next, for each referenced model, the code generation process calls make_rtw
and builds each referenced model. This build process creates a library file for
each of the referenced models in your model.

After building all the referenced models, Simulink Coder calls make_rtw on
the top model. The call to make_rtw links to the library files Simulink Coder
created for the associated referenced models.

Using Model Reference
With few limitations or restrictions, Embedded Coder software provides full
support for generating code from models that use model reference.

Build Action Setting. The most important requirement for using model
reference with the Green Hills MULTI software supported processors is you
must set the Build action (select Configuration Parameters > IDE Link)
for all models referred to in the simulation to Archive_library.

To set the build action, perform the following steps:

1 Open your model.

2 Select Simulation > Configuration Parameters from the model menus.

50-41

50 Working with Green Hills® MULTI® IDE

The Configuration Parameters dialog box opens.

3 From the Select tree, choose IDE Link.

4 In the right pane, under Runtime, select set Archive_library from the
Build action list.

If your top model uses a reference model that does not have the build action
set to Archive_library, the build process automatically changes the build
action to Archive_library and issues a warning about the change.

Selecting Archive_library disables the Interrupt overrun notification
method, Export MULTI link handle to the base workspace, and
System stack size options for the referenced models.

Target Preferences Blocks in Reference Models. Each referenced model
and the top model must include a Target Preferences block for the correct
processor. Configure all the Target Preferences blocks for the same processor.

The referenced models need Target Preferences blocks to provide information
about which compiler and which archiver to use. Without these blocks, the
compile and archive processes do not work.

By design, model reference does not allow information to pass from the top
model to the referenced models. Referenced models must contain all the
necessary information, which the Target Preferences block in the model
provides.

Other Block Limitations. Model reference with Embedded Coder software
code generation options does not allow you to use noninlined S-functions in
reference models. Verify that the blocks in your model do not use noninlined
S-functions.

Configuring Targets to Use Model Reference
When you create models to use in Model Referencing, keep in mind the
following considerations:

• Your model must use a system target file derived from the ERT or GRT
target files.

50-42

Project Generator

• When you generate code from a model that references other models,
configure the top-level model and the referenced models for the same
system target file.

• Simulink Coder builds and Embedded Coder software projects do not
support external mode in model reference. If you select the external mode
option, it is ignored during code generation.

• Your TMF must support use of the shared utilities folder, as described in
Supporting Shared Utility Directories in the Build Process in the Simulink
Coder documentation.

To use an existing processor, or a new processor, with Model Reference, set
the ModelReferenceCompliant flag for the processor. For information about
setting this option, refer to ModelReferenceCompliant in the online Help
system.

If you start with a model that was created before MATLAB release R14SP3,
use the following command to make your model compatible with model
reference :

% Set the Model Reference Compliant flag to on.
set_param(bdroot,'ModelReferenceCompliant','on')

Code that you generate from Simulink models by using Embedded Coder
software includes the model reference capability. You do not need to set the
flag.

50-43

50 Working with Green Hills® MULTI® IDE

Breakpoints and PIL
Green Hills MULTI debugger allows you to add breakpoints to your projects.
When you run a PIL simulation that includes added breakpoints, the
following dialog box appears:

The dialog box gives you two options:

• Stop the running simulation by closing the dialog box.

• Go to MULTI, remove the breakpoint you added, and press F5 to continue
running your simulation.

50-44

51

Working with Infineon C166
Processors

• “Getting Started” on page 51-2

• “Tutorial: Simple Example Applications for C166 Microcontrollers” on
page 51-22

• “Integrating Your Own Device Drivers” on page 51-38

• “Custom Storage Class for C166 Microcontroller Bit-Addressable Memory”
on page 51-49

• “Execution Profiling” on page 51-56

• “Configuration Parameters” on page 51-71

Note Support for the Infineon C166 processor will be removed in a future
release of your MathWorks software.

Note The information in this chapter describes Embedded Coder features
and user interfaces that are unique to the Infineon C166 processor. Do not
generalize this information to Embedded Coder support for other IDEs.

51 Working with Infineon C166 Processors

Getting Started

In this section...

“Overview” on page 51-2

“Using This Guide” on page 51-4

“Supported Hardware for Infineon C166” on page 51-5

“Supported Cross-Development Tools for Infineon C166” on page 51-7

“Switching Between Hardware Variants” on page 51-7

“Setting Up and Verifying Your Installation” on page 51-8

“Setting Up Your Target Hardware” on page 51-12

“Setting C166 Target Preferences” on page 51-14

“Code Generation Configuration for Nondefault Processors” on page 51-15

“Supported Blocks and Data Types” on page 51-18

“Accessing Utilities for Infineon® C166” on page 51-20

“Overview of C166 Options in the Configuration Parameters Dialog Box” on
page 51-20

Overview

• “Introduction” on page 51-2

• “Feature Summary” on page 51-3

Introduction

Note Support for the Infineon C166 processor family will be removed in a
future release of your MathWorks software.

The coder product is provides a set of tools for developing embedded
applications for the C166 family of processors from Infineon
(http://www.infineon.com/). This includes derivatives such as Infineon
C167 and XC16x, and ST Microelectronics ST10 (http://www.us.st.com).

51-2

http://www.infineon.com/
http://www.us.st.com

Getting Started

Used in conjunction with the Simulink, Stateflow, the coder product lets you

• Design and model your system and algorithms.

• Compile, download, run and debug generated code on the target hardware,
seamlessly integrating with industry-standard compilers and development
tools for the C166 microcontroller.

• Deploy production code on the target hardware.

Feature Summary
The coder product provides the following capabilities:

• A flexible build process, which allows you to automatically create and build
projects in the TASKING EDE using code generated by the coder product.

• Customizable project templates for targeting embedded hardware or
instruction set simulator.

• Processor-in-the-Loop (PIL) simulation techniques to verify generated
code running in an instruction set simulator or real embedded hardware
environment. You can set breakpoints, step through the code, and watch
variables during simulation.

• MATLAB commands to rapidly and easily interact with projects in the
TASKING EDE or debug generated code in the CrossView Pro debugger.

• Execution profiling and code coverage reports are returned from the
TASKING EDE to MATLAB for your review.

The coder product also provides these features:

• Automatic generation of the main program including singletasking or
preemptive multitasking scheduler

• Scheduler is configurable to allow temporary overruns

• Automated build procedure including starting debugger or download utility

• Support for integer, floating-point, or fixed-point code

• Driver blocks for serial transmit and receive

• Driver blocks for CAN message transmit and receive

51-3

51 Working with Infineon C166 Processors

• Examples to show you how to integrate your own driver code

• Enhanced HTML report generation provides analysis of RAM/ROM usage;
this is in addition to the standard HTML report generation that shows
optimization settings and hyperlinks to generated code files

• Support for CAN Calibration Protocol

• External mode for parameter tuning and signal logging

Using This Guide
Follow this path to get acquainted with the coder product and gain hands-on
experience with the features most relevant to your interests:

• Read in its entirety, paying particular attention to “Setting Up and
Verifying Your Installation” on page 51-8.

• If you are interested in using the device driver blocks supplied with the
coder product, and in deploying stand-alone, real-time applications on the
C166 microcontroller, read “Tutorial: Simple Example Applications for
C166 Microcontrollers” on page 51-22 Work through the “Tutorial: Creating
a New Application” on page 51-22.

• Then, if you are interested in using the coder product for integrating
automatically generated code with your own manually written device driver
code, see “Integrating Manually Coded Device Drivers with a Simulink
Model” on page 51-38. Work though the example provided in “Tutorial:
Using the Example Driver Functions” on page 51-43.

• See “Custom Storage Class for C166 Microcontroller Bit-Addressable
Memory” on page 51-49 to find out how to use the coder product to take
advantage of C166 bit-addressable memory. This can significantly reduce
code size and increase execution speed. There are examples provided in
“Using the Bitfield Example Model” on page 51-50.

• It is particularly important to read C166 Resource Configuration, as the
C166 Resource Configuration block is required to use the device driver
blocks.

We recommend you work through the tutorials in this User’s Guide with
step-by-step instructions for using and understanding these demos.

51-4

Getting Started

Supported Hardware for Infineon C166
The coder product may be used to generate programs that can run on any
development board or Electronic Control Unit (ECU) that is based on the
C166 microcontroller.

The coder product is supplied with default configurations that have been
tested on hardware listed in the following table:

Supplier Board Processor Other
Information

Phytec phyCORE®-
167 Rapid
Development
Kit

SAF-C167CS-LM
or
SAK-C167CS-LM

Product code
KPCM-009-C1U:
C167CS. For
other details, see
phyCORE-167

Phytec phyCORE®-
ST10 Rapid
Development
Kit

ST10F269Z2Q3 Supported, but no
longer available
commercially

Phytec kitCON-167
C167CR

SAB-C167CR-LM A newer board
kitCON-16x
(product code
KC-167-KSM04)
is available. See
Phytec products.
The coder product
has not been
tested on the
newer board.

Infineon XC167CI
Starter Kit

SAK-XC167CI Supported, but no
longer available
commercially

51-5

http://www.phytec.com/products/rdk/C166-xc166-st10-xa/phyCORE-167.html
http://www.phytec.com/products

51 Working with Infineon C166 Processors

Supplier Board Processor Other
Information

Infineon XC164CM U
CAN Start
Kit

SAK-XC164 Supported, but no
longer available
commercially

STMicroelectronics MB449
ST10F25x
EVA Board

ST10F252-ABG Supported, but no
longer available
commercially

You can switch easily between these configurations. For other hardware
variants, you will need to change the default configuration settings. For
details on this and other requirements, see “Switching Between Hardware
Variants” on page 51-7.

This guide assumes that you are working with the Phytec phyCORE-167CS
development board, and documents specific settings and procedures for
use with the Phytec phyCORE-167CS board, in conjunction with specific
cross-development environments.

If you use a different development board, you may need to adapt these
settings and procedures for your development board.

CAN Hardware
If you want to use CAN to transmit or receive CAN messages between your
host PC and your target, you require Vector-Informatik CAN hardware
supported by the Vector CAN Driver Library. You must install the correct
driver libraries to support profiling, downloading, and external mode.

Note For CANcaseXL, you must install both the Vector XL-driver library
and Vector CAN Driver Library vcand32.dll.

For older CAN hardware, you must install the Vector CAN Driver Library
vcand32.dll.

Make sure that the library, vcand32.dll, is placed in the Windows system32
folder.

51-6

http://www.vector-informatik.com/vi_can_hardware_en,,223.html
http://www.vector-worldwide.com/downloads/drivers/canlib43.zip

Getting Started

Supported Cross-Development Tools for Infineon
C166
In addition to the required MathWorks software, a supported
cross-development environment is required.

• MiniMon freeware download and monitor utility

Before using the coder product with the above cross-development tools, please
be sure to read and follow the instructions in “Setting Up and Verifying Your
Installation” on page 51-8.

Switching Between Hardware Variants
There are many different members of the C166 microcontroller family, e.g.,
C167CS, ST10, XC167CI. For each of these processors, it is appropriate to
use different compiler switches and link libraries. Even if you are working
with a single processor variant, you may need to build for different memory
configurations, for example, depending on whether the application will run
from RAM or flash memory. The compilation settings are captured in the
project file.

The coder product is supplied with preconfigured projects for targeting the
hardware and simulator for a set of processor variants — see “Supported
Hardware for Infineon C166” on page 51-5. If your hardware variant is not
in this set, then you need to create a new template project (see “Tutorial:
Creating New Template Projects” on page 46-76) and set the C166 code
generation options (see “Code Generation Configuration for Nondefault
Processors” on page 51-15).

When switching between target configurations, you should review your option
set and ensure that options are set appropriately for the new configuration.

Additionally, for each model that you build, you must check, and, if necessary,
change the following settings in the C166 Resource Configuration block:

• System_frequency

• External_oscillator_frequency

51-7

51 Working with Infineon C166 Processors

To determine the correct value of these parameters, consult your hardware
documentation.

It is possible to make all the required changes programmatically: a
convenience function c166switchconfig is provided for this purpose. This
function can be run by double-clicking the block Switch Target Processor
Variant inside any of the demo models.

Setting Up and Verifying Your Installation

• “Setting Up Software” on page 51-8

• “Verifying MiniMon Settings” on page 51-9

Setting Up Software
Install the Tasking C Cross-Compiler and CrossView Pro Debugger by
following the instructions provided by Altium Limited.

If the CrossView connection to your target hardware requires a serial
connection, install the MiniMon download utility. By using MiniMon instead
of CrossView to launch your application, the serial connection will be available
for other purposes, if required. If your CrossView connection is via a debug
interface (for example, on XC16x hardware) then it is not necessary to install
MiniMon.

You can obtain the MiniMon download utility for monitoring the serial
interface from the Infineon Web site at this URL:

http://www.infineon.com/

To download the MiniMon utility:

1 Go to the Infineon Web site, and click the sitemap.

2 Select Product Categories > Microcontrollers > Development Tools,
Software and Training -> C166/XC166 Development Tools and Software >
Software Downloads.

Find MiniMon in the table, and download and install Minimon. Version
2.2.33 has been verified with this product.

51-8

http://www.infineon.com

Getting Started

Minimon may need to be configured for your target processor.

After you install, you must specify the location of MiniMon in the
BootstrapLoaderExe target preference, as detailed in “Setting C166 Target
Preferences” on page 51-14. Check that MiniMon is correctly configured for
your target, as detailed in the next section, “Verifying MiniMon Settings”
on page 51-9.

The next sections describe how to configure your development environment
(compiler, debugger, etc.) for use with the coder product, and how to verify
correct operation. The initial configuration steps are described in the
following sections:

• “Setting Up Your Target Hardware” on page 51-12

• “Setting C166 Target Preferences” on page 51-14

Verifying MiniMon Settings
You must check that MiniMon has the correct target settings. This section
describes MiniMon configuration settings that work for the C167CR processor
and for the C167CS processor. Settings for the C167CS board also work
successfully with the ST10F269. You may be able to use MiniMon to download
onto other processors, however, you must establish a corresponding MiniMon
configuration.

To check settings, start MiniMon, then click Configure Hardware () in
the toolbar (or select Target > Configuration) and make sure the settings
are as in the following illustrations.

In general, you should choose configuration settings that are consistent with
the values specified in the Tasking EDE project.

Select Settings > Interface and ensure that the settings for the serial
interface match those in the Resource Configuration block of your model.

To set up a configuration for a C167CR:

1 Select C167CR from the Controller type drop-down list.

51-9

51 Working with Infineon C166 Processors

2 Click Yes three times when prompted by the dialog boxes asking the
following questions:

a Do you want to load default memory units for this Type?

b Do you want to activate the default kernel for this Type?

c Do you want to load default initialization registers of this Type?

3 Perform the following steps on the Initialize register settings:

a Set SYSCON to 0085.

b Set BUSCON1 to 049F.

c Set ADDRSEL1 to 0006.

d Clear all the other check boxes.

The register settings should look as shown.

This configuration has been verified with a Phytec kc167 (C167CR).

51-10

Getting Started

To set up a configuration for a C167CS or ST10F269:

1 Select C167CS-4RM from the Controller type drop-down list.

2 Click Yes three times when prompted by the dialog boxes asking the
following questions:

a Do you want to load default memory units for this Type?

b Do you want to activate the default kernel for this Type?

c Do you want to load default initialization registers of this Type?

3 Perform the following steps on the Initialize register settings:

a Change SYSCON to XPERCON, and set the value to 0403.

b Change SYSCON1 to SYSCON, and set the value to 0085.

The order is important: XPERCON must be above SYSCON.

51-11

51 Working with Infineon C166 Processors

c Set BUSCON1 to 049F.

d Set ADDRSEL1 to 0006.

e Clear all the other check boxes.

The register settings should look as shown.

This second configuration has been verified with phyCORE-C167CS and
on phyCORE-ST10F269 hardware.

Setting Up Your Target Hardware

• “Jumper Settings for the phyCore-167 Development Board” on page 51-13

• “Setting Up XC164CM Hardware” on page 51-13

• “Jumper Settings for the STMicrolectronics MB449 ST10F25x EVA Board”
on page 51-14

51-12

Getting Started

Jumper Settings for the phyCore-167 Development Board
This section describes the required connections and jumper settings for the
phyCORE-167CS module with HD200 development board.

After setting up your board, you must configure target settings associated
with the coder product, as described in the next section.

1 Configure jumpers as detailed in the instructions found in the phyCORE
QuickStart documentation. Note that these settings can be markedly
different from the configuration fresh out of the box.

2 If you are running applications from RAM only, it is useful if the board
starts up in bootloader rather than execution mode. There is one jumper
setting that needs to be changed to achieve this: close pins 1 and 2 on JP10.
This is optional; if you do not close this jumper, then when you download
to the target, you need to keep the Boot switch depressed while pressing
the Reset button.

Connect the supplied power cable to the board, and use the serial cable to
connect the serial port P1 on the board to the serial port of your PC.

Setting Up XC164CM Hardware
See the product help for information on software installation.

If you need to profile on XC164CM hardware via the serial port, this is
possible when using CrossView. Check which COM port is assigned to USB
COM Port. To access the Device Manager where you can see this information,
select Windows Start > Settings > Control Panel, double-click System,
select the Hardware tab, and click Device Manager.

This information can be passed to the profile_c166 command as follows:

% assuming that it was assigned to COM4
profile_c166('serial','SerialPort','COM4')

The MiniMon hyperlink may not be provided at the end of builds for hardware
(e.g. XC164CM U CAN and xc167ci_hw_usb) that has a JTAG interface
available. This is because this hardware uses the JTAG debug interface
instead of a serial connection to ASC0. For hardware with a JTAG interface

51-13

51 Working with Infineon C166 Processors

there is no conflict between using the CrossView debugger simultaneously
with the ASC0 serial interface: in these cases it is recommended always to
use CrossView for downloading and running applications.

Jumper Settings for the STMicrolectronics MB449 ST10F25x
EVA Board
Settings not listed here should be as default, as specified by the board manual.

Type Jumper Settings

Switch 4-5-6: CLKCFGSwitch State:
on-on-off.

Note: With fCPU = 5* fXTAL and
oscillator frequency of 8MHz, the
system frequency, fCPU, is 40MHz

Switch 2-3: SALSEL Switch State:
off-off

Boot / Configuration Mode > SW4

Switch 1: WRCSwitch State: off

Switch 7-8: BUSTYPSwitch State:
off-off

Switch 5-6: BSLSwitch State: on-off

Boot / Configuration Mode > SW3

Switch 2: ADPSwitch State: off

External Memory J1, 1-2: ClosedNote: Enables
external memory

Reset and Vstby EA jumpers J4, 2-3: Closed Note: Forces EA pin
to Vcc level

J11, 1-2: ClosedNote: Connects
onboard CAN transceiver

CAN

J11, 3-4: Closed Note: Connects
onboard CAN transceiver

Setting C166 Target Preferences
This section describes configuration settings associated with the coder
product. These settings, which persist across MATLAB sessions and different

51-14

Getting Started

models, are referred to as target preferences. Target preferences let you
specify the location of your cross-compiler and other parameters affecting the
generation, building, and downloading of code.

1 First you must set up your target preferences to specify the location of
your cross-compiler and other settings. See “Setting Target Preferences
for Altium TASKING” on page 46-8.

2 Enter c166utils in the Command Window to open the Utilities for Use
with C166 dialog box.

3 Select Target Preferences, and click OK. This opens the Target
Preferences dialog box.

4 Edit the settings for your cross-development environment:

• BootstrapLoaderExe specifies the path to your download utility
(MiniMon).

You must check this path and also verify that the Target Preferences are
correct for your machine. You may need to localize these paths to suit your
PC. You can edit a path by clicking on it. The drive designated in the path
must be either an actual hard drive on your PC, or a mapped drive. Do not
use a Universal Naming Convention (UNC).

Code Generation Configuration for Nondefault
Processors
If you wish to target nondefault processor types, then you need to set some
code generation options in the TLC Options of your model’s Configuration
Parameters.

If you are using a template that specifies a nondefault processor type (see
“Tutorial: Creating New Template Projects” on page 46-76 in the product
help), when you try to build the model, you see a build error message similar
to the one in the following figure.

51-15

51 Working with Infineon C166 Processors

When you open the Configuration Parameters dialog box, the parameters
you need to set now appear in the TLC Options field. You must replace the
string <ENTER VALUE> for each of the parameters cpuType, twinCAN, and
targetHeaderFile. The following example shows these parameters before
the strings <ENTER VALUE> are replaced.

An example configured for an XC164CM is shown in the following figure.

51-16

Getting Started

Summary of Parameters

The TLC Options edit box includes the following parameters:

cpuType

• 0x167, for C16x and ST10 type processors

• 0x1662, for XC16x type processors

twinCAN

• 0 – disabled, for use with processors without TwinCAN support

• 1 – enabled, for use with processors with TwinCAN support

targetHeaderFile— The file name of the header file for your processor type.
These are found in TASKING ROOT\include folder.

Typical Parameter Configuration

The following table shows a configuration matrix for the parameters cpuType,
twinCAN and the typical configurations used for the processor variants
supported by the product.

51-17

51 Working with Infineon C166 Processors

Processor Type CPU type TwinCAN

16x, ST 0x167 0 - disabled

XC 0x1662 1 – enabled

Note Driver blocks may not work on unsupported processors.

Supported Blocks and Data Types
The coder product supports the same blocks and data types as the coder
product.

Note however

• You should not use IEEE values Inf or NaN in your model: these are not
supported and result in an error.

• Floating point support is implemented in the software; if speed and ROM
usage are of concern, you should select the option for integer code and avoid
the use of floating-point values in your model. This is detailed in step 9 of
“Tutorial: Using the Example Driver Functions” on page 51-43.

The coder product provides one block library, containing seven sublibraries
that support different functions, as follows:

• C166 Drivers Library

- Asynchronous/Synchronous Serial Interface Sublibrary

- CAN Interface Sublibrary

- Execution Profiling Sublibrary

- TwinCAN Interface Sublibrary

- Interrupts Sublibrary

- Utilities Sublibrary

- Digital Input/Output Sublibrary

51-18

Getting Started

You can click Help on the Block Parameters dialog box for the block or access
the block reference page through Help.

The top-level C166 Drivers library contains the C166 Resource Configuration
block. This block supports driver configuration for C166 microcontrollers and
is required if there are device driver blocks in the model. See C166 Resource
Configuration.

The C166 Resource Configuration block provides information required for
generating timer interrupt code. If you do not include a C166 Resource
Configuration block in your model, the code simply executes as fast as
possible. That is, it is not synchronized to real time. This behavior may be
desirable if you are running code on the debugger or hardware simulator.

Caution When using device driver blocks from the Embedded Targets
libraries with the C166 Resource Configuration block, do not disable or break
library links on the driver blocks. If library links are disabled or broken, the
C166 Resource Configuration block operates incorrectly. See the “Top-Level
Blocks”reference page for further information.

Model Reference and Driver Blocks

Referenced sub-models that contain driver blocks (including the C166
Resource Configuration block) cause build failures. All driver blocks from
the coder product must be placed in the top level model. It is not possible to
include driver blocks in any of the referenced sub-models.

Configuration Class Blocks

Each sublibrary of Embedded Targets library contains a configuration class
block that has an icon similar to the one shown in this picture.

51-19

51 Working with Infineon C166 Processors

Caution Configuration class blocks exist only to provide information to
other blocks. Do not copy these objects into a model. If you do you see an error
dialog box to warn you. This causes build failures.

Accessing Utilities for Infineon C166
You can open the Utilities for Use with C166 dialog box by entering c166utils
in the Command Window or double-clicking Launch C166 Utilities in the
Simulink block library.

You will see the following options:

• Target Preferences. Select this to open the Target Preferences dialog box.

• Download via Minimon. Select this to use the Minimon utility to
download your application to your target hardware.

Overview of C166 Options in the Configuration
Parameters Dialog Box
When you select a C166 system target file in the Configuration Parameters
dialog box, additional options appear in the tree: C166 Options, and IDE
Link.

Select C166 Options under Code Generation in the Configuration
Parameters dialog box.

51-20

Getting Started

Include input/output driver function hooks
Use this option to integrate your own device driver code. This is
described in “Calling the Device Driver Functions from c166_main.c”
on page 51-41.

The following are all execution profiling controls. See “Overview of Execution
Profiling” on page 51-56.

Maximum number of concurrent base-rate overruns
Option for task execution profiling. See “Task Scheduler Overrun
Options” on page 51-61.

Maximum number of concurrent sub-rate overruns
Option for task execution profiling. See “Task Scheduler Overrun
Options” on page 51-61.

Execution profiling
Option for task execution profiling. See “Options for Execution
Profiling” on page 51-60.

Number of data points
Option for task execution profiling. See “Options for Execution
Profiling” on page 51-60.

When you select a C166 system target file, the Configuration Parameters
component is automatically added to the model.

The Target Preferences Configuration description is automatically set
to C166 to use the predefined C166 project templates. The IDE Link options
contain settings for configuring the build process.

51-21

51 Working with Infineon C166 Processors

Tutorial: Simple Example Applications for C166
Microcontrollers

This section includes the following topics:

In this section...

“Introduction” on page 51-22

“Tutorial: Creating a New Application” on page 51-22

“Debugging and Using The Code Profile Report” on page 51-30

“Parameter Tuning and Signal Logging” on page 51-34

Introduction
This section describes how to use two example models to generate, download
and run stand-alone real-time applications for the C166 microcontroller. The
components required to generate stand-alone code are

• The embedded target

• The example models provided: c166_serial_transmit and
c166_serial_io

• The Tasking C Cross-Compiler and Tasking CrossView Pro Debugger for
compiling and downloading generated code to the target hardware

As an alternative to CrossView, you can use the MiniMon utility for
downloading an application to your target hardware.

Using these, you can build the complete application. You do not need to
manually write any C code to integrate the generated code into a final
application.

The tutorial “Tutorial: Creating a New Application” on page 51-22 uses two
blocks from the Embedded Targets library.

Tutorial: Creating a New Application

• “Tutorial Overview” on page 51-23

51-22

Tutorial: Simple Example Applications for C166® Microcontrollers

• “Before You Begin” on page 51-23

• “Example Model 1: c166_serial_transmit” on page 51-24

• “Generating and Downloading Code” on page 51-26

• “Example 2: c166_serial_io” on page 51-28

Tutorial Overview
In this tutorial, you build stand-alone real-time applications from models
incorporating blocks from the Embedded Targets library.

In the following sections, you will

• Examine two models

• Generate code from the models

• Download and run the code automatically as part of the build process

• Use MiniMon to monitor the code executing on the target

Before You Begin
We assume that you are already familiar with Simulink software and with
the code generation and build process. This tutorial requires the following
specific hardware and software in addition to the coder product:

• Phytec phyCORE-167CS development board, connected via serial port
to your PC

• Tasking C Cross-Compiler and CrossView Pro Debugger

• MiniMon download utility

You must make sure the target preferences have been set correctly. See
“Setting C166 Target Preferences” on page 51-14.

Note Make sure the default.ini file in the MiniMon folder is not read
only. This can cause errors.

51-23

51 Working with Infineon C166 Processors

Example Model 1: c166_serial_transmit
In this tutorial you start with a simple example
model, c166_serial_transmit, from the folder
matlabroot/toolbox/rtw/targets/c166/c166demos.

This folder is on the default MATLAB path.

1 Open the model by typing c166_serial_transmit at the command line.

This example shows the tutorial model c166_serial_transmit at the root
level.

The model contains a C166 Resource Configuration object. When building
a model with driver blocks from the Embedded Targets library, you must
always place a C166 Resource Configuration object into the model (or the
subsystem from which you want to generate code) first.

The purpose of the C166 Resource Configuration object is to provide
information to other blocks in the model. Unlike conventional blocks,
the C166 Resource Configuration object is not connected to other blocks
via input or output ports. Instead, driver blocks (such as the ASC0

51-24

Tutorial: Simple Example Applications for C166® Microcontrollers

Serial Transmit block in the example model) query the C166 Resource
Configuration object for required information.

For example, a driver block may need to find the system clock speed
that is configured in the C166 Resource Configuration object. The C166
microcontroller has a number of clocked subsystems; to generate correct
code, driver blocks need to know the speeds at which these clock busses
will run.

The C166 Resource Configuration window lets you examine and edit the
C166 Resource Configuration settings.

2 Double click the switch target configuration block, and then select
c167cs_hw. This selection sets the appropriate System_frequency and
External_oscillator_frequency in the Resource Configuration block
and options set. See “Option Sets” on page 46-24 in the product help for
more information.

3 To open the C166 Resource Configuration window, double-click the C166
Resource Configuration icon. The picture following shows the C166
Resource Configuration window for the c166_serial_transmit model.

In this tutorial, use the default C166 Resource Configuration settings.

Note If hardware is running at a system frequency other than 20 MHz,
you must change this parameter appropriately.

51-25

51 Working with Infineon C166 Processors

Otherwise, observe, but do not change, the parameters in the C166
Resource Configuration window. By default, the c166drivers
configuration is selected. This shows parameters for the C166
microcontroller CPU in the System Configuration pane on the right.

4 View the settings for the serial driver block by clicking the
c166drivers/Asynchronous/Synchronous Serial Interface option
in the Active Configurations pane. These settings are shown in the
following illustration.

The settings appear in the Asynchronous/Synchronous Serial
Configuration pane on the right. Do not edit any of these parameters for
this tutorial. To learn more about the C166 Resource Configuration object,
see C166 Resource Configuration.

5 Close the C166 Resource Configuration window before proceeding.

Generating and Downloading Code
To generate code for the model:

1 Select Simulation > Configuration Parameters.

51-26

Tutorial: Simple Example Applications for C166® Microcontrollers

The Configuration Parameters dialog box opens.

2 Select Code Generation in the tree.

3 Click Build.

Alternately, you can go straight to building the model by selecting
Tools > Code Generation > Build Model or using the shortcut Ctrl+B.

Watch the progress messages in the command window as code is generated.

4 Enter c166utils in the Command Window to open the Utilities for Use
with C166 dialog box. Select Download via Minimon to download your
application via the MiniMon link. If the Minimon link has not been
generated then your C166 option set is not compatible with MiniMon
downloads. This failure to generate could be because you are targeting one
of the simulator configurations or your board is using OCDS (on-board
wiggler) to connect to the target. The Minimon option should appear when:

• The Build Action is set to Create and Build Application Project,
Create, Build and Execute Application Project, or Create, Build
and Debug Application Project.

• The option set is for hardware (rather than simulator).

• You are using a serial connection to connect to your target.

• If you have created your own template projects, the option to generate a
hex file must be selected.

51-27

51 Working with Infineon C166 Processors

Caution You must ensure the option to generate a hex file is turned
on. If you do not you will see the following warning:

It was not possible to generate a minimon script for this
build. This is because your EDE project template is not

configured to generate a .hex file which is required by
Minimon. To generate a .hex file as part of the build
you need to check the box 'Intel HEX records' in your
EDE project template.
You can change this option via Project -> Project Options
-> Linker/Locator -> Output Format.

When MiniMon is started, a dialog box appears asking you to reset your
hardware.

5 Press the Reset button on your phyCORE-167CS board or cycle the power,
and then click OK.

You can see progress messages in the MiniMon window as it connects and
then downloads to the target. MiniMon then disappears and the code
begins executing on the target.

Verifying Execution on the Target.

1 Start MiniMon (navigate to MiniMon.exe and double-click).

2 Watch the model output in the MiniMon window. When the application
is running, it sends the text "Hello World" plus a carriage return and a
linefeed over the serial interface.

Example 2: c166_serial_io
This example model demonstrates how to use both serial transmit and receive
blocks for the C166 microcontroller. You could use these blocks in this way
with your own Simulink models.

1 Open the model by typing c166_serial_io at the command line.

51-28

Tutorial: Simple Example Applications for C166® Microcontrollers

2 Double click on the switch target configuration block, then select c167cs_hw.
This will set the System_frequency and External_oscillator_frequency
in the Resource Configuration block and the option set.

3 Press Ctrl+B or select Tools > Code Generation > Build Model.

Watch the progress messages as code is generated from the model.

4 You can download the application by clicking on the link at the end of the
build log. This link launches Minimon.

MiniMon is started to download the code to the target over the serial
connection. The MiniMon dialog box appears asking you to reset your
hardware.

5 Press the Reset button on your phyCORE-167CS board or cycle the power,
and then click OK.

You can see progress messages in the MiniMon window as it connects and
then downloads to the target. MiniMon then disappears and the code
begins executing on the target.

You can restart MiniMon to monitor the serial interface.

51-29

51 Working with Infineon C166 Processors

Verifying Execution on the Target.

1 Start MiniMon (select Start > Programs > MiniMon > MiniMon in
Windows, or navigate to MiniMon.exe and double-click).

2 Watch the model output in the MiniMon window. When the application
is running, it generates a sequence of 16–bit numbers, converts them to
ASCII characters, and transmits them over the serial interface.

3 If you enter the character r in the MiniMon command line field, the
application restarts at the beginning of the sequence. Examine the model
to see how this works: the Serial Receive block passes the restart command
through to the Generate Fibonacci Sequence subsystem. This subsystem
checks for the restart command.

Debugging and Using The Code Profile Report

• “Starting the Debugger on Completion of the Build Process” on page 51-30

• “RAM / ROM Code Profile Report” on page 51-31

Starting the Debugger on Completion of the Build Process
As an alternative to downloading with MiniMon at the end of the build
process, you can start your debugger. Depending on the features provided by
your debugger, you can debug the application either on-chip or on a hardware
simulator.

For this example, you use another demo model, c166_user_io. This model
is designed to show you how to integrate your own manually coded device
drivers with automatically generated code using the coder product. This
model is covered in detail in “Integrating Your Own Device Drivers” on page
51-38. You use it as an example here because you will typically need to use
the debugger in cases where you are integrating your own code.

Also, note that running the debugger on-chip over the serial interface conflicts
with the serial transmit and receive blocks. The c166_user_iomodel does not
use serial blocks, so this avoids serial conflicts for this example. If you need to
debug an application that includes the serial transmit and receive blocks, you
must run the debugger using a hardware simulator; alternatively, it may be

51-30

Tutorial: Simple Example Applications for C166® Microcontrollers

possible to run your debugger on-chip without using the serial interface, for
example, if debugging over CAN or JTAG is available.

1 Open the model c166_user_io.

2 Select Simulation > Configuration Parameters.

3 Select IDE Link in the tree.

4 Select the Build action Create, Build and Debug Application
Project.

5 Before generating code, check that your target preferences related to the
debugger are correctly configured. See “Setting C166 Target Preferences”
on page 51-14.

6 Click OK.

7 Right-click the controller subsystem and select Code Generation > Build
Subsystem.

8 Click Build in the next dialog box.

Watch the progress messages in the command window as code is generated.
At the end of the build process, your debugger launches automatically with
the application ready to run. You may now debug the application.

Note If your model contains a serial transmit or receive block, it is not
possible to perform on-chip debugging over the same serial interface. If you
attempt to use the debugger once your application is running, you will no
longer be able to control the application from the debugger, because the
application is using the serial channel.

RAM / ROM Code Profile Report
The c166_fuelsys model is derived from the fuelsys demo model. The
floating point control algorithm from the original model has been converted
to fixed point to allow efficient code generation for the Infineon C166
microcontroller.

51-31

51 Working with Infineon C166 Processors

Note This demo requires the Simulink Fixed Point product.

The complete model includes a plant simulation as well as a fixed-point
implementation of the control algorithm. When you generate code for this
example, be sure to generate code for the control algorithm subsystem only:

1 Open the model c166_fuelsys.

2 Select Simulation > Configuration Parameters.

3 Select Code Generation in the tree. Note that the Generate code
only option is not selected. The reason for this step is that the code
generation report obtains information from MAP files that are created by
your cross-compiler during the build process. If the Generate code only
option is on, these files are not generated, which prevents the generation of
the code generation report.

51-32

Tutorial: Simple Example Applications for C166® Microcontrollers

4 Select Report in the tree, and then observe the selected check box Create
code generation report.

Select the Launch report automatically check box.

5 Select IDE Link in the tree, and observe the Build Action is Create
and Build Application Project. You must have one of the Build options
selected to get the code profile report (with RAM/ROM usage):

• Create and Build Application Project

• Create, Build and Execute Application Project

• Create, Build and Debug Application Project

6 Close the Configuration Parameters dialog box.

7 Right-click the fuel rate controller block.

8 From the pop-up menu, select Code Generation > Build Subsystem.

9 On the following dialog box, click Build.

When code generation is complete, the Code Generation Report appears in
your Help browser. Here you can review the RAM and ROM requirements
of the model. To do this, left-click the link Code profile report in the left
list. If you compared with the original floating-point version of the fuelsys
control algorithm: you would find that using the fixed-point implementation
results in a considerable reduction in both RAM and ROM. An example report
is shown following.

51-33

51 Working with Infineon C166 Processors

Parameter Tuning and Signal Logging

• “Methods For Parameter Tuning and Signal Logging” on page 51-35

• “Using a Third Party Calibration Tool” on page 51-35

51-34

Tutorial: Simple Example Applications for C166® Microcontrollers

Methods For Parameter Tuning and Signal Logging
The coder product supports parameter tuning and signal logging either using
Simulink external mode or with a third party calibration tool. In both cases
the model must include a special block, the CAN Calibration Protocol block.

Using a Third Party Calibration Tool
The coder product allows an ASAP2 data definition file to be generated during
the code generation process. This file can be used by a third party tool to
access data from the real-time application while it is executing.

ASAP2 is a data definition standard by the Association for Standardization
of Automation and Measuring Systems (ASAM). ASAP2 is a standard
description for data measurement, calibration, and diagnostic systems. The
coder product lets you export an ASAP2 file containing information about
your model during the code generation process. See also “Compatibility with
Calibration Packages”.

Before you begin generating ASAP2 filesSelect Interface (under Code
Generation) in the tree. with the coder product, you should read the
“Generating an ASAP2 File” section of the Simulink Coder documentation.
That section describes how to define the signal and parameter information
required by the ASAP2 file generation process.

Select the ASAP2 option before the build process as follows:

1 Select Simulation > Configuration Parameters.

The Configuration Parameters dialog box appears.

2 Select Interface (under Code Generation) in the tree.

3 Select the ASAP2 option from the Interface drop-down menu, in the Data
exchange frame, as shown.

51-35

51 Working with Infineon C166 Processors

4 Click Apply.

The build process creates an ASAM-compliant ASAP2 data definition file for
the generated C code.

• The standard ASAP2 file generation does not include the memory address
attributes in the generated file. Instead, it leaves a placeholder that must
be replaced with the actual address by postprocessing the generated file.

• The map file options in the template project need to be set up a certain way
for this procedure to work. If you have created your own template projects,
and you do not have the correct settings, you see the following instructions:

Warning: It was not possible to do ASAP2 processing on your
.map file.This is because your EDE project template is not
configured to generate a .map file in the correct format.
To generate a .map file in the correct format you need to
setup the following options in your EDE project template:
Generate section map should be checked on
Generate register map should be checked off
Generate symbol table should be checked on
Format list file into pages should be checked off
Generate summary should be checked off

51-36

Tutorial: Simple Example Applications for C166® Microcontrollers

Page width should be equal to 132 characters
Symbol colums should be 1
You can change these options via Project -> Project Options
-> Linker/Locator -> Map File -> Map File Format.

The coder product performs this postprocessing for you. To do this, it first
extracts the memory address information from the map file generated during
the link process. Secondly, it replaces the placeholders in the ASAP2 file with
the actual memory addresses. This postprocessing is performed automatically
and requires no additional input from you.

For an example of a model that is configured to generate an ASAP2 file, see
c166_ccp.

51-37

51 Working with Infineon C166 Processors

Integrating Your Own Device Drivers
This section includes the following topics:

In this section...

“Integrating Manually Coded Device Drivers with a Simulink Model” on
page 51-38

“Preparing Input and Output Signals to the Device Driver Functions” on
page 51-39

“Calling the Device Driver Functions from c166_main.c” on page 51-41

“Adding the I/O Driver Source to the List of Files to Build” on page 51-41

“Tutorial: Using the Example Driver Functions” on page 51-43

Integrating Manually Coded Device Drivers with a
Simulink Model
The coder product has a limited set of I/O device driver blocks. This means
that, for most applications, it is necessary to manually write some device
driver code.

This approach requires the following steps:

1 Identify the model inputs/outputs that must be read from/written to device
driver functions.

2 Set the data type and storage class for each input or output signal so that it
is compatible with your device driver code.

3 Use the hooks provided in the automatically generated c166_main.c to call
your device driver initialization, input, and output functions.

4 Add your device driver source code to the list of files that must be included
in the build process.

Each of these steps is described in the following sections. An example model
is provided: c166_user_io.

51-38

Integrating Your Own Device Drivers

An alternative approach is to create Simulink I/O blocks that automatically
generate the device driver code. This approach may be worth considering if
you need to reconfigure the I/O behavior frequently. If you want to take this
alternative approach, you should consult the documentation on S-functions
and TLC. See the section Developing Device Drivers for Embedded Targets in
the document Developing Embedded Targets in the product help.

A useful tool for creating C166 device drivers is the freeware Digital
Application Engineer DAvE from Infineon. You can find this at the following
URL:

http://www.infineon.com/dave

Using this package along with the hardware User’s Manual greatly eases the
task of developing your own device driver code.

Preparing Input and Output Signals to the Device
Driver Functions
Structure your model similarly to c166_user_io. Place the control algorithm
that will be targeted onto the C166 microcontroller hardware in a separate
subsystem. Before generating code, you can run this model in closed-loop
simulation; this allows you to validate the correct behavior of your control
algorithm before running it in real time.

When structuring your model in this way, you should make sure that all the
input and output signals to the control algorithm are channeled through
top-level input or output ports in the control algorithm subsystem.

By default, when you generate code for the control algorithm subsystem, the
build process chooses variable names and data structures for each of the
top-level input and output signals. However, in this case, you must ensure
that the variables are global, and that their names and data structures match
those that are required by the manually written device driver functions.

The example model c166_user_io illustrates some alternative ways to
achieve this. The simplest method is to

51-39

http://www.infineon.com/dave

51 Working with Infineon C166 Processors

1 Select one of the signals in your model connected to a top-level output
port in the control algorithm subsystem. As an example, open the demo
c166_user_io.

2 Open the controller subsystem.

3 Click the output_PWM0 signal.

4 Select the menu item Edit > Signal Properties. The Signal Properties
dialog box appears

5 Enter the required variable name for your signal in the Signal name
edit box. This must match the variable name required by your manually
written device driver functions.

6 Click the Code Generation tab and select ExportedGlobal from the
Storage class drop-down menu.

When you generate code for this model, the build process uses the variable
name that you have specified and creates an extern declaration in the model
header file. By using a #include directive to include this model header file in
your device driver source code, it is possible for the device driver functions to
read or write this variable that is defined in the generated code.

A more sophisticated approach is to use custom storage classes. By using
custom storage classes, you can collect a number of input or output variables
together into a C struct, resulting in more readable code. The LED output
signal in the c166_user_io uses a custom storage class, which uses a single
bit in a bitfield variable. See “Tutorial: Using the Example Driver Functions”
on page 51-43 for details about the different ways the model variables are
defined and referenced to interface the manually coded driver functions and
the automatically generated code.

By defining your own custom storage classes, you have complete control over
the data structures that are used for any signal in the model. See the custom
storage class documentation in the product help for more details.

51-40

Integrating Your Own Device Drivers

Calling the Device Driver Functions from c166_main.c
You should check the option to include I/O driver function hooks. When
you use code generation for this model, it includes some extra calls to
user-supplied I/O device driver functions:

1 Select Simulation > Configuration Parameters.

The Configuration Parameters dialog box appears.

2 Select C166 Options (1), under Code Generation in the tree.

3 Select the check box option for including I/O driver function hooks.

These functions are

user_io_initialize— called following model initialization

base_rate_model_inputs — read model inputs, called at the base
sample rate

base_rate_model_outputs— write model outputs, called at the base
sample rate

sub_rate_i_model_inputs— read model inputs, called at the start of
sub-rate i, where i=1, 2, ...

sub_rate_i_model_outputs— write model outputs, called at the start
of sub-rate i, where i=1, 2, ...

If you are using the automatically generated c166_main.c, then these
function names are fixed.

For an example implementation of these functions, open the model
c166_user_io and follow the link to open the I/O driver source files. These are
described in “Tutorial: Using the Example Driver Functions” on page 51-43.

Adding the I/O Driver Source to the List of Files to
Build
You must tell the build process to compile and link the I/O driver source files
that you have written. You do so by adding the files to the custom code
dialog box. Access the Configuration Parameters dialog box, look under Code

51-41

51 Working with Infineon C166 Processors

Generation > Custom Code, and add the necessary Include Directories
and Source Files.

You are now ready to build your model and run it in real time.

You can examine an example of this in the example model c166_user_io. See
the instructions in “Tutorial: Using the Example Driver Functions” on page
51-43. Step 8 shows you how to specify the location of your own manually
coded drivers.

51-42

Integrating Your Own Device Drivers

Tutorial: Using the Example Driver Functions
The example model c166_user_io demonstrates how to integrate user-defined
device driver code. In this tutorial, you generate code from the controller
subsystem, which automatically downloads and runs on the target.

The model c166_user_io illustrates three alternative methods for using
global variables to interface the manually written driver functions with the
automatically generated code. The three different methods are illustrated
by these signals:

• input_adc0

• output_PWM0

• output_led_D3

For input_adc0, the variable is defined in the manually written code and
referenced in the generated code.

For output_PWM0, the variable is defined in the generated code and referenced
in the manually written code.

For output_led_D3, a more sophisticated approach is used, involving custom
storage classes. In this case, the variable is again defined in the generated
code and referenced by the manually written code; the difference is that the
variable is defined and referenced as a bitfield using C166 microcontroller
bit-addressable memory:

1 Open the model c166_user_io.

51-43

51 Working with Infineon C166 Processors

2 Open the controller subsystem by double-clicking and select the signal
input_adc0.

51-44

Integrating Your Own Device Drivers

3 Select the menu item Edit > Signal Properties. The Signal Properties
dialog box appears.

Click the Code Generation tab and observe that the Storage class is
ImportedExtern. When you generate code for this model, the specified
variable name input_adc0 is used, and an extern declaration is created
in the model header file. Since the storage class is ImportedExtern, this
variable must be defined in the manually written driver code. When you
open the file user_io.c in the next step, you will find the line uint16_T
input_adc0 that provides this definition.

4 In the top level model, double-click the link Open the i/o driver source
files.

Two source files open in the MATLAB editor, user_io.h and user_io.c.

51-45

51 Working with Infineon C166 Processors

5 Click the user_io.h tab, as shown above. Here you can see extern
uint16_T input_adc0 under the heading Declare variables that
are imported by the model. Also look at the #include directive in
user_io.c. The extern declaration and incorporating the header file into
the build makes it possible for the device driver functions to read or write
this variable that is defined in the generated code.

6 You need to instruct the coder product to compile and link the manually
coded I/O driver source files in the build process. You do so by adding the
files to the custom code dialog box. Access the Configuration Parameters
dialog box, select Code Generation > Custom Code in the tree, and
review the Include Directories and Source Files.

51-46

Integrating Your Own Device Drivers

7 Select C166 Options (1) (under Code Generation in the tree). Notice
that Include input/output driver function hooks is selected.

This instructs the build process to include extra calls to the user-supplied
I/O device driver functions when code is generated for this model.

8 Select Interface in the tree. Observe the option Floating-point numbers
is not selected.

If your model does not use floating point, you should make sure this option
is not checked to use integer code only. Using only integer code results in
smaller code size and faster real-time execution. It also speeds up the build
process because libraries that are used only by floating-point applications
are not included.

Explore the user_io.c file. This example file is intended to show you
some manually coded input/output driver functions and how they can be
integrated with the coder product.

You can see sections for initializing these input/output drivers: ADC,
digital I/O, and Pulse Width Modulation (PWM).

51-47

51 Working with Infineon C166 Processors

9 Close the Signal Properties dialog box and Configuration Parameters
dialog box if they are still open.

Prior to generating code, you can run the model in closed-loop simulation;

just click Start Simulation () in the toolbar. You can open the
Scope block to see the model output. If you use this model as a basis
for integrating your own device driver code, this closed-loop simulation
allows you to validate the correct behavior of your control algorithm before
running it in real time.

10 Generate code by right-clicking the controller subsystem and selecting
Code Generation > Build Subsystem.

11 Click Build in the Build code for Subsystem: Controller dialog box that
appears. Watch the messages as the process proceeds and code is generated.

If you are using a Phytec phyCORE module with HD200 development
board, the digital output is connected to the LED D3. You can see successful
execution of the code when the LED blinks.

51-48

Custom Storage Class for C166® Microcontroller Bit-Addressable Memory

Custom Storage Class for C166 Microcontroller
Bit-Addressable Memory

This section contains the following topics:

In this section...

“Specifying C166 Microcontroller Bit-Addressable Memory” on page 51-49

“Using the Bitfield Example Model” on page 51-50

Specifying C166 Microcontroller Bit-Addressable
Memory
The coder product allows you to take advantage of Infineon C166
microcontroller bit-addressable memory. The example model c166_bitfields
demonstrates this. By using bit-addressable memory, the compiler is able to
use special assembler instructions that significantly reduce code size and
increase execution speed.

Note This feature requires the coder product.

This is done by using the custom storage class SimulinkC166.Signal. To
specify that a signal in the model should use bit-addressable memory, you
must perform the following steps:

1 Ensure that the signal has the Simulink data type 'boolean'.

2 Attach a label to the signal, either by using Edit > Signal Properties or
by double-clicking the signal and typing in the name directly; this label will
be used as the bitfield variable name in the generated code.

3 Create a new Simulink data object of type SimulinkC166.Signal with
the same name as the signal label. See the file c166bitfielddata.m for
an example.

4 Select View > Model Explorer and click the base workspace to inspect all
the Simulink data objects that are available to the model.

51-49

51 Working with Infineon C166 Processors

5 Build the model.

One of the signals in the demo model c166_user_io also uses the custom
storage class SimulinkC166.Signal to specify that the signal uses
bit-addressable memory. You can compare this with the c166_bitfields
example; it is included in the steps in “Using the Bitfield Example Model” on
page 51-50.

Using the Bitfield Example Model
You can use the example model c166_bitfields to see the automatic
debugger start at the end of the build.

Follow these steps:

1 Open c166_bitfields.

51-50

Custom Storage Class for C166® Microcontroller Bit-Addressable Memory

2 Press Ctrl+B to build the model.

3 Examine the project generated code in the TASKING EDE:

a Select Search > Multiple Sources.

b In the dialog box, select Project Space under Multiple Sources, and enter
_bita for the search string.

51-51

51 Working with Infineon C166 Processors

4 You can double-click Open setup file in the model to open the file
c166bitfielddata.m in the MATLAB editor.

51-52

Custom Storage Class for C166® Microcontroller Bit-Addressable Memory

This file creates a new Simulink data object using the custom storage class
SimulinkC166.Signal. By using custom storage classes, you can collect
a number of input or output variables together into a C struct, resulting
in more readable code. By defining your own custom storage classes, you
have complete control over the data structures that are used for any signal
in the model. See the custom storage class topic in the Embedded Coder
User’s Guide for more details. You can double-click Read documentation
for custom storage classes in the model to go directly to the relevant
product help section.

5 You can double-click Inspect data objects to inspect all the Simulink
data objects that are available to the model.

51-53

51 Working with Infineon C166 Processors

Here you can see the SimulinkC166.Signal data object and you can click
on each object to inspect the properties.

6 One of the signals in the demo model c166_user_io also uses the custom
storage class SimulinkC166.Signal to specify that the signal uses
bit-addressable memory. Open c166_user_io.

7 Double-click Open custom storage class data file.

The file c166useriodata.m opens in the MATLAB editor.

51-54

Custom Storage Class for C166® Microcontroller Bit-Addressable Memory

Compare with c166bitfielddata.m.

For more details on the variables in this model, see “Tutorial: Using the
Example Driver Functions” on page 51-43.

51-55

51 Working with Infineon C166 Processors

Execution Profiling
This section contains the following topics:

In this section...

“Overview of Execution Profiling” on page 51-56

“Options for Execution Profiling” on page 51-60

“Multitasking Demo Model” on page 51-62

Overview of Execution Profiling

• “Introducing Execution Profiling” on page 51-56

• “The Profiling Command” on page 51-57

• “Definitions” on page 51-59

• “Execution Profiling Blocks” on page 51-59

Introducing Execution Profiling
The coder product provides a set of utilities for recording, uploading, and
analyzing execution profile data for timer-based tasks and asynchronous
Interrupt Service Routines (ISRs). With these utilities, you can

• Generate a graphical display that shows when timer-based tasks and
interrupt service routines are activated, preempted, resumed, and
completed.

• Generate a report with information on

- Maximum number of overruns for each timer-based task since model
execution began

- Maximum turnaround time for each timer-based task since model
execution began

- Analysis of profiling data for timer-based tasks and asynchronous
interrupts over a period of time

51-56

Execution Profiling

To perform execution-profiling analysis on a model, you must perform the
following steps:

1 Place a copy of the appropriate execution profiling block in your model:

• Execution Profiling via ASC0 if using a serial connection

• Execution Profiling via CAN A if using CAN with a C166 processor

• Execution Profiling via TwinCAN A if using CAN with an XC16x
processor variant

2 Select the Execution profiling option under Code Generation options
in the Configuration Parameters dialog box. See “Options for Execution
Profiling” on page 51-60.

3 Connect the target processor to your host PC (with a serial or CAN cable).

4 Build, download, and run the model.

5 Initiate execution profiling by running the command profile_c166. See
below for more information on the profiling command.

Two forms of execution profiling are provided:

1 The worst-case values for task turnaround times and number of concurrent
task overruns since model execution began are updated whenever a
previous worst-case value is exceeded.

2 A snapshot of task and ISR activity may be recorded over a period of time;
the length of this period depends on how much memory is reserved to log
the data.

The Profiling Command
Use the profiling command as follows:

profile_c166(connection)

Specify your connection as 'can' or 'serial', to collect data via a CAN
or serial connection between the target and the host computer. Make sure
the model includes the appropriate C166 execution profiling block (CAN or

51-57

51 Working with Infineon C166 Processors

ASC0), to provide an interface between the target-side profiling engine and
the host-side computer from which this command is run.

PROFDATA = profile_c166(connection) collects and displays execution
profiling data from a C166 target microcontroller that is running a suitably
configured application generated by the coder product. PROFDATA contains the
execution profiling data in the format documented by exprofile_unpack.

The data collected is unpacked then displayed in a summary HTML report
and as a MATLAB graphic.

To use the serial connection, the C166 board must be connected via a serial
cable to one of the host computer’s serial ports. This function defaults to port
ASC0 on the C166 and port COM1 on the host computer. If the 'BitRate'
argument is not provided, the default of 57600 baud is used.

PROFDATA = PROFILE_C166('serial','SerialPort',serialport)

sets the serial port to the specified serialport, which should be one of COM1,
COM2, etc.

Optionally, you can specify the bit rate as follows:

PROFDATA = PROFILE_C166('serial', 'BitRate', bitrate)

This specification sets the bitrate for serial connection to the target. bitrate
must be the same as the bit rate specified for the application that is running
on the target.

Alternatively, you can set the bitrate for the serial connection to the target
automatically as follows:

profdata = profile_c166('serial', 'ModelName', modelname)

This specification automatically sets the bit rate by analyzing modelname
and extracting the correct serial connection bit rate setting from the model.
modelname should be set to the name of a model which is currently open and
running on the target.

To use the CAN connection, you must have suitable CAN hardware installed.
If no Application Channel is specified, this function will use the channel

51-58

Execution Profiling

'MATLAB 1'. The bit rate is a property of the Application Channel; to change
the bit rate, you must use a different Application Channel, or change the
bit rate by running the Vector Informatik configuration utility. To run this
utility, make sure that vcanconf.exe is on your System Path, then type
vcanconf from a Windows command prompt.

You can specify the Application Channel as follows:

profdata = profile_c166('can', 'CANChannel', canchannel)

canchannel specifies the Vector Informatik CAN Application Channel, and
must be of the form 'MATLAB 1', 'MATLAB 2' etc.

Definitions
Task turnaround time is the elapsed time between start and finish of a
task. If the task is not preempted, then the task turnaround time is equal
to the task execution time.

Task execution time is that part of the time between task start and finish
when the task is actually running and not preempted by another task. Note
that the task execution time cannot be measured directly, but is inferred from
the task start and finish time and the intervening periods during which it was
preempted by another task. Note that, in performing these calculations, no
account is taken of processor time consumed by the scheduler while switching
tasks: this means that, in cases where preemption has occurred, the reported
task execution times will overestimate the true values.

Concurrent task overruns occur when a timer task does not complete
before that same task is next scheduled to run. Depending on how the
real-time scheduler is configured, a task overrun may be handled as a
real-time failure. Alternatively, a small number of concurrent task overruns
may be allowed to accommodate cases where a task occasionally takes longer
than normal to complete.

Execution Profiling Blocks
See the block reference sections:

• C166 Execution Profiling via ASC0

51-59

51 Working with Infineon C166 Processors

• C166 Execution Profiling via CAN A

• C166 Execution Profiling via TwinCAN A

Options for Execution Profiling

• “Execution Profiling” on page 51-60

• “Number of Data Points” on page 51-60

• “Task Scheduler Overrun Options” on page 51-61

Execution Profiling
You can see the options for execution profiling by selecting C166 Options
(1) (under Code Generation in the tree) in the Configuration Parameters
dialog box.

If the Execution Profiling option is selected, then the generated code for
the model will be “instrumented” with function calls at the beginning and
end of each task or ISR to be profiled. These function calls read a timer (on
C166 a free running timer is selected from the options in the C166 Resource
Configuration block) and log this reading along with a task identifier.

When code for the model is generated, these functions will update data
on the worst-case turnaround time for each timer-based task as well as
the worst-case number of concurrent task overruns, whenever a previous
worst-case value is exceeded. Additionally, when a trigger is provided, data
will be logged over a period of time to record all task start and finish times.
The trigger signal can be supplied, for example, by the block C166 Execution
Profiling via CAN A.

Number of Data Points
When a snapshot of task and ISR activity is logged, this data is stored in
memory that is statically allocated at build time. Each data point requires 4
bytes on C166. The larger the number of data points to be stored, the more
RAM that must be reserved for this purpose. At the end of a logging run, the
data must be uploaded to the host computer for analysis; this is typically
achieved by using one of the C166 execution profiling blocks — via ASCO,
CAN A, or TwinCAN A. For more information, see:

51-60

Execution Profiling

• C166 Execution Profiling via ASC0

• C166 Execution Profiling via CAN A

• C166 Execution Profiling via TwinCAN A

Task Scheduler Overrun Options
These scheduler options configure the allowable number of concurrent task
overruns. You can see these options on the C166 Options (1) section in the
Configuration Parameters dialog box.

You can use the options Maximum number of concurrent base-rate
overruns and Maximum number of concurrent sub-rate overruns to
configure the behavior of the scheduler when any of the timer based tasks do
not complete within their allowed sample time. It is useful to allow task
overruns in the case where a task may occasionally take longer than usual to
complete (e.g., if extra processing is required when a special event occurs);
if the task overrun is only occasional, then it is possible for the scheduler to
catch up after the extra processing has been completed.

If the maximum number of concurrent overruns for any task is exceeded, this
is deemed to be a failure and the real-time application is stopped.

As an example, if the base rate is 1 ms and the maximum number of
concurrent base-rate overruns is set to 5 then it is possible for the base rate
task to run for almost 6 ms before failure occurs. Once the overrun has
occurred, it is necessary for subsequent executions of the base rate to complete
in less than 1 ms in order that the lost time is recovered.

The occurrence of base-rate overruns does not affect the numerical behavior
of the algorithm (although reading/writing external devices will of course
be delayed).

If sub-rate overruns are allowed, then the transfer of data between different
rates (via rate-transition blocks) in the model may be affected; this
causes the numerical behavior in real time to differ from the behavior in
simulation. To see an illustration of this effect, try running the demo model
c166_multitasking, described in the next section. To disallow sub-rate
overruns and ensure that this effect does not occur, you should setMaximum
number of concurrent sub-rate overruns to zero.

51-61

51 Working with Infineon C166 Processors

Note Allowing sub-rate overruns may cause non-determinism and loss of
integrity for data transferred between different rates in the model. Set this
value to zero if you require sub-rate overruns to be handled as a failure
(recommended).

If you allow sub-rate overruns, then the behavior of any Rate-Transition
blocks may be affected. Specifically, if the model contains a Rate Transition
block where the option "Ensure deterministic data transfer (maximum delay)"
is selected, then this setting may not be honored.

Multitasking Demo Model

• “Introducing the Multitasking Demo” on page 51-62

• “Running the Multitasking Demo” on page 51-63

• “Interpreting the MATLAB Graphic” on page 51-65

• “The Generated HTML Report” on page 51-67

Introducing the Multitasking Demo
The demo model c166_multitasking illustrates both execution profiling and
the preemptive multitasking scheduler with configurable overrun handling.

The model is multirate, having tasks running at 1 ms, 4 ms, and 16 ms. It is
configured to use the preemptive multitasking scheduler.

A special feature of this model is that each task is designed to perform an
increasing number of calculations to increase the processor loading until
that task reaches a target turnaround time. This behavior ensures that task
overruns occur to demonstrate the behavior of the model in this situation.

Each block in the model, labeled Load base rate, Load sub-rate 1, Load
sub-rate 2 performs calculations, the result of which should always be 1
both in simulation and in real time. Any other result is a failure and should
never occur.

51-62

Execution Profiling

The Test Rate Interaction blocks are designed to test whether data is
transferred between tasks in a deterministic manner. In simulation, the
output of each of these blocks is always zero, indicating that there is no drift
between tasks running at different rates. When running in real time, under
normal circumstances, the output is also zero; in this case the real-time
behavior is deterministic and exactly matches the results in simulation. Even
if task preemption and base-rate overruns occur, the output of these blocks
will be zero so that the real-time behavior faithfully reproduces the results
in simulation. The circumstance under which drift occurs is if sub-rate
overruns occur during execution in real time; if this behavior is not desired,
you should disallow sub-rate overruns by setting the maximum allowed
number of sub-rate overruns to zero in the C166 Options (1) section in the
Configuration Parameters dialog box (see “Task Scheduler Overrun Options”
on page 51-61).

You can double-click the block provided in the model to switch between
profiling over serial or CAN connections.

Running the Multitasking Demo

1 Open the model by typing at the command line

c166_multitasking

If viewing in the Help browser, you can click the link to open the model. If
you update the diagram you can see the sample-time colors.

51-63

51 Working with Infineon C166 Processors

2 Select Simulation > Configuration Parameters.

The Configuration Parameters dialog box appears.

3 Select IDE Link in the tree and change the Build action to Create,
Build and Execute Application Project. Click OK to dismiss the
dialog box.

4 Make sure the target is connected to the host PC via serial or CAN cable.
The default setting in this demo model is serial. You can double-click the
Switch Execution Profiling Connection block to toggle between blocks for
serial and CAN. See below for instructions if using CAN.

5 To build and run the model, select the model window, and then press
Ctrl+B.

Watch the messages in the command window as code is generated and
loaded into the TASKING EDE, then the CrossView Pro Debugger starts,
connects to the target, and downloads the code.

51-64

Execution Profiling

6 In the CrossView window, click Run in the toolbar to start the application
running on the target.

7 At the command line, type

profile_c166 ('serial')

You will see messages in the command window as profile_c166 runs.

When the data has been obtained the Help browser and a figure window
appear, displaying the HTML report and the task execution profile.

8 Scroll to view the HTML report on task timings and use the controls to zoom
in on the MATLAB graphic to examine the details of the task overruns.

If using CAN, be sure to use CAN channel 0 (not 1) on the PC. You can
double-click the Switch Execution Profiling Connection block in the model to
switch to CAN, and follow the same instructions as for a serial connection,
except step 7 when the application is running. At the command line, type

profile_c166 ('CAN')

You will see command line messages as the function tests the CAN channel,
and requests and collects profiling data. When using CAN, it can be useful to
run a monitor program such as btest32 to verify that the model is running —
for example you will see messages appearing on the CAN bus and you can see
that you have connected the correct CAN channel.

Interpreting the MATLAB Graphic
Dark shaded areas show the region where a task is executing. Light shaded
areas show the region where a task is preempted by a higher priority task
or ISR. Triangles indicate the beginning of a task. An example is shown
following.

51-65

51 Working with Infineon C166 Processors

Zoom in to see the details of times that tasks are executing and being
preempted, as shown in the following example.

51-66

Execution Profiling

.

The Generated HTML Report
See “Definitions” on page 51-59 for the terms task turnaround time, task
execution time, and concurrent task overruns.

All times are in seconds. The timer resolution is 4e-007 seconds and the
measurement range is 0.026214 seconds.

The report contains the following information:

• Worst-case task turnaround times

51-67

51 Working with Infineon C166 Processors

- Maximum task turnaround time for each task since model execution
started. Note that the maximum task turnaround time that can be
measured is limited by the timer measurement range.

• Maximum number of overruns for each task

- Maximum number of concurrent task overruns since model execution
started

• Analysis of recorded profiling data

- Analysis of task turnaround times and task execution times based on
recorded data over a period of 0.18139 second

Examples are shown following.

51-68

Execution Profiling

51-69

51 Working with Infineon C166 Processors

51-70

Configuration Parameters

Configuration Parameters

Code Generation Pane: C166 Options

• “C166 Options Tab Overview” on page 51-72

• “Include input/output driver function hooks” on page 51-73

• “Maximum number of concurrent base-rate overruns:” on page 51-74

• “Maximum number of concurrent sub-rate overruns:” on page 51-75

• “Execution profiling” on page 51-77

• “Number of data points:” on page 51-78

51-71

51 Working with Infineon C166 Processors

C166 Options Tab Overview
Parameters for integrating your own device driver code and controlling
execution profiling with the coder product.

Configuration. This pane appears only if you specify the C166.tlc or
C166_grt.tlc system target file.

See Also.

• Overview of C166 Configuration Parameters

• Getting Started

51-72

Configuration Parameters

Include input/output driver function hooks
Specify whether to integrate your own device driver code.

Settings. Default: Off

On
Include input/output driver function hooks. When you generate code for
this model, it includes some extra calls to user-supplied input/output
device driver functions, to read and write model inputs and outputs.
See Calling the Device Driver Functions from c166_main.c for function
names and instructions.

Off
Do not include input/output driver function hooks.

Command-Line Information.

Parameter: InputOutputDriverHooks
Type: logical
Value: 0 | 1
Default: 0

See Also. Integrating Your Own Device Drivers

51-73

51 Working with Infineon C166 Processors

Maximum number of concurrent base-rate overruns:
Configure allowable base-rate overruns.

Settings. Default: 5

Minimum: 0

Maximum: No maximum value — it depends on available memory.

Tips.

• Use this option to configure the behavior of the scheduler when timer based
tasks do not complete within their allowed sample time.

• It is useful to allow task overruns in the case where a task may occasionally
take longer than usual to complete (e.g. if extra processing is required
when a special event occurs); if the task overrun is only occasional then it
is possible for the scheduler to ’catch up’ after the extra processing has
been completed.

• If the maximum number of concurrent overruns for any task is exceeded,
this is deemed to be a failure and the real-time application is stopped.
This in turn will result in a watchdog timer timeout and the processor
will be reset.

• The occurrence of base-rate overruns does not affect the numerical behavior
of the algorithm (although reading/writing external devices will of course
be delayed).

Command-Line Information.

Parameter: BaseRateMaxOverrunsValue
Type: int
Value: 0 | 1 | 2...
Default: 5

See Also.

• Task Scheduler Overrun Options

• Execution Profiling

51-74

Configuration Parameters

Maximum number of concurrent sub-rate overruns:
Configure allowable sub-rate overruns.

Settings. Default: 0

Minimum: 0

Maximum: No maximum value — it depends on available memory.

Tips.

Note Allowing sub-rate overruns may cause non-determinism and loss of
integrity for data transferred between different rates in the model. Set this
value to zero if you require sub-rate overruns to be handled as a failure
(recommended).

• If this option is set to a value greater than zero, then the behavior of any
Rate-Transition blocks may be affected. Specifically, if the model contains a
Rate Transition block where the option "Ensure deterministic data transfer
(maximum delay)" is selected, then this setting may not be honored.

• If sub-rate overruns are allowed then the transfer of data between different
rates (via rate-transition blocks) in the model may be affected; this
causes the numerical behavior in real-time to differ from the behavior in
simulation. To see an illustration of this effect try running the demo model
c166_multitasking. To disallow sub-rate overruns and ensure that this
effect does not occur, you should set Maximum number of concurrent
sub-rate overruns to zero.

Command-Line Information.

Parameter: SubRateMaxOverrunsValue
Type: int
Value: 0 | 1 | 2...
Default: 0

51-75

51 Working with Infineon C166 Processors

See Also.

• Task Scheduler Overrun Options

• Execution Profiling

51-76

Configuration Parameters

Execution profiling
Specify whether to configure code for execution profiling.

Settings. Default: Off

On
Include function calls in the generated code for the model at the
beginning and end of each task or asynchronous Interrupt Service
Routine (ISR) to be profiled. When you perform an execution profiling
run, these function calls read a timer and log this reading, along with a
task identifier, for uploading and analyzing.

Off
Do not add function calls for execution profiling.

Tip. When code for the model is generated, these function calls update data
on the worst-case turnaround time for each timer-based task as well as the
worst-case number of concurrent task overruns, whenever a previous worst
case value is exceeded. Additionally, when a trigger is provided, data can be
logged over a period of time to record all task start and task finish times. The
trigger signal can be supplied by the execution profiling blocks.

See Also.

• “Options for Execution Profiling” on page 51-60

• Execution Profiling

51-77

51 Working with Infineon C166 Processors

Number of data points:
Specify number of data points to log for execution profiling runs.

Settings. Default: 500

Minimum: This depends on the number of tasks. Three is a sensible
minimum to get useful information back.

Maximum: No maximum value - it depends on available memory.

Tip. When a snapshot of task and ISR activity is logged, this data is stored in
memory that is statically allocated at build time. Each data point requires 4
bytes on C166 microcontrollers. The larger the number of data points to be
stored, the more RAM that must be reserved for this purpose. At the end of a
logging run, the data must be uploaded to the host computer for analysis; this
is typically achieved by using one of the C166 execution profiling blocks.

Command-Line Information.

Parameter: ExecutionProfilingNumSamples
Type: int
Value: 3 | 4 | 5...
Default: 500

See Also.

• Number of Data Points

• Execution Profiling

51-78

52

Working with Linux Target

• “Disambiguation” on page 52-2

• “Preparing Models to Run on Linux” on page 52-3

• “Scheduler” on page 52-4

• “Example: Build Generated Code on a BeagleBoard Running Linux” on
page 52-7

• “Example: Build Generated Code on a Linux Host, Then Run It Remotely
on BeagleBoard” on page 52-9

• “Embedded Linux Topics” on page 52-14

52 Working with Linux® Target

Disambiguation
This documentation uses the term “Linux” generically to refer to:

• Linux running on a host computer

• Linux running on an target processor

If the distinction between host and target is important, the documentation
will identify the hardware platform on which Linux is running. For example:

• “Embedded Linux” or “Linux running on a target processor”

• “Linux running on a host computer.”

52-2

Preparing Models to Run on Linux®

Preparing Models to Run on Linux
To build an executable that runs on Linux, perform the following steps:

1 Install and configure Eclipse IDE according to the instructions in Chapter
48, “Working with Eclipse IDE”.

2 Locate the Target Preferences block in the Simulink Library Browser,
under Embedded Coder > Embedded Targets.

3 Copy the Target Preferences block to your model.

4 In the Initialize Configuration Parameters dialog box, set the IDE to
Eclipse, and select the processor for which you are generating code.

5 Set Operating System to Linux. This action creates a Linux tab for
setting the Scheduling Mode and Base Rate Priority.

6 Set the Scheduling Mode to one of these options:

• If you select real-time, the model uses a timer to trigger the base rate
at regular periods.

• If you select free-running, the model does not use a timer. Instead, the
model completes each process or thread before running the next one.

7 For Linux, you can set the Base Rate Priority relative to other processes
and threads. You can enter values from (the number of rates + 1) to 99.

8 In IDE Link, configure the model to build and execute:

a In the model, select Simulation > Configuration Parameters.

b Select the Code Generation > IDE Link pane.

c Set Build action to Build and execute.

9 Build the model. Select Tools > Code Generation > Build Model.

After the build completes, Embedded Coder software downloads the
executable to the remote system and runs it.

52-3

52 Working with Linux® Target

Scheduler

In this section...

“Base Rate” on page 52-4

“Running Target Applications on Multicore Processors” on page 57-10

“Avoiding Lock-Up in Free-Running, Multirate, Multitasking Models” on
page 52-6

“Limitations” on page 52-6

Base Rate
The base rate in the model maps to a thread and runs as fast as possible. The
base rate priority selection in the OS tab allows you to set a static priority
for the base rate task. By default, this rate is 40.

The process running single-tasking models has Default scheduling policy
when model is single-tasking or there is a single rate in the model. Static
priority of the process is 0 in this case.

Running Target Applications on Multicore Processors
If you are generating code for a processor running Linux or VxWorks, you can
elect to partition the code such that each rate is placed in its own thread.
With code generated from a multi-rate model, the multi-threaded application
will be enabled for concurrent multicore execution, as scheduled by the target
operating system.

1 Create a multi-rate Simulink model.

2 Add a Target Preferences block to your model as described in the “Target
Preferences” on page 43-4 section.

3 Verify that your model uses a Rate Transition block to transition between
rates.

4 Clear the Ensure deterministic data transfer checkbox of the Rate
Transition block. This action forces the Rate Transition block to use the
most recent data available.

52-4

Scheduler

5 In the Target Preferences block, set Operating System to Linux or
VxWorks.

6 In the Linux or VxWorks tab of the Target Preferences block, select the
Allow tasks to execute concurrently checkbox. Selecting this option
enables the generated multi-threaded code to run concurrently on multicore
processors.

7 In the Configuration Parameters dialog box, on the Solver pane, set
Tasking mode for periodic sample times to Auto or Multitasking.

8 Open the Rate Transition block and clear the Ensure deterministic data
transfer checkbox. This action forces the Rate Transition block to use
the most recent data.

9 In the Target Preferences block, set Operating System to Linux or
VxWorks.

10 Select the Allow tasks to execute concurrently checkbox. Selecting
this option enables generated multi-threading code to run concurrently on
multicore processors.

11 For the best performance, in the Configuration Parameters dialog box,
on the Solver pane, set Tasking mode for periodic sample times to
Auto or Multitasking.

52-5

52 Working with Linux® Target

12 In your model, click the build button or enter Ctrl+B. The software
performs the actions you selected for Build action in the model
Configuration Parameters, under Code Generation > IDE Link.

Avoiding Lock-Up in Free-Running, Multirate,
Multitasking Models
Use caution if you select free-running mode for a multirate, multitasking
models. Because of the rate monotonic scheduling requirement in Linux, the
scheduler runs threads with a SCHED_FIFO scheduling policy. A process
scheduled with SCHED_FIFO prevents other process from running while it
is ready to run. Therefore, if no blocking peripherals appear in the model,
the entire Linux system can become unresponsive while you are running
the generated code. Such lock-up can even preempt the shell window from
running. To avoid this lock-up, apply one of the following solutions:

• Set Scheduling Mode to real_time.

• Include a blocking device driver, such as a UDP block, in your model that
suspends running thread while data is not available.

• Raise the shell window priority above the base-rate priority so you can kill
the process running with SCHED_FIFO class.

Limitations

Profiling is not available for Intel x86/Pentium and AMD
K5/K6/Athlon processors running Windows or Linux
Stack Profiling and Execution Profiling is not available for Intel x86/Pentium
and AMD K5/K6/Athlon processors running Windows or Linux.

52-6

Example: Build Generated Code on a BeagleBoard Running Linux

Example: Build Generated Code on a BeagleBoard
Running Linux

In this section...

“Overview” on page 52-7

“Configure the Windows Host” on page 52-7

“Configure the BeagleBoard” on page 52-7

“Configure MATLAB” on page 52-8

Overview
This example shows you how to generate code on a Windows host, and then
build it remotely on a BeagleBoard running Linux.

Configure the Windows Host
Download and install the following PuTTY utilities from
http://www.chiark.greenend.org.uk/~sgtatham/putty/download:

• Plink (a command-line interface to the PuTTY back ends)

• PSCP (an SCP client, i.e. command-line secure file copy)

Warning PuTTY software may be illegal in countries where
encryption is prohibited.

Configure the BeagleBoard
Install the GNU-compiler toolchain on the BeagleBoard. Open a terminal
session with the Linux command line on the BeagleBoard.

For example, on a board running the Angstrom Linux distribution, enter the
following commands:

root@beagleboard:~# opkg install binutils
root@beagleboard:~# opkg install gcc
root@beagleboard:~# opkg install gcc-symlinks
root@beagleboard:~# opkg install cpp-symlinks

52-7

http://www.chiark.greenend.org.uk/~sgtatham/putty/download

52 Working with Linux® Target

root@beagleboard:~# opkg install libstdc++-dev
root@beagleboard:~# opkg install make-dev

Configure MATLAB
Configure MATLAB to generate code.

1 Enter xmakefilesetup at the MATLAB command line. In the XMakefile
Configuration dialog, set template to gmake and configuration to
gcc_target.

2 For the Target Preferences block in your model, set IDE/Toolchain to
Eclipse, and set the Board to BeagleBoard ARM.

3 In your model, open Simulation > Configuration Settings. Under Code
Generation, select the IDE Link pane. Set Build format to Makefile,
and set Build Action to Create_makefile.

4 Generate the code by pressing Ctrl B.

5 Use the load method to load the buildInfo.mat file from the project directory
to the BeagleBoard. For example, at the MATLAB command prompt enter:

>> s =load(`sumdiff_codegen_eclipseide\buildInfo.mat')

6 Use remoteBuild function to build the code on the BeagleBoard. For
example, enter:

>> remoteBuild(s.buildInfo, '/home/root', '144.212.110.193',
'root', 'password', 'C:\utils\putty')

The GNU compiler toolchain automatically builds and runs the software
on the BeagleBoard.

For more information, see remoteBuild.

52-8

Example: Build Generated Code on a Linux Host, Then Run It Remotely on BeagleBoard

Example: Build Generated Code on a Linux Host, Then
Run It Remotely on BeagleBoard

In this section...

“Overview” on page 52-9

“Prerequisites” on page 52-9

“Set up your environment for Linux-ARM Code Generation” on page 52-9

“Generate Code for Linux-ARM” on page 52-12

“External Mode Simulation” on page 52-12

Overview
This example shows you how to build a target application locally on a Linux
host using Eclipse IDE, and then run the program remotely on the ARM
processor of a BeagleBoard running Angstrom Linux.

Prerequisites
To generate code for BeagleBoard, first obtain and install the following
third-party software:

• Eclipse™ IDE

• OpenEmbedded build system for BeagleBoard Angstrom

You can find instructions for installing Eclipse IDE here: Chapter 48,
“Working with Eclipse IDE”

You can find instructions for building BeagleBoard OpenEmbedded here:
The Angstrom Distribution

Set up your environment for Linux-ARM Code
Generation
Before attempting to generate code for BeagleBoard, it is important to
configure your environment correctly. Use the following configuration
steps to generating code for the Linux-ARM target on the BeagleBoard.

52-9

http://www.angstrom-distribution.org

52 Working with Linux® Target

These instructions assume you have already built the OpenEmbedded
Linux-Angstrom distribution. Make sure that you build the bitbake recipe
for gdb-cross and install gdbserver on the target board. For example, use the
bitbake gdb-cross command to build the GDB debugger that runs on your
host computer. Then use opkg to install gdbserver. For example, enter: opkg
install gdbserver. The Eclipse project generated by the coder product
uses local GDB debugger and a GDB server running on the target board to
enable debugging support. You also need an Ethernet connection to your
board to debug the generated code.

1 Set up your MATLAB environment to see OpenEmbedded GNU compiler
toolchain and the OpenEmbedded root file system by executing the
following from MATLAB command line.

setenv('PATH', ['<pathtoOEtree>/oe/angstrom-dev/cross/armv7a/bin' ':' getenv('PATH')])

setenv('OETREE', '<pathtoOEtree>/oe')

The first setenv command adds the path to the GNU compiler toolchain
for MATLAB to locate compiler, linker, and so on, for the BeagleBoard.
Internally, MATLAB uses OETREE environment variable to locate the root
file system of the BeagleBoard and shared libraries used for linking. Folder
information extracted from OETREE environment variable is used to set
up the correct GDB initialization script.

2 On the MATLAB command line execute ’eclipseidesetup’ and set the entries
in the Eclipse Adaptor Setup as shown here.

52-10

Example: Build Generated Code on a Linux Host, Then Run It Remotely on BeagleBoard

52-11

52 Working with Linux® Target

In the Target Processor pane, enter the IP address
of your board. Set the Download script to
’eclipseideext.util.remoteDownloadSecure’ and the GDB command file to
’$(MATLAB_ROOT)/toolbox/idelink/extensions/eclipseide/host/.gdbinit_angstrom’.

Generate Code for Linux-ARM

1 Enter sumdiff_codegen at the MATLAB command line. This opens the
sumdiff_codegen model.

2 Open the Target Preferences block in the model, set the IDE/Tool Chain
to Eclipse, and set Board to BeagleBoard ARM.

3 Open Simulation -> Configuration Parameters -> Code Generation
-> IDE Link dialog. In the Compiler options string edit box enter
-mfloat-abi=softfp. This option is an Angstrom distribution-specific
compiler option required to generate correct floating point code for
BeagleBoard.

4 Generate and build the ARM code. If build process is successful, you code
starts running on the board automatically.

5 You can, alternatively, run the generate code by downloading to the target
file system. On a Linux command shell, you can execute the following:

> scp <pathtoarmexecutable>/sumdiff_codegen root@10.10.10.1:/home/root/.

> ssh root@10.10.10.1 /home/root/sumdiff_codegen

External Mode Simulation

1 To run the simulation in external mode, connect a scope to Out1 port on
the sumdiff_codegen model. Open Simulation -> Configuration Parameters
-> Code Generation -> Interface dialog. Enter the IP address of the
BeagleBoard in the MEX-file Arguments edit box under Host/Target
interface. The IP address of the board is needed for External Mode TCP/IP
connection. If the IP address of your board is 10.10.10.1, for example, enter
’10.10.10.1’ in the MEX-file Arguments edit box. Click OK and close the
dialog.

52-12

Example: Build Generated Code on a Linux Host, Then Run It Remotely on BeagleBoard

2 Click Simulation -> Connect To Target (Ctrl-T) to establish External Mode
connection.

3 Double click the Simulink Scope and examine the data retrieved from
Linux-ARM target. Observe the Scope displaying zeros indicating correct
operation.

52-13

52 Working with Linux® Target

Embedded Linux Topics

Troubleshooting “sched_setaffinity: Bad address”
Error
When you build an executable, if the build environment and target use
different libc versions, the build process terminates immediately with the
following error:

starting the model
Call to sched_setaffinity returned error status (-1).
sched_setaffinity: Bad addres

To work around this problem, you can add -static to the linker options.
However, linking the libraries statically increases the size of the executable.
To configure the linker options, complete the following steps:

1 Press Ctrl+E to open the model configuration parameters.

2 Select Code Generation > IDE Link.

3 Add -static to the Linker options string.

To solve this problem, update the development and target software so they
match. For example, in the case of the TMS320DM355 DVEVM, see the
“Installing the Software” topic in Texas Instruments TMS320DM355 DVEVM
Getting Started Guide, literature number SPRUF73.

52-14

53

Working with Microsoft
Windows Target

• “Preparing Models to Run on Windows” on page 53-2

• “Scheduler” on page 53-3

53 Working with Microsoft® Windows® Target

Preparing Models to Run on Windows
To build an executable that runs on Windows , perform the following steps:

1 Install and configure Eclipse IDE according to the instructions in Chapter
48, “Working with Eclipse IDE”.

2 Enter idelinklib_common at the MATLAB prompt. This action opens the
idelinklib_common library.

3 Copy the Target Preferences block to your model.

4 In the Initialize Configuration Parameters dialog box, set the IDE to
Eclipse, and select the processor for which you are generating code.

5 Set Operating System to None, Windows.

Selecting Windows creates a Windows tab, which you can use to set
Scheduling Mode.

6 Set the Scheduling Mode to one of these options:

• If you select real-time, the model uses a timer to trigger the base rate
at regular periods.

• If you select free-running, the model does not use a timer. Instead, the
model completes each process or thread before running the next one.

7 In IDE Link, configure the model to build and execute:

a In the model, select Simulation > Configuration Parameters.

b Select the Code Generation > IDE Link pane.

c Set Build action to Build and execute.

8 Build the model. Select Tools > Code Generation > Build Model.

After the build completes, Embedded Coder software downloads the
executable to the remote system and runs it.

53-2

Scheduler

Scheduler

In this section...

“Selecting the Operating System and Scheduling Mode” on page 53-3

“Base Rate” on page 53-4

“Running Target Applications on Multicore Processors” on page 57-10

“Limitations” on page 53-6

Selecting the Operating System and Scheduling Mode
The following table refers to the Operating System and Scheduling Mode
options in the Target Preferences block.

Operating
System

Scheduling
Mode

Behavior

Windows free_running The model generates multithreaded,
free-running code. Each rate in the
model maps to a separate thread in
the generated code. Multithreaded
code can potentially run faster than
single-threaded code.

Windows real_time The model generates multithreaded,
real-time code: Each rate in the
Simulink model runs at the rate
specified in the model. For example, a
1-s rate runs at exactly 1-s intervals.

None Not applicable The model generates free-running
code that runs in an infinite while
loop with no timing.

For more information, see “Scheduling Considerations” in the Simulink Coder
User’s Guide.

53-3

53 Working with Microsoft® Windows® Target

Base Rate
The base rate in the model maps to a thread and runs as fast as possible. In
Windows target, the timer resolution is 1 ms. The base rate priority selection
in the OS tab allows you to set a static priority for the base rate task.

The Windows OS does not have a selection. The default base rate priority is
THREAD_PRIORITY_HIGHEST (10) and the process running the generated
code has NORMAL_PRIORITY_CLASS.

The process running single-tasking models has Default scheduling policy
when model is single-tasking or there is a single rate in the model. Static
priority of the process is 0 in this case.

Running Target Applications on Multicore Processors
If you are generating code for a processor running Linux or VxWorks, you can
elect to partition the code such that each rate is placed in its own thread.
With code generated from a multi-rate model, the multi-threaded application
will be enabled for concurrent multicore execution, as scheduled by the target
operating system.

1 Create a multi-rate Simulink model.

2 Add a Target Preferences block to your model as described in the “Target
Preferences” on page 43-4 section.

3 Verify that your model uses a Rate Transition block to transition between
rates.

4 Clear the Ensure deterministic data transfer checkbox of the Rate
Transition block. This action forces the Rate Transition block to use the
most recent data available.

5 In the Target Preferences block, set Operating System to Linux or
VxWorks.

6 In the Linux or VxWorks tab of the Target Preferences block, select the
Allow tasks to execute concurrently checkbox. Selecting this option
enables the generated multi-threaded code to run concurrently on multicore
processors.

53-4

Scheduler

7 In the Configuration Parameters dialog box, on the Solver pane, set
Tasking mode for periodic sample times to Auto or Multitasking.

8 Open the Rate Transition block and clear the Ensure deterministic data
transfer checkbox. This action forces the Rate Transition block to use
the most recent data.

9 In the Target Preferences block, set Operating System to Linux or
VxWorks.

10 Select the Allow tasks to execute concurrently checkbox. Selecting
this option enables generated multi-threading code to run concurrently on
multicore processors.

11 For the best performance, in the Configuration Parameters dialog box,
on the Solver pane, set Tasking mode for periodic sample times to
Auto or Multitasking.

12 In your model, click the build button or enter Ctrl+B. The software
performs the actions you selected for Build action in the model
Configuration Parameters, under Code Generation > IDE Link.

53-5

53 Working with Microsoft® Windows® Target

Limitations

Profiling is not available for Intel x86/Pentium and AMD
K5/K6/Athlon processors running Windows or Linux
If you use Embedded Coder with Eclipse to build and run applications on
processors running Windows or Linux: The stack profiling and real-time
execution profiling is only available for ARM® processors running Linux.
Profiling is not available for Intel x86/Pentium and AMD K5/K6/Athlon
processors running Windows or Linux.

53-6

54

Working with Texas
Instruments Code
Composer Studio IDE

• “Code Composer Studio” on page 54-2

• “Getting Started” on page 54-4

• “Automation Interface” on page 54-10

• “Project Generator” on page 54-58

• “Exporting Filter Coefficients from FDATool” on page 54-69

• “Tutorial: Using XMakefile with Code Composer Studio 4.x” on page 54-85

• “Reported Limitations and Tips” on page 54-91

54 Working with Texas Instruments™ Code Composer Studio™ IDE

Code Composer Studio

In this section...

“Using Code Composer Studio with Embedded Coder Software” on page 54-2

“Default Project Configuration” on page 54-2

Using Code Composer Studio with Embedded Coder
Software
Texas Instruments (TI) facilitates development of software for TI DSPs by
offering Code Composer Studio (CCS) Integrated Development Environment
(IDE). Used in combination with Embedded Coder software and Simulink
Coder software, CCS provides an integrated environment that, once installed,
requires no coding.

Executing code generated from Simulink Coder software on a particular
target requires that you tailor the code to the specific hardware target.
Target-specific code includes I/O device drivers and interrupt service routines
(ISRs). The software must use CCS to compile and link the generated source
code in order to load and execute on a TI DSP. To help you to build an
executable, Embedded Coder software uses Embedded Coder software to start
the code building process within CCS. After you download your executable
to your target and run it, the code runs wholly on the target. You can access
the running process only from the CCS debugging tools or across a link using
Embedded Coder software. A wide range of Texas Instruments DSPs are
supported:

• TI’s C2000

• TI’s C5000™

• TI’s C6000™

Default Project Configuration
CCS offers two standard project configurations, Release and Debug. Project
configurations define sets of project build options. When you specify the build
options at the project level, the options apply to all files in your project. For
more information about the build options, refer to your TI documentation. The

54-2

Code Composer Studio™

models you build with Embedded Coder software use a custom configuration
that provides a third combination of build and optimization settings —
CustomMW.

Default Build Options in the CustomMW Configuration
The default settings for CustomMW are the same as the Release project
configuration in CCS, except for the compiler options.

Your CCS documentation provides complete details on the compiler build
options. You can change the individual settings or the build configuration
within CCS.

54-3

54 Working with Texas Instruments™ Code Composer Studio™ IDE

Getting Started

In this section...

“Overview” on page 54-4

“Configuration Information” on page 54-7

Overview

• “Automation Interface” on page 54-5

• “Project Generator” on page 54-6

• “Verification” on page 54-7

Embedded Coder software enables you to use MATLAB functions to
communicate with Code Composer Studio software and with information
stored in memory and registers on a processor. With the ticcs objects, you
can transfer information to and from Code Composer Studio software and
with the embedded objects you get information about data and functions
stored in your signal processor memory and registers, as well as information
about functions in your project.

Embedded Coder lets you build, test, and verify automatically generated code
using MATLAB, Simulink, Simulink Coder, and the Code Composer Studio
integrated development environment. You can use Embedded Coder to verify
code executing within the Code Composer Studio software environment using
a model in Simulink software. This processor-in-the-loop testing environment
uses code automatically generated from Simulink models by Embedded Coder
software. A range of Texas Instruments targets are supported:

• TI’s C2000

• TI’s C5000

• TI’s C6000

With Embedded Coder , you can use MATLAB software and Simulink
software to interactively analyze, profile and debug processor-specific code
execution behavior within CCS. In this way, Embedded Coder automates

54-4

Getting Started

deployment of the complete embedded software application and makes it
easy for you to assess possible differences between the model simulation and
processor code execution results.

Embedded Coder consists of these components:

• Project Generator—add embedded framework code to the C code generated
from Simulink models, and package as a complete IDE project

• Automation Interface—use functions in the MATLAB command window to
access and manipulate data and files in the IDE and on the processor

• Verification—verify how your programs run on your processor

With Embedded Coder, you create objects that connect MATLAB software
to Code Composer Studio software.

Note Embedded Coder uses objects. You work with them the way you use all
MATLAB objects. You can set and get their properties, and use their methods
to change them or manipulate them and the IDE to which they refer.

The next sections describe briefly the components of Embedded Coder
software.

Automation Interface
The automation interface component is a collection of methods that use the
Code Composer Studio API to communicate between MATLAB software and
Code Composer Studio. With the interface, you can do the following:

• Automate complex tasks in the development environment by writing
MATLAB software scripts to communicate with the IDE, or debug and
analyze interactively in a live MATLAB software session.

• Automate debugging by executing commands from the powerful Code
Composer Studio software command language.

• Exchange data between MATLAB software and the processor running
in Code Composer Studio software.

54-5

54 Working with Texas Instruments™ Code Composer Studio™ IDE

• Set breakpoints, step through code, set parameters and retrieve profiling
reports.

• Automate project creation, including adding source files, include paths, and
preprocessor defines.

• Configure batch building of projects.

• Debug projects and code.

• Execute API Library commands.

The automation interface provides an application program interface (API)
between MATLAB software and Code Composer Studio. Using the API, you
can create new projects, open projects, transfer data to and from memory on
the processor, add files to projects, and debug your code.

Project Generator
The Project Generator component is a collection of methods that use the Code
Composer Studio API to create projects in Code Composer Studio and generate
code with Embedded Coder. With the interface, you can do the following:

• Automated project-based build process

Automatically create and build projects for code generated by Embedded
Coder.

• Customize code generation

Use Embedded Coder with any Embedded Coder system target file (STF) to
generate processor-specific and optimized code.

• Customize the build process

• Automate code download and debugging

Rapidly and effortlessly debug generated code in the Code Composer
Studio software debugger, using either the instruction set simulator or
real hardware.

• Create and build CCS projects from Simulink software models. Project
Generator uses Simulink Coder software or Embedded Coder software to
build projects that work with C2000 software, C5000 software, and C6000
software processors.

54-6

Getting Started

• Highly customized code generation with the system target file
idelink_ert.tlc and idelink_grt.tlc that enable you to use the
Configuration Parameters in your model to customize your generated code.

• Automate the process of building and downloading your code to the
processor, and running the process on your hardware.

Verification
Verifying your processes and algorithms is an essential part of developing
applications. The components of Embedded Coder combine to provide the
following verification tools for you to apply as you develop your code:

Processor in the Loop Simulation. Use simulation techniques to verify
generated code running in an instruction set simulator or real processor
environment.

Execution Profiling. Gather execution profiling timing measurements
with Code Composer Studio to establish the timing requirements of your
algorithm. See .

Configuration Information
To determine whether Embedded Coder is installed on your system, type this
command at the MATLAB software prompt.

ver

When you enter this command, MATLAB software displays a list of the
installed products. Look for a line similar to the following:

Embedded Coder Version 4.x (Release Specifier)

To get a bit more information about the software, such as the functions
provided and where to find demos and help, enter the following command at
the prompt:

help ticcs

54-7

54 Working with Texas Instruments™ Code Composer Studio™ IDE

If you do not see the listing, or MATLAB software does not recognize the
command, you need to install Embedded Coder. Without the software, you
cannot use MATLAB software with the objects to communicate with CCS.

Verifying Your Code Composer Studio Installation
To verify that CCS is installed on your machine and has at least one board
configured, enter

ccsboardinfo

at the MATLAB software command line. With CCS installed and configured,
MATLAB software returns information about the boards that CCS recognizes
on your machine, in a form similar to the following listing.

Board Board Proc Processor Processor

Num Name Num Name Type

--- -------------------------------- --- -------------

1 C6xxx Simulator (Texas Instrum .0 6701 TMS320C6701

0 C6x13 DSK (Texas Instruments) 0 CPU TMS320C6x1x

If MATLAB software does not return information about any boards, open
your CCS installation and use the Setup Utility in CCS to configure at least
one board.

As a final test, start CCS to ensure that it starts up successfully. For
Embedded Coder to operate with CCS, the CCS IDE must be able to run on
its own.

Embedded Coder uses objects to create:

• Connections to the Code Composer Studio Integrated Development
Environment (CCS IDE)

• Connections to the RTDX™ (RTDX) interface. This object is a subset of the
object that refers to the CCS IDE.

Concepts to know about the objects in this toolbox are covered in these
sections:

• “Constructing ticcs Objects” on page 54-48

54-8

Getting Started

• “ticcs Properties and Property Values” on page 54-50

• “Overloaded Functions for ticcs Objects” on page 54-50

Refer to MATLAB Classes and Objects in your MATLAB documentation for
more details on object-oriented programming in MATLAB software.

Many of the objects use COM server features to create handles for working
with the objects. Refer to your MATLAB documentation for more information
about COM as used by MATLAB software.

54-9

54 Working with Texas Instruments™ Code Composer Studio™ IDE

Automation Interface

In this section...

“Getting Started with Automation Interface” on page 54-10

“Getting Started with RTDX” on page 54-27

“Constructing ticcs Objects” on page 54-48

“ticcs Properties and Property Values” on page 54-50

“Overloaded Functions for ticcs Objects” on page 54-50

“ticcs Object Properties” on page 54-51

Getting Started with Automation Interface

• “Introducing the Automation Interface Tutorial” on page 54-10

• “Selecting Your Processor” on page 54-14

• “Creating and Querying Objects for CCS IDE” on page 54-16

• “Loading Files into CCS” on page 54-18

• “Working with Projects and Data” on page 54-20

• “Closing the Links or Cleaning Up CCS IDE” on page 54-26

Introducing the Automation Interface Tutorial
Embedded Coder provides a connection between MATLAB software and a
processor in CCS. You can use objects to control and manipulate a signal
processing application using the computational power of MATLAB software.
This approach can help you debug and develop your application. Another
possible use for automation is creating MATLAB scripts that verify and
test algorithms that run in their final implementation on your production
processor.

Before using the functions available with the objects, you must select a
processor to be your processor because any object you create is specific to
a designated processor and a designated instance of CCS IDE. Selecting

54-10

Automation Interface

a processor is necessary for multiprocessor boards or multiple board
configurations of CCS.

When you have one board with a single processor, the object defaults to the
existing processor. For the objects, the simulator counts as a board; if you
have both a board and a simulator that CCS recognizes, you must specify
the processor explicitly.

To get you started using objects for CCS IDE software, Embedded Coder
includes a tutorial that introduces you to working with data and files. As you
work through this tutorial, you perform the following tasks that step you
through creating and using objects for CCS IDE:

1 Select your processor.

2 Create and query objects to CCS IDE.

3 Use MATLAB software to load files into CCS IDE.

4 Work with your CCS IDE project from MATLAB software.

5 Close the connections you opened to CCS IDE.

The tutorial provides a working process (a workflow) for using Embedded
Coder and your signal processing programs to develop programs for a range of
Texas Instruments processors.

During this tutorial, you load and run a digital signal processing application
on a processor you select. The tutorial demonstrates both writing to memory
and reading from memory in the ““Working with Projects and Data” on page
54-20” portion of the tutorial.

You can use the read and write methods, as described in this tutorial, to read
and write data to and from your processor.

The tutorial covers the object methods and functions for Embedded Coder.
The functions listed in the first table apply to CCS IDE independent of the
objects — you do not need an object to use these functions. The methods
listed in the second and third table requires a ticcs object that you use in the
method syntax:

54-11

54 Working with Texas Instruments™ Code Composer Studio™ IDE

Functions for Working With Embedded Coder. The following functions
do not require a ticcs object as an input argument:

Function Description

ccsboardinfo Return information about the boards that CCS
IDE recognizes as installed on your PC.

ticcs Construct an object to communicate with
CCS IDE. When you construct the object you
specify the processor board and processor.

Methods for Working with ticcs Objects. The methods in the following
table require a ticcs object as an input argument:

Method Description

address Return the address and page for an
entry in the symbol table in CCS
IDE.

display Display the properties of an object to
CCS IDE and RTDX.

halt Terminate execution of a process
running on the processor.

info Return information about the
processor or information about open
RTDX channels.

isrtdxcapable Test whether your processor
supports RTDX communications.

isrunning Test whether the processor is
executing a process.

read Retrieve data from memory on the
processor.

restart Restore the program counter (PC)
to the entry point for the current
program.

54-12

Automation Interface

Method Description

run Execute the program loaded on the
processor.

visible Set whether CCS IDE window is
visible on the desktop while CCS
IDE is running.

write Write data to memory on the
processor.

Methods for Embedded Objects. The methods in the following table
enable you to manipulate programs and memory with an embedded object:

Method Description

list Return various information listings
from Code Composer Studio
software.

read Read the information at the location
accessed by an object into MATLAB
software as numeric values.
Demonstrated with a numeric,
string, structure, and enumerated
objects.

write Write to the location referenced
by an object. Demonstrated with
numeric, string, structure, and
enumerated objects.

Running Code Composer Studio Software on Your Desktop —
Visibility. When you create a ticcs object , Embedded Coder starts CCS in
the background.

When CCS IDE is running in the background, it does not appear on your
desktop, in your task bar, or on the Applications page in the Task Manager.
It does appear as a process, cc_app.exe, on the Processes tab in Microsoft
Windows Task Manager.

54-13

54 Working with Texas Instruments™ Code Composer Studio™ IDE

You can make the CCS IDE visible with the function visible. The function
isvisible returns the status of the IDE—whether it is visible on your
desktop. To close the IDE when it is not visible and MATLAB software is not
running, use the Processes tab in Microsoft Windows Task Manager and
look for cc_app.exe.

If a link to CCS IDE exists when you close CCS, the application does not close.
Microsoft Windows software moves it to the background (it becomes invisible).
Only after you clear all links to CCS IDE, or close MATLAB software, does
closing CCS IDE unload the application. You can see if CCS IDE is running in
the background by checking in the Microsoft Windows Task Manager. When
CCS IDE is running, the entry cc_app.exe appears in the Image Name list
on the Processes tab.

When you close MATLAB software while CCS IDE is not visible, MATLAB
software closes CCS if it started the IDE. This happens because the operating
system treats CCS as a subprocess in MATLAB software when CCS is not
visible. Having MATLAB software close the invisible IDE when you close
MATLAB software prevents CCS from remaining open. You do not need to
close it using Microsoft Windows Task Manager.

If CCS IDE is not visible when you open MATLAB software, closing MATLAB
software leaves CCS IDE running in an invisible state. MATLAB software
leaves CCS IDE in the visibility and operating state in which it finds it.

Running the Interactive Tutorial. You have the option of running this
tutorial from the MATLAB software command line or entering the functions
as described in the following tutorial sections.

To run the tutorial in MATLAB software, click run ccstutorial. This
command opens the tutorial in an interactive mode where the tutorial
program provides prompts and text descriptions to which you respond to move
to the next portion of the lesson. The interactive tutorial covers the same
information provided by the following tutorial sections. You can view the
tutorial file by clicking ccstutorial.m.

Selecting Your Processor
Links for CCS IDE provides two tools for selecting a board and processor in
multiprocessor configurations. One is a command line tool called ccsboardinfo

54-14

Automation Interface

which prints a list of the available boards and processors. So that you can
use this function in a script, ccsboardinfo can return a MATLAB software
structure that you use when you want your script to select a board without
your help.

Note The board and processor you select is used throughout the tutorial.

1 To see a list of the boards and processors installed on your PC, enter the
following command at the MATLAB software prompt:

ccsboardinfo

MATLAB software returns a list that shows you all the boards and
processors that CCS IDE recognizes as installed on your system.

2 To use the Selection Utility, boardprocsel, to select a board, enter

[boardnum,procnum] = boardprocsel

When you use boardprocsel, you see a dialog box similar to the following.
Note that some entries vary depending on your board set.

3 Select a board name and processor name from the lists.

You are selecting a board and processor number that identifies your
particular processor. When you create the object for CCS IDE in the
next section of this tutorial, the selected board and processor become the
processor of the object.

4 Click Done to accept your board and processor selection and close the
dialog box.

boardnum and procnum now represent the Board name and Processor
name you selected — boardnum = 1 and procnum = 0

54-15

54 Working with Texas Instruments™ Code Composer Studio™ IDE

Creating and Querying Objects for CCS IDE
In this tutorial section, you create the connection between MATLAB software
and CCS IDE. This connection, or object, is a MATLAB software object that
you save as variable IDE_Obj.

You use function ticcs to create objects. When you create objects, ticcs
input arguments let you define other object property values, such as the global
timeout. Refer to the ticcs reference documentation for more information
on these input arguments.

Use the generated object IDE_Obj to direct actions to your processor. In the
following tasks, IDE_Obj appears in all function syntax that interact with
CCS IDE and the processor:

1 Create an object that refers to your selected board and processor. Enter the
following command at the prompt.

IDE_Obj=ticcs('boardnum',boardnum,'procnum',procnum)

If you were to watch closely, and your machine is not too fast, you see Code
Composer Studio software appear briefly when you call ticcs. If CCS IDE
was not running before you created the new object, CCS starts and runs in
the background.

2 Enter visible(IDE_Obj,1) to force CCS IDE to be visible on your desktop.

Usually, you need to interact with Code Composer Studio software while
you develop your application. The first function in this tutorial, visible,
controls the state of CCS on your desktop. visible accepts Boolean inputs
that make CCS either visible on your desktop (input to visible = 1) or
invisible on your desktop (input to visible = 0). For this tutorial, use
visible to set the CCS IDE visibility to 1.

3 Next, enter display(IDE_Obj) at the prompt to see the status information.

TICCS Object:
API version : 1.0
Processor type : Cxx
Processor name : CPU
Running? : No
Board number : 0

54-16

Automation Interface

Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

Embedded Coder provides three methods to read the status of a board
and processor:

• info— Return a structure of testable board conditions.

• display — Print information about the processor.

• isrunning— Return the state (running or halted) of the processor.

• isrtdxcapable— Return whether the hardware supports RTDX.

4 Type linkinfo = info(IDE_Obj).

The IDE_Obj link status information provides information about the
hardware as follows:

linkinfo =

boardname: 'Cxxxx Device Simulator'
procname: 'CPU_1'

isbigendian: 0
family: 320

subfamily: 103
revfamily: 11

processortype: 'simulator'
revsilicon: 0

timeout: 10

5 Check whether the processor is running by entering

runstatus = isrunning(IDE_Obj)

MATLAB software responds, indicating that the processor is stopped, as
follows:

runstatus =

0

54-17

54 Working with Texas Instruments™ Code Composer Studio™ IDE

6 At last, verify that the processor supports RTDX communications by
entering

usesrtdx = isrtdxcapable(IDE_Obj)
usesrtdx =

1

Loading Files into CCS
You have established the connection to a processor and board. Using three
methods you learned about the hardware, whether it was running, its type,
and whether CCS IDE was visible. Next, the processor needs something to do.

In this part of the tutorial, you load the executable code for the processor CPU
in CCS IDE. Embedded Coder includes a CCS project file. Through the next
tasks in the tutorial, you locate the tutorial project file and load it into CCS
IDE. The open method directs CCS to load a project file or workspace file.

Note CCS has workspace and workspace files that are different from
the MATLAB workspace files and workspace. Remember to monitor both
workspaces.

After you have executable code running on your processor, you can exchange
data blocks with it. Exchanging data is the purpose of the objects provided by
Embedded Coder software.

1 To load the appropriate project file to your processor, enter the following
command at the MATLAB software prompt. getdemoproject is a
specialized function for loading Embedded Coder demo files. It is not
supported as a standard Embedded Coder function.

demopjt= getDemoProject(IDE_Obj,'ccstutorial')

demopjt.ProjectFile

ans =

54-18

Automation Interface

C:\Temp\EmbIDELinkCCDemos_v4.1\ccstutorial\cxx\cxxx\ccstut.pjt

demoPjt.DemoDir

ans =

C:\Temp\EmbIDELinkCCDemos_v4.1\ccstutorial\cxx\cxxx

Your paths may be different if you use a different processor. Note where
the software stored the demo files on your machine. In general, Embedded
Coder software stores the demo project files in

EmbIDELinkCCDemos_v#.#

Embedded Coder creates this folder in a location where you have write
permission. There are two locations where Embedded Coder software tries
to create the demo folder, in the following order:

a In a temporary folder on your C drive, such as C:\temp\.

b If Embedded Coder software cannot use the temp folder, you see a dialog
box that asks you to select a location to store the demos.

2 Enter the following command at the MATLAB command prompt to build
the processor executable file in CCS IDE.

build(IDE_Obj,'all',20)

You may get an error related to one or more missing .lib files. If you
installed CCS IDE in a folder other than the default installation folder,
browse in your installation folder to find the missing file or files. Refer to
the path in the error message as an indicator of where to find the missing
files.

3 Change your working folder to the demo folder and enter
load(IDE_Obj,'projectname.out') to load the processor execution file,
where projectname is the tutorial you chose, such as ccstut_67x.

You have a loaded program file and associated symbol table to the IDE
and processor.

54-19

54 Working with Texas Instruments™ Code Composer Studio™ IDE

4 To determine the memory address of the global symbol ddat, enter the
following command at the prompt:

ddata = address(IDE_Obj,'ddat')
ddata =

1.0e+009 *

2.1475 0

Your values for ddata may be different depending on your processor.

Note The symbol table is available after you load the program file into the
processor, not after you build a program file.

5 To convert ddata to a hexadecimal string that contains the memory address
and memory page, enter the following command at the prompt:

dec2hex(ddata)

MATLAB software displays the following response, where the memory page
is 0x00000000 and the address is 0x80000010.

ans =

80000010
00000000

Working with Projects and Data
After you load the processor code, you can use Embedded Coder functions to
examine and modify data values in the processor.

When you look at the source file listing in the CCS IDE Project view window,
there should be a file named ccstut.c. Embedded Coder ships this file with
the tutorial and includes it in the project.

54-20

Automation Interface

ccstut.c has two global data arrays — ddat and idat— that you declare and
initialize in the source code. You use the functions read and write to access
these processor memory arrays from MATLAB software.

Embedded Coder provides three functions to control processor execution —
run, halt, and restart.

1 To demonstrate these commands, use the following function to add a
breakpoint to line 64 of ccstut.c.

insert(IDE_Obj,'ccstut.c',64)

Line 64 is

printf("Embedded Coder: Tutorial - Memory Modified by Matlab!\n");

For information about adding breakpoints to a file, refer to insert in the
online Help system. Then proceed with the tutorial.

2 To demonstrate the new functions, try the following functions.

halt(IDE_Obj) % Halt the processor.

restart(IDE_Obj) % Reset the PC to start of program.

run(IDE_Obj,'runtohalt',30); % Wait for program execution to stop at

% breakpoint (timeout = 30 seconds).

When you switch to viewing CCS IDE, you see that your program stopped
at the breakpoint you inserted on line 64, and the program printed the
following messages in the CCS IDE Stdout tab. Nothing prints in the
MATLAB command window:

Embedded Coder: Tutorial - Initialized Memory
Double Data array = 16.3 -2.13 5.1 11.8
Integer Data array = -1-508-647-7000 (call me anytime!)

3 Before you restart your program (currently stopped at line 64), change
some values in memory. Perform one of the following procedures based on
your processor.

C5xxx processor family— Enter the following functions to demonstrate
the read and write functions.

54-21

54 Working with Texas Instruments™ Code Composer Studio™ IDE

a Enter
ddatv = read(IDE_Obj,address(IDE_Obj,'ddat'),'double',4).

MATLAB software responds with

ddatv =

16.3000 -2.1300 5.1000 11.8000

b Enter idatv = read(IDE_Obj,address(IDE_Obj,'idat'),'int16',4).

Now MATLAB software responds

idatv =

-1 508 647 7000

If you used 8-bit integers (int8), the returned values would be incorrect.

idatv=read(IDE_Obj,address(IDE_Obj,'idat'),'int8',4)

idatv =

1 0 -4 1

c You can change the values stored in ddat by entering
write(IDE_Obj,address(IDE_Obj,'ddat'),double([pi 12.3
exp(-1)...
sin(pi/4)]))

The double argument directs MATLAB software to write the values to
the processor as double-precision data.

d To change idat, enter

write(IDE_Obj,address(IDE_Obj,'idat'),int32([1:4]))

Here you write the data to the processor as 32-bit integers (convenient
for representing phone numbers, for example).

e Start the program running again by entering the following command:

run(IDE_Obj,'runtohalt',30);

54-22

Automation Interface

The Stdout tab in CCS IDE reveals that ddat and idat contain new
values. Next, read those new values back into MATLAB software.

f Enter ddatv =
read(IDE_Obj,address(IDE_Obj,'ddat'),'double',4).

ddatv =

3.1416 12.3000 0.3679 0.7071

ddatv contains the values you wrote in step c.

g Verify that the change to idatv occurred by entering the following
command at the prompt:

idatv = read(IDE_Obj,address(IDE_Obj,'idat'),'int16',4)

MATLAB software returns the new values for idatv.

idatv =

1 2 3 4

h Use restart to reset the program counter for your program to the
beginning. Enter the following command at the prompt:

restart(IDE_Obj);

C6xxx processor family— Enter the following commands to demonstrate
the read and write functions.

a Enter
ddatv = read(IDE_Obj,address(IDE_Obj,'ddat'),'double',4).

MATLAB software responds with

ddatv =

16.3000 -2.1300 5.1000 11.8000

b Enter idatv = read(IDE_Obj,address(IDE_Obj,'idat'),'int16',4).

MATLAB software responds

54-23

54 Working with Texas Instruments™ Code Composer Studio™ IDE

idatv =

-1 508 647 7000

If you used 8-bit integers (int8), the returned values would be incorrect.

idatv=read(IDE_Obj,address(IDE_Obj,'idat'),'int8',4)

idatv =

1 0 -4 1

c Change the values stored in ddat by entering
write(IDE_Obj,address(IDE_Obj,'ddat'),double([pi 12.3
exp(-1)...
sin(pi/4)]))

The double argument directs MATLAB software to write the values to
the processor as double-precision data.

d To change idat, enter the following command:

write(IDE_Obj,address(IDE_Obj,'idat'),int32([1:4]))

In this command, you write the data to the processor as 32-bit integers
(convenient for representing phone numbers, for example).

e Next, start the program running again by entering the following
command:

run(IDE_Obj,'runtohalt',30);

The Stdout tab in CCS IDE reveals that ddat and idat contain new
values. Read those new values back into MATLAB software.

f Enter ddatv =
read(IDE_Obj,address(IDE_Obj,'ddat'),'double',4).

ddatv =

3.1416 12.3000 0.3679 0.7071

Verify that ddatv contains the values you wrote in step c.

54-24

Automation Interface

g Verify that the change to idatv occurred by entering the following
command:

idatv = read(IDE_Obj,address(IDE_Obj,'idat'),'int32',4)

MATLAB software returns the new values for idatv.

idatv =

1 2 3 4

h Use restart to reset the program counter for your program to the
beginning. Enter the following command at the prompt:

restart(IDE_Obj);

4 Embedded Coder offers more functions for reading and writing data to your
processor. These functions let you read and write data to the processor
registers: regread and regwrite. They let you change variable values
on the processor in real time. The functions behave slightly differently
depending on your processor. Select one of the following procedures to
demonstrate regread and regwrite for your processor.

C5xxx processor family — Most registers are memory-mapped and
available using read and write. However, the PC register is not memory
mapped. To access this register, use the special functions — regread
and regwrite. The following commands demonstrate how to use these
functions to read and write to the PC register.

a To read the value stored in register PC, enter the following command
at the prompt to indicate to MATLAB software the data type to read.
The input string binary indicates that the PC register contains a value
stored as an unsigned binary integer.

IDE_Obj.regread('PC','binary')

MATLAB software displays

ans =

33824

54-25

54 Working with Texas Instruments™ Code Composer Studio™ IDE

b To write a new value to the PC register, enter the following command.
This time, the binary input argument tells MATLAB software to write
the value to the processor as an unsigned binary integer. Notice that you
used hex2dec to convert the hexadecimal string to decimal.

IDE_Obj.regwrite('PC',hex2dec('100'),'binary')

c Verify that the PC register contains the value you wrote.

IDE_Obj.regread('PC','binary')

C6xxx processor family — regread and regwrite let you access the
processor registers directly. Enter the following commands to get data into
and out of the A0 and B2 registers on your processor.

a To retrieve the value in register A0 and store it in a variable in your
MATLAB workspace. Enter the following command:

treg = IDE_Obj.regread('A0','2scomp');

treg contains the two’s complement representation of the value in A0.

b To retrieve the value in register B2 as an unsigned binary integer, enter
the following command:

IDE_Obj.regread('B2','binary');

c Next, enter the following command to use regwrite to put the value in
treg into register A2.

IDE_Obj.regwrite('A2',treg,'2scomp');

CCS IDE reports that A0, B2, and A2 have the values you expect. Select
View > CPU Registers > Core Registers from the CCS IDE menu
bar to list the processor registers.

Closing the Links or Cleaning Up CCS IDE
Objects that you create in Embedded Coder software have COM handles to
CCS. Until you delete these handles, the CCS process (cc_app.exe in the
Microsoft Windows Task Manager) remains in memory. Closing MATLAB
software removes these COM handles, but there may be times when you want
to delete the handles without closing the application.

54-26

Automation Interface

Use clear to remove objects from your MATLAB workspace and to delete
handles they contain. clear all deletes everything in your workspace. To
retain your MATLAB software data while deleting objects and handles, use
clear objname. This applies to IDE handle objects you created with ticcs.
To remove the objects created during the tutorial, the tutorial program
executes the following command at the prompt:

clear cvar cfield uintcvar

This tutorial also closes the project in CCS with the following command:

close(IDE_Obj,projfile,'project')

To delete your link to CCS, enter clear IDE_Obj at the prompt.

Your development tutorial using Code Composer Studio IDE is done.

During the tutorial you

1 Selected your processor.

2 Created and queried links to CCS IDE to get information about the link
and the processor.

3 Used MATLAB software to load files into CCS IDE, and used MATLAB
software to run that file.

4 Worked with your CCS IDE project from MATLAB software by reading
and writing data to your processor, and changing the data from MATLAB
software.

5 Created and used the embedded objects to manipulate data in a C-like way.

6 Closed the links you opened to CCS IDE.

Getting Started with RTDX

• “Introducing the Tutorial for Using RTDX” on page 54-29

• “Creating the ticcs Objects” on page 54-33

• “Configuring Communications Channels” on page 54-36

54-27

54 Working with Texas Instruments™ Code Composer Studio™ IDE

• “Running the Application” on page 54-38

• “Closing the Connections and Channels or Cleaning Up” on page 54-45

• “Listing Functions” on page 54-48

Texas Instruments Real-Time Data Exchange (RTDX) provides “real-time,
continuous visibility into the way target applications operate in the real
world. RTDX allows system developers to transfer data between target
devices and a host without interfering with the target application.”

You can use RTDX with Embedded Coder software and Code Composer Studio
to accelerate development and deployment to Texas Instruments C2000
processors. RTDX helps you test and analyze your processing algorithms in
your MATLAB workspace. RTDX lets you interact with your process in real
time while it’s running on the processor. For example, you can:

• Send and retrieve data from memory on the processor

• Change the operating characteristics of the program

• Make changes to algorithms as needed without stopping the program or
setting breakpoints in the code

Enabling real-time interaction lets you more easily see your process or
algorithm in action, the results as they develop, and the way the process runs.

This tutorial assumes you have Texas Instruments’ Code Composer Studio
software and at least one target development board. You can use the
hardware simulator in CCS IDE to run this tutorial.

After you complete the tutorial, either in the demonstration form or by
entering the functions along with this text, you are ready to begin using
RTDX with your applications and hardware.

Note To use RTDX with the XDS100 USB JTAG Emulator and the C28027
chip, add the following line to the linker command file:

_RTDX_interrupt_mask = ~0x000000008;

54-28

Automation Interface

Introducing the Tutorial for Using RTDX
Digital signal processing development efforts begin with an idea for processing
data; an application area, such as audio or wireless communications or
multimedia computing; and a platform or hardware to host the signal
processing. Usually these processing efforts involve applying strategies like
signal filtering, compression, and transformation to change data content; or
isolate features in data; or transfer data from one form to another or one
place to another.

Developers create algorithms they need to accomplish the desired result. After
they have the algorithms, they use models and target processor development
tools to test their algorithms, to determine whether the processing achieves
the goal, and whether the processing works on the proposed platform.

Embedded Coder and the links for RTDX and CCS IDE ease the job of taking
algorithms from the model realm to the real world of the processor on which
the algorithm runs.

RTDX and links for CCS IDE provide a communications pathway to
manipulate data and processing programs on your processor. RTDX offers
real-time data exchange in two directions between MATLAB software and
your processor process. Data you send to the processor has little effect on the
running process and plotting the data you retrieve from the processor lets you
see how your algorithms are performing in real time.

To introduce the techniques and tools available in Embedded Coder for
using RTDX, the following procedures use many of the methods in the link
software to configure the processor, open and enable channels, send data to
the processor, and clean up after you finish your testing. Among the functions
covered are:

Functions From Objects for CCS IDE.

Function Description

ticcs Create connections to CCS IDE and
RTDX.

cd Change the CCS IDE working folder
from MATLAB software.

54-29

54 Working with Texas Instruments™ Code Composer Studio™ IDE

Function Description

open Load program files in CCS IDE.

run Run processes on the processor.

Functions From the RTDX Class.

Function Description

close Close the RTDX links between
MATLAB software and your
processor.

configure Determine how many channel
buffers to use and set the size of each
buffer.

disable Disable the RTDX links before you
close them.

display Return the properties of an object
in formatted layout. When you omit
the closing semicolon on a function,
disp (a built-in function) provides
the default display for the results of
the operation.

enable Enable open channels so you can use
them to send and retrieve data from
your processor.

isenabled Determine whether channels are
enabled for RTDX communications.

isreadable Determine whether MATLAB
software can read the specified
memory location.

iswritable Determine whether MATLAB
software can write to the processor.

msgcount Determine how many messages are
waiting in a channel queue.

54-30

Automation Interface

Function Description

open Open channels in RTDX.

readmat Read data matrices from the
processor into MATLAB software as
an array.

readmsg Read one or more messages from a
channel.

writemsg Write messages to the processor over
a channel.

This tutorial provides the following workflow to show you how to use many
of the functions in the links. By performing the steps provided, you work
through many of the operations yourself. The tutorial follows the general
task flow for developing digital signal processing programs through testing
with the links for RTDX.

Within this set of tasks, numbers 1, 2, and 4 are fundamental to all
development projects. Whenever you work with MATLAB software and
objects for RTDX, you perform the functions and tasks outlined and presented
in this tutorial. The differences lie in Task 3. Task 3 is the most important for
using Embedded Coder to develop your processing system.

1 Create an RTDX link to your desired processor and load the program to
the processor.

All projects begin this way. Without the links you cannot load your
executable to the processor.

2 Configure channels to communicate with the processor.

Creating the links in Task 1 did not open communications to the processor.
With the links in place, you open as many channels as you need to support
the data transfer for your development work. This task includes configuring
channel buffers to hold data when the data rate from the processor exceeds
the rate at which MATLAB software can capture the data.

3 Run your application on the processor. You use MATLAB software to
investigate the results of your running process.

54-31

54 Working with Texas Instruments™ Code Composer Studio™ IDE

4 Close the links to the processor and clean up the links and associated
debris left over from your work.

Closing channels and cleaning up the memory and links you created
ensures that CCS IDE, RTDX, and Embedded Coder are ready for the next
time you start development on a project.

This tutorial uses an executable program named rtdxtutorial_6xevm.out
as your application. When you use the RTDX and CCS IDE links to develop
your own applications, replace rtdxtutorial_6xevm.out in Task 3 with the
filename and path to your digital signal processing application.

You can view the tutorial file used here by clicking rtdxtutorial. To run this
tutorial in MATLAB software, click run rtdxtutorial.

Note To be able to open and enable channels over a link to RTDX, the
program loaded on your processor must include functions or code that define
the channels.

Your C source code might look something like this to create two channels,
one to write and one to read.

rtdx_CreateInputChannel(ichan); % processor reads from this.
rtdx_CreateOutputChannel(ochan); % processor writes to this.

These are the entries we use in int16.c (the source code that generates
rtdxtutorial_6xevm.out) to create the read and write channels.

If you are working with a model in Simulink software and using code
generation, use the To Rtdx and From Rtdx blocks in your model to add the
RTDX communications channels to your model and to the executable code
on your processor.

One more note about this tutorial. Throughout the code we use both the dot
notation (direct property referencing) to access functions and link properties
and the function form.

54-32

Automation Interface

For example, use the following command to open and configure ichan for
write mode.

IDE_Obj.rtdx.open('ichan','w');

You could use an equivalent syntax, the function form, that does not use
direct property referencing.

open(IDE_Obj.rtdx,'ichan','w');

Or, use

open(rx,'ichan','w');

if you created an alias rx to the RTDX portion of IDE_Obj, as shown by the
following command:

rx = IDE_Obj.rtdx;

Creating the ticcs Objects
With your processing model converted to an executable suitable for your
desired processor, you are ready to use the objects to test and run your model
on your processor. Embedded Coder and the objects do not distinguish
the source of the executable — whether you used Embedded Coder, CCS
IDE, or some other development tool to program and compile your model to
an executable does not affect the object connections. So long as your ..out
file is acceptable to the processor you select, Embedded Coder provides the
connection to the processor.

Before continuing with this tutorial, you must load a valid GEL file to
configure the EMIF registers of your processor and perform any required
processor initialization steps. Default GEL files provided by CCS are stored
in ..\IDE_Obj\gel in the folder where you installed CCS software. Select
File > Load_GEL in CCS IDE to load the default GEL file that matches
your processor family, such as init6x0x.gel for the Cxxxx processor family,
and your configuration.

54-33

54 Working with Texas Instruments™ Code Composer Studio™ IDE

Note If you are performing the steps in this tutorial, create demoPjt as
described in “Loading Files into CCS” on page 54-18 before continuing.

Begin the process of getting your model onto the processor by creating a an
object that refers to CCS IDE. Start by clearing all existing handles and
setting echo on so you see functions execute as the program runs:

1 clear all; echo on;

clear all has the side effect of removing debugging breakpoints and
resetting persistent variables because function breakpoints and persistent
variables are cleared whenever the MATLAB file changes or is cleared.
Breakpoints within your executable remain after clear. Clearing the
MATLAB workspace does not affect your executable.

2 Now construct the link to your board and processor by entering

IDE_Obj=ticcs('boardnum',0);

boardnum defines which board the new link accesses. In this example,
boardnum is 0. Embedded Coder connects the link to the first, and in this
case only, processor on the board. To find the boardnum and procnum values
for the boards and simulators on your system, use ccsboardinfo. When you
enter the following command at the prompt

ccsboardinfo

3 To open and load the processor file, change the path for MATLAB software
to be able to find the file.

projname = C:\Temp\EmbIDELinkCCDemos_v4.1\rtdxtutorial\cxx\cxxxp\rtdxtut_sim.pjt

outFile = C:\Temp\EmbIDELinkCCDemos_v4.1\rtdxtutorial\cxx\cxxxp\rtdxtut_sim.out

processor_dir = demoPjt.DemoDir

processor_dir = C:\Temp\EmbIDELinkCCDemos_v4.1\rtdxtutorial\cxx\cxxxp

54-34

Automation Interface

cd(IDE_Obj,processor_dir); % Go to processor directory

cd(IDE_Obj,tgt_dir); % Or IDE_Obj.cd(tgt_dir)

dir(IDE_Obj); % Or IDE_Obj.dir

To load the appropriate project file to your processor, enter the following
commands at the MATLAB software prompt. getDemoProject is a
specialized function for loading Embedded Coder demo files. It is not
supported as a standard Embedded Coder function.

demoPjt = getDemoProject(IDE_Obj,'ccstutorial');

demoPjt.ProjectFile

ans = C:\Temp\EmbIDELinkCCDemos_v4.1\ccstutorial\cxx\cxxxp\ccstut.pjt

demoPjt.DemoDir

ans = C:\Temp\EmbIDELinkCCDemos_v4.1\ccstutorial\cxx\cxxxp

Notice where the demo files are stored on your machine. In general,
Embedded Coder software stores the demo project files in

EmbIDELinkCCDemos_v#.#

For example, if you are using version 4.1 of Embedded Coder software, the
project demos are stored in EmbIDELinkCCDemos_v4.1\. Embedded Coder
software creates this folder in a location on your machine where you have
write permission. Usually, there are two locations where Embedded Coder
software tries to create the demo folder, in the order shown.

a In a temporary folder on the C drive, such as C:\temp\.

b If Embedded Coder software cannot use the temp folder, you see a dialog
box that asks you to select a location to store the demos.

4 You have reset the folder path to find the tutorial file. Now open the .out
file that matches your processor type.

IDE_Obj.open('rtdxtutorial_xxx.out')

54-35

54 Working with Texas Instruments™ Code Composer Studio™ IDE

Because open is overloaded for the CCS IDE and RTDX links, this may
seem a bit strange. In this syntax, open loads your executable file onto the
processor identified by IDE_Obj. Later in this tutorial, you use open with a
different syntax to open channels in RTDX.

In the next section, you use the new link to open and enable communications
between MATLAB software and your processor.

Configuring Communications Channels
Communications channels to the processor do not exist until you open and
enable them through Embedded Coder and CCS IDE. Opening channels
consists of opening and configuring each channel for reading or writing, and
enabling the channels.

In the open function, you provide the channel names as strings for the channel
name property. The channel name you use is not random. The channel name
string must match a channel defined in the executable file. If you specify
a string that does not identify an existing channel in the executable, the
open operation fails.

In this tutorial, two channels exist on the processor — ichan and ochan.
Although the channels are named ichan for input channel and ochan for
output channel, neither channel is configured for input or output until you
configure them from MATLAB software or CCS IDE. You could configure
ichan as the output channel and ochan as the input channel. The links would
work just the same. For simplicity, the tutorial configures ichan for input
and ochan for output. One more note—reading and writing are defined as
seen by the processor. When you write data from MATLAB software, you
write to the channel that the processor reads, ichan in this case. Conversely,
when you read from the processor, you read from ochan, the channel that
the processor writes to:

1 Configure buffers in RTDX to store the data until MATLAB software can
read it into your workspace. Often, MATLAB software cannot read data as
quickly as the processor can write it to the channel.

IDE_Obj.rtdx.configure(1024,4); % define 4 channels of 1024 bytes each

54-36

Automation Interface

Channel buffers are optional. Adding them provides a measure of insurance
that data gets from your processor to MATLAB software without getting
lost.

2 Define one of the channels as a write channel. Use ’ichan’ for the channel
name and ’w’ for the mode. Either ’w’ or ’r’ fits here, for write or read.

IDE_Obj.rtdx.open('ichan','w');

3 Now enable the channel you opened.

IDE_Obj.rtdx.enable('ichan');

4 Repeat steps 2 and 3 to prepare a read channel.

IDE_Obj.rtdx.open('ochan','r');
IDE_Obj.rtdx.enable('ochan');

5 To use the new channels, enable RTDX by entering

IDE_Obj.rtdx.enable;

You could do this step before you configure the channels — the order does
not matter.

6 Reset the global time-out to 20s to provide a little room for error. ticcs
applies a default timeout value of 10s. In some cases this may not be
enough.

IDE_Obj.rtdx.get('timeout')
ans =

10
IDE_Obj.rtdx.set('timeout', 20); % Reset timeout = 20 seconds

7 Check that the timeout property value is now 20s and that your object has
the correct configuration for the rest of the tutorial.

IDE_Obj.rtdx

RTDX Object:
API version: 1.0

54-37

54 Working with Texas Instruments™ Code Composer Studio™ IDE

Default timeout: 20.00 secs
Open channels: 2

Running the Application
To this point you have been doing housekeeping functions that are common to
any application you run on the processor. You load the processor, configure
the communications, and set up other properties you need.

In this tutorial task, you use a specific application to demonstrate a few of
the functions available in Embedded Coder that let you experiment with your
application while you develop your prototype. To demonstrate the RTDX
readmat, readmsg, and writemsg functions, you write data to your processor
for processing, then read data from the processor after processing:

1 Restart the program you loaded on the processor. restart ensures the
program counter (PC) is at the beginning of the executable code on the
processor.

IDE_Obj.restart

Restarting the processor does not start the program executing. You use run
to start program execution.

2 Type IDE_Obj.run('run');

Using ’run’ for the run mode tells the processor to continue to execute the
loaded program continuously until it receives a halt directive. In this mode,
control returns to MATLAB software so you can work in MATLAB software
while the program runs. Other options for the mode are

• ’runtohalt’ — start to execute the program and wait to return control to
MATLAB software until the process reaches a breakpoint or execution
terminates.

• ’tohalt’ — change the state of a running processor to ’runtohalt’ and
wait to return until the program halts. Use tohalt mode to stop the
running processor cleanly.

3 Type the following functions to enable the write channel and verify that the
enable takes effect.

54-38

Automation Interface

IDE_Obj.rtdx.enable('ichan');
IDE_Obj.rtdx.isenabled('ichan')

If MATLAB software responds ans = 0 your channel is not enabled and
you cannot proceed with the tutorial. Try to enable the channel again and
verify the status.

4 Write some data to the processor. Check that you can write to the
processor, then use writemsg to send the data. You do not need to enter
the if-test code shown.

if IDE_Obj.rtdx.iswritable('ichan'), % Used in a script application.

disp('writing to processor...') % Optional to display progress.

indata=1:10

IDE_Obj.rtdx.writemsg('ichan', int16(indata))

end % Used in scripts for channel testing.

The if statement simulates writing the data from within a MATLAB
software script. The script uses iswritable to check that the input channel
is functioning. If iswritable returns 0 the script would skip the write and
exit the program, or respond in some way. When you are writing or reading
data to your processor in a script or MATLAB file, checking the status of
the channels can help you avoid errors during execution.

As your application runs you may find it helpful to display progress
messages. In this case, the program directed MATLAB software to print a
message as it reads the data from the processor by adding the function

disp('writing to processor...')

Function IDE_Obj.rtdx.writemsg('ichan', int16(indata)) results in
20 messages stored on the processor. Here’s how.

When you write indata to the processor, the following code running on the
processor takes your input data from ichan, adds one to the values and
copies the data to memory:

while (!RTDX_isInputEnabled(&ichan))

{/* wait for channel enable from MATLAB */}
RTDX_read(&ichan, recvd, sizeof(recvd));

54-39

54 Working with Texas Instruments™ Code Composer Studio™ IDE

puts("\n\n Read Completed ");

for (j=1; j<=20; j++) {
for (i=0; i<MAX; i++) {

recvd[i] +=1;
}
while (!RTDX_isOutputEnabled(&ochan))

{ /* wait for channel enable from MATLAB */ }
RTDX_write(&ochan, recvd, sizeof(recvd));
while (RTDX_writing != NULL)
{ /* wait for data xfer INTERRUPT DRIVEN for Cxxxx */ }

}

Program int16_rtdx.c contains this source code. You can find the file in a
folder in the ..\tidemos\rtdxtutorial folder.

5 Type the following to check the number of available messages to read from
the processor.

num_of_msgs = IDE_Obj.rtdx.msgcount('ochan');

num_of_msgs should be zero. Using this process to check the amount of
data can make your reads more reliable by letting you or your program
know how much data to expect.

6 Type the following to verify that your read channel ochan is enabled for
communications.

IDE_Obj.rtdx.isenabled('ochan')

You should get back ans = 0— you have not enabled the channel yet.

7 Now enable and verify ’ochan’.

IDE_Obj.rtdx.enable('ochan');
IDE_Obj.rtdx.isenabled('ochan')

To show that ochan is ready, MATLAB software responds ans = 1. If not,
try enabling ochan again.

8 Type

54-40

Automation Interface

pause(5);

The pause function gives the processor extra time to process the data in
indata and transfer the data to the buffer you configured for ochan.

9 Repeat the check for the number of messages in the queue. There should be
20 messages available in the buffer.

num_of_msgs = IDE_Obj.rtdx.msgcount('ochan')

With num_of_msgs = 20, you could use a looping structure to read the
messages from the queue in to MATLAB software. In the next few steps of
this tutorial you read data from the ochan queue to different data formats
within MATLAB software.

10 Read one message from the queue into variable outdata.

outdata = IDE_Obj.rtdx.readmsg('ochan','int16')

outdata =

2 3 4 5 6 7 8 9 10 11

Notice the ’int16’ represent option. When you read data from your
processor you need to tell MATLAB software the data type you are reading.
You wrote the data in step 4 as 16-bit integers so you use the same data
type here.

While performing reads and writes, your process continues to run. You
did not need to stop the processor to get the data or send the data, unlike
using most debuggers and breakpoints in your code. You placed your data
in memory across an RTDX channel, the processor used the data, and you
read the data from memory across an RTDX channel, without stopping
the processor.

11 You can read data into cell arrays, rather than into simple double-precision
variables. Use the following function to read three messages to cell array
outdata, an array of three, 1-by-10 vectors. Each message is a 1-by-10
vector stored on the processor.

outdata = IDE_Obj.rtdx.readmsg('ochan','int16',3)

54-41

54 Working with Texas Instruments™ Code Composer Studio™ IDE

outdata =
[1x10 int16] [1x10 int16] [1x10 int16]

12 Cell array outdata contains three messages. Look at the second message,
or matrix, in outdata by using dereferencing with the array.

outdata{1,2}

outdata =

4 5 6 7 8 9 10 11 12 13

13 Read two messages from the processor into two 2-by-5 matrices in your
MATLAB workspace.

outdata = IDE_Obj.rtdx.readmsg('ochan','int16',[2 5],2)

outdata =

[2x5 int16] [2x5 int16]

To specify the number of messages to read and the data format in your
workspace, you used the siz and nummsgs options set to [2 5] and 2.

14 You can look at both matrices in outdata by dereferencing the cell array
again.

outdata{1,:}

ans =

6 8 10 12 14

7 9 11 13 15

ans =

7 9 11 13 15

8 10 12 14 16

15 For a change, read a message from the queue into a column vector.

outdata = IDE_Obj.rtdx.readmsg('ochan','int16',[10 1])

outdata =

8

9

54-42

Automation Interface

10

11

12

13

14

15

16

17

16 Embedded Coder provides a function for reading messages into
matrices–readmat. Use readmat to read a message into a 5-by-2 matrix in
MATLAB software.

outdata = readmat(IDE_Obj.rtdx,'ochan','int16',[5 2])

outdata =

9 14

10 15

11 16

12 17

13 18

Because a 5-by-2 matrix requires ten elements, MATLAB software reads
one message into outdata to fill the matrix.

17 To check your progress, see how many messages remain in the queue. You
have read eight messages from the queue so 12 should remain.

num_of_msgs = IDE_Obj.rtdx.msgcount('ochan')

num_of_msgs =
12

18 To demonstrate the connection between messages and a matrix in MATLAB
software, read data from 'ochan' to fill a 4-by-5 matrix in your workspace.

outdata = IDE_Obj.rtdx.readmat('ochan','int16',[4 5])

outdata =

10 14 18 13 17

11 15 19 14 18

54-43

54 Working with Texas Instruments™ Code Composer Studio™ IDE

12 16 11 15 19

13 17 12 16 20

Filling the matrix required two messages worth of data.

19 To verify that the last step used two messages, recheck the message count.
You should find 10 messages waiting in the queue.

num_of_msgs = IDE_Obj.rtdx.msgcount('ochan')

20 Continuing with matrix reads, fill a 10-by-5 matrix (50 matrix elements or
five messages).

outdata = IDE_Obj.rtdx.readmat('ochan','int16',[10 5])

outdata =

12 13 14 15 16

13 14 15 16 17

14 15 16 17 18

15 16 14 18 19

16 17 18 19 20

17 18 19 20 21

18 19 20 21 22

19 20 21 22 23

20 21 22 23 24

21 22 23 24 25

21 Recheck the number of messages in the queue to see that five remain.

22 flush lets you remove messages from the queue without reading them. Data
in the message you remove is lost. Use flush to remove the next message in
the read queue. Then check the waiting message count.

IDE_Obj.rtdx.flush('ochan',1)
num_of_msgs = IDE_Obj.rtdx.msgcount('ochan')

num_of_msgs =

4

54-44

Automation Interface

23 Empty the remaining messages from the queue and verify that the queue is
empty.

IDE_Obj.rtdx.flush('ochan','all')

With the all option, flush discards all messages in the ochan queue.

Closing the Connections and Channels or Cleaning Up
One of the most important programmatic processes you should do in every
RTDX session is to clean up at the end. Cleaning up includes stopping
your processor, disabling the RTDX channels you enabled, disabling RTDX
and closing your open channels. Performing this series of tasks ensures
that future processes avoid trouble caused by unexpected interactions with
remaining handles, channels, and links from earlier development work.

Best practices suggest that you include the following tasks (or an appropriate
subset that meets your development needs) in your development scripts and
programs.

We use several functions in this section; each has a purpose — the operational
details in the following list explain how and why we use each one. They are

• close — close the specified RTDX channel. To use the channel again,
you must open and enable the channel. Compare close to disable.
close('rtdx') closes the communications provided by RTDX. After you
close RTDX, you cannot communicate with your processor.

• disable— remove RTDX communications from the specified channel, but
does not remove the channel, or link. Disabling channels may be useful
when you do not want to see the data that is being fed to the channel, but
you may want to read the channel later. By enabling the channel later, you
have access to the data entering the channel buffer. Note that data that
entered the channel while it was disabled is lost.

• halt— stop a running processor. You may still have one or more messages
in the host buffer.

Use the following procedure to shut down communications between MATLAB
software and the processor, and end your session:

54-45

54 Working with Texas Instruments™ Code Composer Studio™ IDE

1 Begin the process of shutting down the processor and RTDX by stopping
the processor. Type the following functions at the prompt.

if (isrunning(IDE_Obj)) % Use this test in scripts.
IDE_Obj.halt; % Halt the processor.

end % Done.

Your processor may already be stopped at this point. In a script, you might
put the function in an if-statement as we have done here. Consider this
test to be a safety check. No harm comes to the processor if it is already
stopped when you tell it to stop. When you direct a stopped processor to
halt, the function returns immediately.

2 You have stopped the processor. Now disable the RTDX channels you
opened to communicate with the processor.

IDE_Obj.rtdx.disable('all');

If necessary, using disable with channel name and processor identifier
input arguments lets you disable only the channel you choose. When you
have more than one board or processor, you may find disabling selected
channels meets your needs.

When you finish your RTDX communications session, disable RTDX to
ensure that Embedded Coder releases your open channels before you close
them.

IDE_Obj.rtdx.disable;

3 Use one or all of the following function syntaxes to close your open
channels. Either close selected channels by using the channel name in the
function, or use the all option to close all open channels.

• IDE_Obj.rtdx.close('ichan') to close your input channel in this
tutorial.

• IDE_Obj.rtdx.close('ochan') to close your output channel in the
tutorial.

• IDE_Obj.rtdx.close('all') to close all of your open RTDX channels,
regardless of whether they are part of this tutorial.

54-46

Automation Interface

Consider using the all option with the close function when you finish
your RTDX work. Closing channels reduces unforeseen problems caused
by channel objects that exist but do not get closed correctly when you end
your session.

4 When you created your RTDX object (IDE_Obj = ticcs('boardnum',1)
at the beginning of this tutorial, the ticcs function opened CCS IDE and
set the visibility to 0. To avoid problems that occur when you close the
interface to RTDX with CCS visibility set to 0, make CCS IDE visible on
your desktop. The following if statement checks the CCS IDE visibility
and changes it if needed.

if IDE_Obj.isvisible,

IDE_Obj.visible(1);

end

Visibility can cause problems. When CCS IDE is running invisibly on your
desktop, do not use clear all to remove your links for CCS IDE and
RTDX. Without a ticcs object that references the CCS IDE you cannot
access CCS IDE to change the visibility setting, or close the application. To
close CCS IDE when you do not have an existing object, either create a new
object to access the CCS IDE, or use Microsoft Windows Task Manager to
end the process cc_app.exe, or close the MATLAB software.

5 You have finished the work in this tutorial. Enter the following commands
to close your remaining references to CCS IDE and release the associated
resources.

clear ('all'); % Calls the link destructors to remove all links.

echo off

clear all without the parentheses removes all variables from your
MATLAB workspace.

You have completed the tutorial using RTDX. During the tutorial you

1 Opened connections to CCS IDE and RTDX and used those connections to
load an executable program to your processor.

2 Configured a pair of channels so you could transfer data to and from your
processor.

54-47

54 Working with Texas Instruments™ Code Composer Studio™ IDE

3 Ran the executable on the processor, sending data to the processor for
processing and retrieving the results.

4 Stopped the executing program and closed the links to CCS IDE and RTDX.

This tutorial provides a working process for using Embedded Coder and
your signal processing programs to develop programs for a range of Texas
Instruments processors. While the processor may change, the essentials of
the process remain the same.

Listing Functions
To review a complete list of functions and methods that operate with ticcs
objects, either CCS IDE or RTDX, enter either of the following commands at
the prompt.

help ticcs
help rtdx

If you already have a ticcs object IDE_Obj, you can use dot notation to
return the methods for CCS IDE or RTDX by entering one of the following
commands at the prompt:

• IDE_Obj.methods

• IDE_Obj.rtdx.methods

In either instance MATLAB software returns a list of the available functions
for the specified link type, including both public and private functions. For
example, to see the functions (methods) for links to CCS IDE, enter:

help ticcs

Constructing ticcs Objects
When you create a connection to CCS IDE using the ticcs command, you are
creating a “ticcs object for accessing the CCS IDE and RTDX interface”. The
ticcs object implementation relies on MATLAB software object-oriented
programming capabilities.

The discussions in this section apply to the ticcs objects in Embedded Coder.

54-48

Automation Interface

Like other MATLAB software structures, objects in Embedded Coder have
predefined fields called object properties.

You specify object property values by one of the following methods:

• Setting the property values when you create the ticcs object

• Creating an object with default property values, and changing some or all
of these property values later

For examples of setting ticcs object properties, refer to ticcs.

Example — Constructor for ticcs Objects
The easiest way to create an object is to use the function ticcs to create an
object with the default properties. Create an object named IDE_Obj to refer to
CCS IDE by entering

IDE_Obj = ticcs

MATLAB software responds with a list of the properties of the object IDE_Obj
you created along with the associated default property values.

ticcs object:
API version : 1.0
Processor type : Cxx
Processor name : CPU
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

Inspecting the output reveals two objects listed—a CCS IDE object and an
RTDX object. CCS IDE and RTDX objects cannot be created separately. By
design they maintain a member class relationship; the RTDX object is a class,
a member of the CCS object class. In this example, IDE_Obj is an instance of
the class CCS. If you enter

rx = IDE_Obj.rtdx

54-49

54 Working with Texas Instruments™ Code Composer Studio™ IDE

rx is a handle to the RTDX portion of the CCS object. As an alias, rx replaces
IDE_Obj.rtdx in functions such as readmat or writemsg that use the RTDX
communications features of the CCS link. Typing rx at the command line
now produces

rx

RTDX channels : 0

The object properties are described in the function reference, and in more
detail in ticcs Object Properties. These properties are set to default values
when you construct objects.

ticcs Properties and Property Values
Objects in Embedded Coder software have properties associated with them.
Each property is assigned a value. You can set the values of most properties,
either when you create the link or by changing the property value later.
However, some properties have read-only values. And a few property values,
such as the board number and the processor to which the link attaches,
become read-only after you create the object. You cannot change those after
you create your link.

For more information about using objects and properties, refer to “Using
Objects” in MATLAB Programming Fundamentals.

Overloaded Functions for ticcs Objects
Several functions in this Embedded Coder have the same name as functions
in other MathWorks toolboxes or in MATLAB software. These behave
similarly to their original counterparts, but you apply these functions directly
to an object. This concept of having functions with the same name operate on
different types of objects (or on data) is called overloading of functions.

For example, the set command is overloaded for ticcs objects. After you
specify your link by assigning values to its properties, you can apply the
functions in this toolbox (such as readmat for using RTDX to read an array
of data from the processor) directly to the variable name you assign to your
object, without specifying your object parameters again.

54-50

Automation Interface

ticcs Object Properties

• “Quick Reference to ticcs Object Properties” on page 54-51

• “Details About ticcs Object Properties” on page 54-52

Embedded Coder provides an interface to your processor hardware so you
can communicate with processors for which you are developing systems and
algorithms. Each ticcs object comprises two objects—a CCS IDE object and an
RTDX interface object. The objects are not separable; the RTDX object is a
subclass of the CCS IDE object. Each of the objects has multiple properties.
To configure the interface objects for CCS IDE and RTDX, you set parameters
that define details such as the desired board, the processor, the timeout
period applied for communications operations, and a number of other values.
Because Embedded Coder uses objects to create the interface, the parameters
you set are called properties and you treat them as properties when you set
them, retrieve them, or modify them.

This section details the properties for the ticcs objects for CCS IDE and
RTDX. First the section provides tables of the properties, for quick reference.
Following the tables, the section offers in-depth descriptions of each property,
its name and use, and whether you can set and get the property value
associated with the property. Descriptions include a few examples of the
property in use.

MATLAB software users may find much of this handling of objects familiar.
Objects in Embedded Coder, behave like objects in MATLAB software and
the other object-oriented toolboxes. For C++ programmers, discussion of
object-oriented programming is likely to be a review.

Quick Reference to ticcs Object Properties
The following table lists the properties for the ticcs objects in Embedded
Coder. The second column tells you which object the property belongs to.
Knowing which property belongs to each object in a ticcs object tells you
how to access the property.

54-51

54 Working with Texas Instruments™ Code Composer Studio™ IDE

Property
Name

Applies
to Which
Connection?

User
Settable? Description

apiversion CCS IDE No Reports the version
number of your CCS
API.

boardnum CCS IDE Yes/initially Specifies the index number
of a board that CCS IDE
recognizes.

ccsappexe CCS IDE No Specifies the path to the
CCS IDE executable.
Read-only property.

numchannels RTDX No Contains the number of
open RTDX channels for a
specific link.

page CCS IDE Yes/default Stores the default memory
page for reads and writes.

procnum CCS IDE Yes/at start
only

Stores the number CCS
Setup Utility assigns to the
processor.

timeout CCS IDE Yes/default Contains the global
timeout setting for the
link.

version RTDX No Reports the version of your
RTDX software.

Some properties are read only — you cannot set the property value. Other
properties you can change at all times. If the entry in the User Settable
column is “Yes/initially”, you can set the property value only when you create
the link. Thereafter it is read only.

Details About ticcs Object Properties
To use the links for CCS IDE and RTDX interface you set values for:

• boardnum— specify the board with which the link communicates.

54-52

Automation Interface

• procnum — specify the processor on the board. If the board has multiple
processors, procnum identifies the processor to use.

• timeout— specify the global timeout value. (Optional. Default is 10s.)

Details of the properties associated with connections to CCS IDE and RTDX
interface appear in the following sections, listed in alphabetical order by
property name.

Many of these properties are object linking and embedding (OLE) handles.
The MATLAB software COM server creates the handles when you create
objects for CCS IDE and RTDX. You can manipulate the OLE handles using
get, set, and invoke to work directly with the COM interface with which
the handles interact.

apiversion. Property appversion contains a string that reports the version
of the application program interface (API) for CCS IDE that you are using
when you create a link. You cannot change this string. When you upgrade
the API, or CCS IDE, the string changes to match. Use display to see the
apiversion property value for a link. This example shows the appversion
value for link IDE_Obj.

display(IDE_Obj)

TICCS Object:
API version : 1.0
Processor type : Cxx
Processor name : CPU
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

Note that the API version is not the same as the CCS IDE version.

54-53

54 Working with Texas Instruments™ Code Composer Studio™ IDE

boardnum. Property boardnum identifies the board referenced by the IDE
handle object for CCS. When you create a link, you use boardnum to specify
the board you are using. To get the value for boardnum, use ccsboardinfo or
the CCS Setup utility from Texas Instruments software. The CCS Setup
utility assigns the number for each board installed on your system.

ccsappexe. Property ccsappexe contains the path to the CCS IDE
executable file cc_app.exe. When you use ticcs to create a link, MATLAB
software determines the path to the CCS IDE executable and stores the path
in this property. This is a read-only property. You cannot set it.

numchannels. Property numchannels reports the number of open RTDX
communications channels for an RTDX link. Each time you open a channel for
a link, numchannels increments by one. For new links numchannels is zero
until you open a channel for the link.

To see the value for numchannels create a link to CCS IDE. Then open a
channel to RTDX. Use display to see the RTDX link properties.

IDE_Obj=ticcs

TICCS Object:
API version : 1.0
Processor type : Cxx
Processor name : CPU
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

rx=IDE_Obj.rtdx

RTDX channels : 0

open(rx,'ichan','r','ochan','w');

get(IDE_Obj.rtdx)

54-54

Automation Interface

ans =

numChannels: 2
Rtdx: [1x1 COM]

RtdxChannel: {'' '' ''}
procType: 103
timeout: 10

page. Property page contains the default value CCS IDE uses when the
user does not specify the page input argument in the syntax for a function
that access memory.

procnum. Property procnum identifies the processor referenced by the IDE
handle object for CCS. When you create an object, you use procnum to specify
the processor you are using . The CCS Setup Utility assigns a number to each
processor installed on each board. To determine the value of procnum for a
processor, use ccsboardinfo or the CCS Setup utility from Texas Instruments
software.

To identify a processor, you need both the boardnum and procnum values.
For boards with one processor, procnum equals zero. CCS IDE numbers the
processors on multiprocessor boards sequentially from 0 to the number of
processors. For example, on a board with four processors, the processors
are numbered 0, 1, 2, and 3.

rtdx. Property rtdx is a subclass of the ticcs link and represents the RTDX
portion of the IDE handle object for CCS. As shown in the example, rtdx
has properties of its own that you can set, such as timeout, and that report
various states of the link.

get(IDE_Obj.rtdx)

ans =

version: 1
numChannels: 0

Rtdx: [1x1 COM]
RtdxChannel: {'' [] ''}

procType: 103
timeout: 10

54-55

54 Working with Texas Instruments™ Code Composer Studio™ IDE

In addition, you can create an alias to the rtdx portion of a link, as shown
in this code example.

rx=IDE_Obj.rtdx

RTDX channels : 0

Now you can use rx with the functions in Embedded Coder, such as get or set.
If you have two open channels, the display looks like the following example:

get(rx)

ans =

numChannels: 2
Rtdx: [1x1 COM]

RtdxChannel: {2x3 cell}
procType: 98
timeout: 10

rtdxchannel. Property rtdxchannel, along with numchannels and
proctype, is a read-only property for the RTDX portion of the IDE handle
object for CCS. To see the value of this property, use get with the link.
Neither set nor invoke work with rtdxchannel.

rtdxchannel is a cell array that contains the channel name, handle, and
mode for each open channel for the link. For each open channel, rtdxchannel
contains three fields, as follows:

.rtdxchannel{i,1} Channel name of the ith-channel, i from 1 to the
number of open channels

.rtdxchannel{i,2} Handle for the ith-channel

.rtdxchannel{i,3} Mode of the ith-channel, either 'r' for read or
'w' for write

With four open channels, rtdxchannel contains four channel elements and
three fields for each channel element.

54-56

Automation Interface

timeout. Property timeout specifies how long CCS IDE waits for any process
to finish. Two timeout periods can exist — one global, one local. You set the
global timeout when you create the IDE handle object for CCS. The default
global timeout value 10 s. However, when you use functions to read or write
data to CCS IDE or your processor, you can set a local timeout that overrides
the global value. If you do not set a specific timeout value in a read or write
process syntax, the global timeout value applies to the operation. Refer to the
help for the read and write functions for the syntax to set the local timeout
value for an operation.

version. Property version reports the version number of your RTDX
software. When you create a ticcs object, version contains a string that
reports the version of the RTDX application that you are using. You cannot
change this string. When you upgrade the API, or CCS IDE, the string
changes to match. Use display to see the version property value for a link.
This example shows the apiversion value for object rx.

get(rx) % rx is an alias for IDE_Obj.rtdx.

ans =

version: 1
numChannels: 0

Rtdx: [1x1 COM]
RtdxChannel: {'' [] ''}

procType: 103
timeout: 10

54-57

54 Working with Texas Instruments™ Code Composer Studio™ IDE

Project Generator

In this section...

“Introducing Project Generator” on page 54-58

“Project Generation and Board Selection” on page 54-58

“Project Generator Tutorial” on page 54-60

“Model Reference” on page 54-65

Introducing Project Generator
Project generator provides the following features for developing project and
generating code:

• Support automated project building for Texas Instruments’ Code Composer
Studio software that lets you create projects from code generated by
Embedded Coder products. The project automatically populates CCS
projects in the CCS development environment.

• Configure code generation using model configuration parameters and
processor preferences block options

• Select from two system target files to generate code specific to your
processor

• Configure project build process

• Automatically download and run your generated projects on your processor

Note You cannot generate code for C6000 processors in big-endian mode.
Code generation supports only little-endian processor data byte order.

Project Generation and Board Selection
Project Generator uses ticcs objects to connect to the IDE. Each time you
build a model to generate a project, the build process starts by issuing the
ticcs method, as shown here:

IDE_Obj=ticcs('boardnum',boardnum,'procnum',procnum)

54-58

Project Generator

The software attempts to connect to the board (boardnum) and processor
(procnum) associated with the Board name and Processor number
parameters in the Target Preferences block in the model.

The result of the ticcs method changes, depending on the boards you
configured in CCS. The following table describes how the software selects the
board to connect to in your board configuration.

CCS Board Configuration State Response by Software

Code Composer Studio or Embedded
Coder software not installed.

Returns an error message asking
you to verify that you installed
both Code Composer Studio and
Embedded Coder properly.

Code Composer Studio software does
not have any configured boards.

Returns an error message that the
software could not find any boards in
your configuration. Use Setup Code
Composer Studio™ to configure at
least one board.

Code Composer Studio software has
one configured board.

Attaches to the board regardless of
the name of the board supplied in
the Target Preferences block. You
see a warning message telling you
which board the software selected.

Code Composer Studio software has
one board configured that does not
match the board name in the Target
Preferences block.(*)

Returns a warning message that
the software could not find the
board specified in the block and
connected to the board listed in the
warning message. The software
connects to the first board in your
CCS configuration.

54-59

54 Working with Texas Instruments™ Code Composer Studio™ IDE

CCS Board Configuration State Response by Software

Code Composer Studio has more
than one board configured. The
board name specified in the Target
Preferences block is one of the
configured boards.

Connects to the specified board.

Code Composer Studio has more
than one board configured. The
board name specified in the Target
Preferences block is not one of the
configured boards.(*)

Returns a message asking you
to select a board from the list of
configured boards. You have two
choices:
• Select a board to use for project
generation, and click OK. Your
selection does not change the
board specified in the Target
Preferences block. The software
connects to the selected board.

• Click Abort to stop the project
build and code generation process.
The software does not connect to
the IDE or board.

(*)You may encounter the situation where you do not have the correct board
configured in CCS because of one of the following conditions:

• You changed your board configuration after you added the Target
Preferences block to a model and saved the model. When you reopen the
model, the board specified in Board name in the block is no longer in
your configuration.

• You are working with a model from a source whose board configuration is
not the same as yours. The model includes a Target Preferences block.

Use ccsboardinfo at the MATLAB prompt to verify or review your configured
boards.

Project Generator Tutorial

• “Creating the Model” on page 54-61

54-60

Project Generator

• “Adding the Target Preferences Block to Your Model” on page 54-62

• “Specify Configuration Parameters for Your Model” on page 54-62

In this tutorial you will use the Embedded Coder software to:

• Build a model.

• Generate a project from the model.

• Build the project and run the binary on a processor.

Note The model demonstrates project generation. You cannot not build and
run the model on your processor without additional blocks.

To generate a project from a model, complete the following tasks:

1 Create a model application.

2 Add a Target Preferences block to your model as described in “Target
Preferences” on page 43-4.

3 Set the configuration parameters for your model, including

• Solver parameters such as simulation start and solver options

• Software options such as processor configuration and processor compiler
selection

4 Generate your project.

5 Review your project in CCS.

Creating the Model
To create the model for audio reverberation, follow these steps:

1 Start Simulink software.

2 Create a new model by selecting File > New > Model from the Simulink
menu bar.

54-61

54 Working with Texas Instruments™ Code Composer Studio™ IDE

3 Use Simulink blocks and DSP System Toolbox blocks to create the following
model.

Look for the Integer Delay block in the Discrete library of Simulink blocks
and the Gain block in the Commonly Used Blocks library. Do not add the
Target Preferences block at this time.

4 Save your model with a suitable name before continuing.

Adding the Target Preferences Block to Your Model
Add and configure a Target Preferences block to your model as described in
“Target Preferences” on page 43-4.

You have completed the model. Now configure the model configuration
parameters to generate a project in CCS IDE from your model.

Specify Configuration Parameters for Your Model
The following sections describe how to configure the build and run parameters
for your model. Generating a project, or building and running a model on
the processor, starts with configuring model options in the Configuration
Parameters dialog box in Simulink software.

Setting Solver Parameters. After you have designed and implemented your
digital signal processing model in Simulink software, complete the following
steps to set the configuration parameters for the model:

1 Open the Configuration Parameters dialog box and set the appropriate
options on the Solver category for your model and for Embedded Coder.

• Set Start time to 0.0 and Stop time to inf (model runs without
stopping). If you set a stop time, your generated code does not honor the
setting. Set this to inf for completeness.

54-62

Project Generator

• Under Solver options, select the fixed-step and discrete settings
from the lists

• Set the Fixed step size to Auto and the Tasking Mode to Single
Tasking

Note Generated code does not honor Simulink software stop time from the
simulation. Stop time is interpreted as inf. To implement a stop in generated
code, add a Stop Simulation block in your model.

When you use PIL, you can set the Solver options to any selection from
the Type and Solver lists.

Ignore the Data Import/Export, Diagnostics, and Optimization categories
in the Configuration Parameters dialog box. The default settings are correct
for your new model.

Setting Code Generation Parameters. To configure your software to
use the correct processor files and to compile and run your model executable
file, set the options in the Code Generation category of the Select tree in
the Configuration Parameters dialog box. Follow these steps to set the code
generation options for your target:

1 Select Code Generation on the Select tree.

2 In Target selection, use the Browse button to set System target file
to idelink_grt.tlc.

Setting Embedded Coder Parameters. To configure your software to
use the correct code generation options and to compile and run your model
executable file, set the options in the IDE Link category of the Select tree in
the Configuration Parameters dialog box. Follow these steps to set the code
generation options for your processor:

1 From the Select tree, choose IDE Link to specify code generation options
that apply to your processor.

2 Set the following options in the pane under Project options:

54-63

54 Working with Texas Instruments™ Code Composer Studio™ IDE

• Project options should be Custom.

• Set Compiler options string and Linker options string should be
blank.

3 Under Link Automation, verify that Export IDE link handle to base
workspace is selected and provide a name for the handle in IDE handle
name (optional).

4 Set the following Runtime options:

• Build action: Build_and_execute.

• Interrupt overrun notification method: None.

You have configured the your software options that let you generate a project
for you processor. You may have noticed that you did not configure a few
categories on the Select tree, such as Comments, Symbols, and Optimization.

For your new model, the default values for the options in these categories
are correct. For other models you develop, you may want to set the options
in these categories to provide information during the build and to run TLC
debugging when you generate code. Refer to your product documentation for
more information about setting the configuration parameters.

Building Your Project. After you set the configuration parameters and
configure the coder software to create the files you need, you direct the build
process to create your project:

1 Press OK to close the Configuration Parameters dialog box.

2 Click Ctrl+B to generate your project into CCS IDE.

When you click Build with Create_project selected for Build action,
the automatic build process starts CCS IDE, populates a new project in
the development environment, builds the project, loads the binary on the
processor, and runs it.

3 To stop processor execution, use the Halt option in CCS or enter
IDE_Obj.halt at the MATLAB command prompt. (Where “IDE_Obj”
is the IDE handle name you specified previously in Configuration
Parameters.)

54-64

Project Generator

Model Reference
Model reference lets your model include other models as modular components.
This technique provides useful features because it:

• Simplifies working with large models by letting you build large models
from smaller ones, or even large ones.

• Lets you generate code once for all the modules in the entire model and
only regenerate code for modules that change.

• Lets you develop the modules independently.

• Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

Your product documentation provides much more information about model
reference.

How Model Reference Works
Model reference behaves differently in simulation and in code generation. For
this discussion, you need to know the following terms:

• Top model — The root model block or model. It refers to other blocks or
models. In the model hierarchy, this is the topmost model.

• Referenced models — Blocks or models that other models reference, such
as models the top model refers to. All models or blocks below the top model
in the hierarchy are reference models.

The following sections describe briefly how model reference works. More
details are available in your product documentation in the online Help system.

Model Reference in Simulation. When you simulate the top model, the
coder software detects that your model contains referenced models. Simulink
software generates code for the referenced models and uses the generated code
to build shared library files for updating the model diagram and simulation.
It also creates an executable (a MEX file, .mex) for each reference model that
is used to simulate the top model.

54-65

54 Working with Texas Instruments™ Code Composer Studio™ IDE

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink software rebuilds the model reference files. Whether
reference files or models are rebuilt depends on whether and how you change
the models and on the Rebuild options settings. You can access these
setting through theModel Reference pane of the Configuration Parameters
dialog box.

Model Reference in Code Generation. Embedded Coder software requires
executables to generate code from models. If you have not simulated your
model at least once, the coder software creates a .mex file for simulation.

Next, for each referenced model, the code generation process calls make_rtw
and builds each referenced model. This build process creates a library file for
each of the referenced models in your model.

After building all the referenced models, the coder software calls make_rtw
on the top model, linking to all the library files it created for the associated
referenced models.

Using Model Reference
With few limitations or restrictions, Embedded Coder provides full support
for generating code from models that use model reference.

Build Action Setting. The most important requirement for using model
reference with the TI’s processors is that you must set the Build action (go
to Configuration Parameters > IDE Link) for all models referred to in
the simulation to Archive_library.

To set the build action

1 Open your model.

2 Select Simulation > Configuration Parameters from the model menus.

The Configuration Parameters dialog box opens.

3 From the Select tree, choose IDE Link.

4 In the right pane, under Runtime, select set Archive_library from the
Build action list.

54-66

Project Generator

If your top model uses a reference model that does not have the build action
set to Archive_library, the build process automatically changes the build
action to Archive_library and issues a warning about the change.

As a result of selecting the Archive_library setting, other options are
disabled:

• DSP/BIOS is disabled for all referenced models. Only the top model
supports DSP/BIOS operation.

• Interrupt overrun notification method, Export IDE link handle
to the base workspace, and System stack size are disabled for the
referenced models.

Target Preferences Blocks in Reference Models. Each referenced model
and the top model must include a Target Preferences block for the correct
processor. You must configure all the Target Preferences blocks for the same
processor.

To obtain information about which compiler to use and which archiver to
use to build the referenced models, the referenced models require Target
Preferences blocks. Without them, the compile and archive processes does
not work.

By design, model reference does not allow information to pass from the top
model to the referenced models. Referenced models must contain all the
necessary information, which the Target Preferences block in the model
provides.

Other Block Limitations. Model reference with Embedded Coder does not
allow you to use certain blocks or S-functions in reference models:

• No blocks from the C62x DSP Library (in c6000lib) (because these are
noninlined S-functions)

• No blocks from the C64x DSP Library (in c6000lib) (because these are
noninlined S-functions)

• No noninlined S-functions

• No driver blocks, such as the ADC or DAC blocks from any Embedded
Coder block library

54-67

54 Working with Texas Instruments™ Code Composer Studio™ IDE

Configuring processors to Use Model Reference
processors that you plan to use in Model Referencing must meet some general
requirements.

• A model reference compatible processor must be derived from the ERT or
GRT processors.

• When you generate code from a model that references another model, you
need to configure both the top-level model and the referenced models for
the same code generation processor.

• The External mode option is not supported in model reference processor
builds. Embedded Coder does not support External mode. If you select this
option, it is ignored during code generation.

• To support model reference builds, your TMF must support use of
the shared utilities folder, as described in Supporting Shared Utility
Directories in the Build Process in the Simulink Coder documentation.

To use an existing processor, or a new processor, with Model Reference, you
set the ModelReferenceCompliant flag for the processor. For information
on how to set this option, refer to ModelReferenceCompliant in the online
Help system.

If you start with a model that was created prior to version 2.4 (R14SP3), to
make your model compatible with the model reference processor, use the
following command to set the ModelReferenceCompliant flag to On:

set_param(bdroot,'ModelReferenceCompliant','on')

Models that you develop with versions 2.4 and later of Embedded Coder
automatically include the model reference capability. You do not need to
set the flag.

54-68

Exporting Filter Coefficients from FDATool

Exporting Filter Coefficients from FDATool

In this section...

“About FDATool” on page 54-69

“Preparing to Export Filter Coefficients to Code Composer Studio Projects”
on page 54-70

“Exporting Filter Coefficients to Your Code Composer Studio Project” on
page 54-74

“Preventing Memory Corruption When You Export Coefficients to Processor
Memory” on page 54-79

About FDATool
Signal Processing Toolbox™ software provides the Filter Design and Analysis
tool (FDATool) that lets you design a filter and then export the filter
coefficients to a matching filter implemented in a CCS project.

Using FDATool with CCS IDE enables you to:

• Design your filter in FDATool

• Use CCS to test your filter on a processor

• Redesign and optimize the filter in FDATool

• Test your redesigned filter on the processor

For instructions on using FDATool, refer to the section “Filter Design and
Analysis Tool” in the Signal Processing Toolbox documentation.

Procedures in this chapter demonstrate how to use the FDATool export
options to export filter coefficients to CCS. Using these procedures, you can
perform the following tasks:

• Export filter coefficients from FDATool in a header file—“Exporting Filter
Coefficients from FDATool to the CCS IDE Editor” on page 54-75

• Export filter coefficients from FDATool to processor memory—“Replacing
Existing Coefficients in Memory with Updated Coefficients” on page 54-81

54-69

54 Working with Texas Instruments™ Code Composer Studio™ IDE

Caution As a best practice, export coefficients in a header file for the most
reliable results. Exporting coefficients directly to processor memory can
generate unexpected results or corrupt memory.

Also see the reference pages for the following functions. These primary
functions allow you use to access variables and write them to processor
memory from the MATLAB Command window.

• address— Return the address of a symbol so you can read or write to it.

• ticcs— Create a connection between MATLAB software and CCS IDE so
you can work with the project in CCS from the MATLAB Command window.

• write — Write data to memory on the processor.

Preparing to Export Filter Coefficients to Code
Composer Studio Projects

• “Features of a Filter” on page 54-70

• “Selecting the Export Mode” on page 54-71

• “Choosing the Export Data Type” on page 54-72

Features of a Filter
When you create a filter in FDATool, the filter includes defining features
identified in the following table.

Defining
Feature

Description

Structure Structure defines how the elements of a digital
filter—gains, adders/subtractors, and delays—combine
to form the filter. See the Signal Processing Toolbox
documentation in the Online Help system for more
information about filter structures.

Design Method Defines the mathematical algorithm used to determine
the filter response, length, and coefficients.

54-70

Exporting Filter Coefficients from FDATool

Defining
Feature

Description

Response
Type and
Specifications

Defines the filter passband shape, such as lowpass or
bandpass, and the specifications for the passband.

Coefficients Defines how the filter structure responds at each stage
of the filter process.

Data Type Defines how to represent the filter coefficients and
the resulting filtered output. Whether your filter uses
floating-point or fixed-point coefficients affects the filter
response and output data values.

When you export your filter, FDATool exports only the number of and value of
the filter coefficients and the data type used to define the coefficients.

Selecting the Export Mode
You can export a filter by generating an ANSI C header file, or by writing
the filter coefficients directly to processor memory. The following table
summarizes when and how to use the export modes.

To…
Use Export
Mode… When to Use Suggested Use

Add filter
coefficients
to a project in
CCS

C header
file

You implemented a
filter algorithm in your
program, but you did
not allocate memory on
your processor for the
filter coefficients.

• Add the generated ANSI C header file
to an appropriate project. Building
and loading this project into your
processor allocates static memory
locations on the processor and writes
your filter coefficients to those
locations.

• Edit the file so the header file allocates
extra processor memory and then add
the header file to your project. Refer
to “Allocating Sufficient or Extra
Memory for Filter Coefficients” on
page 54-80 in the next section.

54-71

54 Working with Texas Instruments™ Code Composer Studio™ IDE

To…
Use Export
Mode… When to Use Suggested Use

(For a sample generated header file,
refer to“Reviewing ANSI C Header File
Contents” on page 54-77.)

Modify
the filter
coefficients in
an embedded
application
loaded on a
processor

Write
directly
to memory

You loaded a program
on your processor.
The program allocated
space in your processor
memory to store the
filter coefficients.

• Optimize your filter design in
FDATool.

Then,

• Write the updated filter coefficients
directly to the allocated processor
memory. Refer to section “Preventing
Memory Corruption When You Export
Coefficients to Processor Memory” on
page 54-79 for more information.

Choosing the Export Data Type
The export process provides two ways you can specify the data type to use
to represent the filter coefficients. Select one of the options shown in the
following table when you export your filter.

Specify Data Type for
Export

Description

Export suggested Uses the data type that FDATool suggests to
preserve the fidelity of the filter coefficients
and the performance of your filter in the
project

Export as Lets you specify the data type to use to
export the filter coefficients

FDATool exports filter coefficients that use the following data types directly
without modifications:

• Signed integer (8, 16, or 32 bits)

• Unsigned integer (8, 16, or 32 bits)

54-72

Exporting Filter Coefficients from FDATool

• Double-precision floating point (64 bits)

• Single-precision floating point (32 bits)

Filters in FDATool in the Signal Processing Toolbox software use
double-precision floating point. You cannot change the data type.

If you have installed DSP System Toolbox software, you can use the filter
quantization options in FDATool to set the word and fraction lengths
that represent your filter coefficients. For information about using the
quantization options, refer to Filter Design and Analysis Tool in the Filter
Design Toolbox documentation in the Online help system.

If your filter uses one of the supported data types, Export suggested
specifies that data type.

If your filter does not use one of the supported data types, FDATool converts
the unsupported data type to one of the supported types and then suggests
that data type. For more information about how FDATool determines the data
type to suggest, refer to “How FDATool Determines the Export Suggested
Data Type” on page 54-74.

Follow these best-practice guidelines when you implement your filter
algorithm in source code and design your filter in FDATool:

• Implement your filter using one of the data types FDATool exports without
modifications.

• Design your filter in FDATool using the data type you used to implement
your filter.

To Choose the Export Data Type. When you export your filter, follow
this procedure to select the export data type to ensure the exported filter
coefficients closely match the coefficients of your filter in FDATool.

1 In FDATool, select Targets > Code Composer Studio IDE to open the
Export to Code Composer Studio IDE dialog box.

2 Perform one of the following actions:

• Select Export suggested to export the coefficients in the suggested
data type.

54-73

54 Working with Texas Instruments™ Code Composer Studio™ IDE

• Select Export as and choose the data type your filter requires from
the list.

Caution If you select Export as, the exported filter coefficients can
be very different from the filter coefficients in FDATool. As a result,
your filter cutoff frequencies and performance may not match your
design in FDATool.

How FDATool Determines the Export Suggested Data Type. By default,
FDATool represents filter coefficients as double-precision floating-point data.
When you export your filter coefficients, FDATool suggests the same data
type.

If you set custom word and fraction lengths to represent your filter
coefficients, the export process suggests a data type to maintain the best
fidelity for the filter.

The export process converts your custom word and fraction lengths to a
suggested export data type, using the following rules:

• Round the word length up to the nearest larger supported data type. For
example, round an 18-bit word length up to 32 bits.

• Set the fraction length to the maintain the same difference between the
word and fraction length in the new data type as applies in the custom
data type.

For example, if you specify a fixed-point data type with word length of
14 bits and fraction length of 11 bits, the export process suggests an
integer data type with word length of 16 bits and fraction length of 13
bits, retaining the 3 bit difference.

Exporting Filter Coefficients to Your Code Composer
Studio Project

• “Exporting Filter Coefficients from FDATool to the CCS IDE Editor” on
page 54-75

• “Reviewing ANSI C Header File Contents” on page 54-77

54-74

Exporting Filter Coefficients from FDATool

Exporting Filter Coefficients from FDATool to the CCS IDE Editor
In this section, you export filter coefficients to a project by generating an
ANSI C header file that contains the coefficients. The header file defines
global arrays for the filter coefficients. When you compile and link the project
to which you added the header file, the linker allocates the global arrays in
static memory locations in processor memory.

Loading the executable file into your processor allocates enough memory
to store the exported filter coefficients in processor memory and writes the
coefficients to the allocated memory.

Use the following steps to export filter coefficients from FDATool to the CCS
IDE text editor.

1 Start FDATool by entering fdatool at the MATLAB command prompt.

fdatool % Starts FDATool.

2 Design a filter with the same structure, length, design method,
specifications, and data type you implemented in your source code filter
algorithm.

The following figure shows a Direct-form II IIR filter example that uses
second-order sections.

3 Click Store Filter to store your filter design. Storing the filter allows
you to recall the design to modify it.

4 To export the filter coefficients, select Targets > Code Composer Studio
IDE from the FDATool menu bar.

The Export to Code Composer Studio IDE dialog box opens, as shown in
the following figure.

5 Set Export mode to C header file.

54-75

54 Working with Texas Instruments™ Code Composer Studio™ IDE

6 In Variable names in C header file, enter variable names for the
Numerator, Denominator, Numerator length, and Denominator
length parameters where the coefficients will be stored.

The dialog box shows only the variables you need to export to define your
filter.

Note You cannot use reserved ANSI C programming keywords, such as
if or int as variable names, or include invalid characters such as spaces
or semicolons (;).

7 In Data type to use in export, select Export suggested to accept the
recommended export data type. FDATool suggests a data type that retains
filter coefficient fidelity.

You may find it useful to select the Export as option and select an export
data type other than the one suggested.

Caution If you deviate from the suggested data type, the exported filter
coefficients can be very different from the filter coefficients in FDATool. As
a result, your filter cutoff frequencies and performance may not match your
design in FDATool.

For more information about how FDATool decides which data type to
suggest, refer to “How FDATool Determines the Export Suggested Data
Type” on page 54-74.

8 If you know the board number and processor number of your target, enter
DSP Board # and DSP Processor # values to identify your board.

When you have only one board or simulator, Embedded Coder software sets
DSP Board # and DSP Processor # values for your board automatically.

If you have more than one board defined in CCS Setup:

• Click Select target to open the Selection Utility dialog box.

54-76

Exporting Filter Coefficients from FDATool

• From the list of boards and list of processors, select the board name
and processor name to use.

• Click Done to set the DSP Board # and DSP Processor # values.

9 Click Generate to generate the ANSI header file. FDATool prompts you
for a file name and location to save the generated header file.

The default location to save the file is your MATLAB working folder. The
default file name is fdacoefs.h.

10 Click OK to export the header file to the CCS editor.

If CCS IDE is not open, this step starts the IDE.

The export process does not add the file to your active project in the IDE.

11 Drag your generated header file into the project that implements the filter.

12 Add a #include statement to your project source code to include the new
header file when you build your project.

13 Generate a .out file and load the file into your processor. Loading the file
allocates locations in static memory on the processor and writes the filter
coefficients to those locations.

To see an example header file, refer to “Reviewing ANSI C Header File
Contents” on page 54-77.

Reviewing ANSI C Header File Contents
The following program listing shows the exported header (.h) file that
FDATool generates. This example shows a direct-form II filter that uses five
second-order sections. The filter is stable and has linear phase.

Comments in the file describe the filter structure, number of sections,
stability, and the phase of the filter. Source code shows the filter coefficients
and variables associated with the filter design, such as the numerator length
and the data type used to represent the coefficients.

/*

* Filter Coefficients (C Source) generated by the Filter Design and Analysis Tool

54-77

54 Working with Texas Instruments™ Code Composer Studio™ IDE

*

* Generated by MATLAB(R) 7.8 and the Signal Processing Toolbox 6.11.

*

* Generated on: xx-xxx-xxxx 14:24:45

*

*/

/*

* Discrete-Time IIR Filter (real)

* -------------------------------

* Filter Structure : Direct-Form II, Second-Order Sections

* Number of Sections : 5

* Stable : Yes

* Linear Phase : No

*/

/* General type conversion for MATLAB generated C-code */

#include "tmwtypes.h"

/*

* Expected path to tmwtypes.h

* $MATLABROOT\extern\include\tmwtypes.h

*/

#define MWSPT_NSEC 11

const int NL[MWSPT_NSEC] = { 1,3,1,3,1,3,1,3,1,3,1 };

const real64_T NUM[MWSPT_NSEC][3] = {

{

0.802536131462, 0, 0

},

{

0.2642710234701, 0.5285420469403, 0.2642710234701

},

{

1, 0, 0

},

{

0.1743690465012, 0.3487380930024, 0.1743690465012

},

54-78

Exporting Filter Coefficients from FDATool

{

0.2436793028081, 0.4873586056161, 0.2436793028081

},

{

1, 0, 0

},

{

0.3768793219093, 0.7537586438185, 0.3768793219093

},

{

1, 0, 0

}

};

const int DL[MWSPT_NSEC] = { 1,3,1,3,1,3,1,3,1,3,1 };

const real64_T DEN[MWSPT_NSEC][3] = {

{

1, 0, 0

},

{

1, -0.1842138030775, 0.1775781189277

},

{

1, 0, 0

},

{

1, -0.2160098642842, 0.3808329528195

},

{

1, 0, 0

}

};

Preventing Memory Corruption When You Export
Coefficients to Processor Memory

• “Allocating Sufficient or Extra Memory for Filter Coefficients” on page
54-80

• “Example: Using the Exported Header File to Allocate Extra Processor
Memory” on page 54-80

54-79

54 Working with Texas Instruments™ Code Composer Studio™ IDE

• “Replacing Existing Coefficients in Memory with Updated Coefficients” on
page 54-81

• “Example: Changing Filter Coefficients Stored on Your Processor” on
page 54-82

Allocating Sufficient or Extra Memory for Filter Coefficients
You can allocate extra memory by editing the generated ANSI C header file.
You can then load the associated program file into your processor as described
in “Example: Using the Exported Header File to Allocate Extra Processor
Memory” on page 54-80. Extra memory lets you change filter coefficients and
overwrite existing coefficients stored in processor memory more easily.

To prevent problems when you update filter coefficients in a project, , such as
writing coefficients to unintended memory locations, use the C header file
export mode option in FDATool to update filter coefficients in your program.

Example: Using the Exported Header File to Allocate Extra
Processor Memory
You can edit the generated header file so the linked program file allocates
extra processor memory. By allocating extra memory, you avoid the problem
of insufficient memory when you export new coefficients directly to allocated
memory.

For example, changing the following command in the header file:

const real64_T NUM[47] = {...}

to

real64_T NUM[256] = {...}

allocates enough memory for NUM to store up to 256 numerator filter
coefficients rather than 47.

Exporting the header file to CCS IDE does not add the filter to your project.
To incorporate the filter coefficients from the header file, add a #include
statement:

#include "headerfilename.h"

54-80

Exporting Filter Coefficients from FDATool

Refer to “Exporting Filter Coefficients to Your Code Composer Studio Project”
on page 54-74 for information about generating a header file to export filter
coefficients.

When you export filter coefficients directly to processor memory, the export
process writes coefficients to as many memory locations as they need. The
write process does not perform bounds checking. To ensure you write to the
correct locations, and have enough memory for your filter coefficients, plan
memory allocation carefully.

Replacing Existing Coefficients in Memory with Updated
Coefficients
When you redesign a filter and export new coefficients to replace existing
coefficients in memory, verify the following conditions for your new design:

• Your redesign did not increase the memory required to store the coefficients
beyond the allocated memory.

Changes that increase the memory required to store the filter coefficients
include the following redesigns:

- Increasing the filter order

- Changing the number of sections in the filter

- Changing the numerical precision (changing the export data type)

• Your changes did not change the export data type.

Caution Identify changes that require additional memory to store the
coefficients before you begin your export. Otherwise, exporting the new filter
coefficients may overwrite data in memory locations you did not allocate for
storing coefficients. Also, exporting filter coefficients to memory after you
change the filter order, structure, design algorithm, or data type can yield
unexpected results and corrupt memory.

Changing the filter design algorithm in FDATool, such as changing from
Butterworth to Maximally Flat, often changes the number of filter coefficients
(the filter order), the number of sections, or both. Also, the coefficients from

54-81

54 Working with Texas Instruments™ Code Composer Studio™ IDE

the new design algorithm may not perform properly with your source code
filter implementation.

If you change the design algorithm, verify that your filter structure and
length are the same after you redesign your filter, and that the coefficients
will perform properly with the filter you implemented.

If you change the number of sections or the filter order, your filter will not
perform properly unless your filter algorithm implementation accommodates
the changes.

Example: Changing Filter Coefficients Stored on Your Processor
This example writes filter coefficients to processor memory to replace the
existing coefficients. To perform this process, you need the names of the
variables in which your project stores the filter data.

Before you export coefficients directly to memory, verify that your project
allocated enough memory for the new filter coefficients. If your project
allocated enough memory, you can modify your filter in FDATool and then
follow the steps in this example to export the updated filter coefficients to
the allocated memory.

If your new filter requires additional memory space, use a C header file to
allocate memory on the processor and export the new coefficients as described
in “Exporting Filter Coefficients to Your Code Composer Studio Project” on
page 54-74.

For important guidelines on writing directly to processor memory, refer to
“Preventing Memory Corruption When You Export Coefficients to Processor
Memory” on page 54-79.

Follow these steps to export filter coefficients from FDATool directly to
memory on your processor.

1 Load the program file that contains your filter into CCS IDE to activate the
program symbol table. The symbol must contain the global variables you
use to store the filter coefficients and length parameters.

2 Start FDATool.

54-82

Exporting Filter Coefficients from FDATool

3 Click Filter Manager to open the Filter Manager dialog box, shown in
the following figure.

4 Highlight the filter to modify on the list of filters, and select Edit current
filter. The highlighted filter appears in FDATool for you to change.

If you did not store your filter from a previous session, design the filter
in FDATool and continue.

5 Click Close to dismiss the Filter Manager dialog box.

6 Adjust the filter specifications in FDATool to modify its performance.

7 In FDATool, select Targets > Code Composer Studio IDE to open the
Export to Code Composer Studio IDE dialog box.

Keep the export dialog box open while you work. When you do so, the
contents update as you change the filter in FDATool.

Tip Click Generate to export coefficients to the same processor memory
location multiple times without reentering variable names.

8 In the Export to Code Composer Studio dialog box:

• Set Export mode to Write directly to memory

• Clear Disable memory transfer warnings to get a warning if your
processor does not support the export data type.

9 In Variable names in target symbol table, enter the names of the
variables in the processor symbol table that correspond to the memory
allocated for the parameters, such as Numerator and Denominator.
Your names must match the names of the filter coefficient variables in
your program.

10 Select Export suggested to accept the recommended export data type.

54-83

54 Working with Texas Instruments™ Code Composer Studio™ IDE

For more information about how FDATool determines the data type to
suggest, refer to “How FDATool Determines the Export Suggested Data
Type” on page 54-74.

11 If you know the board number and processor number of your target, enter
DSP Board # and DSP Processor # values to identify your board.

Note When you have only one board or simulator, Embedded Coder sets
DSP Board # and DSP Processor # to your board automatically.

If you have more than one board defined in CCS Setup:

• Click Select target to open the Selection Utility dialog box.

• Select the board name and processor name to use from the list of boards.

12 Click Generate to export your filter. If your processor does not support the
data type you export, you see a warning similar to the following message.

You can continue to export the filter, or cancel the export process. To
prevent this warning dialog box from appearing, select Disable memory
transfer warnings in the Export to Code Composer Studio IDE dialog box.

13 (Optional) Continue to optimize filter performance by modifying your
filter in FDATool and then export the updated filter coefficients directly
to processor memory.

14 When you finish testing your filter, return to FDATool, and click Store
filter to save your changes.

54-84

Tutorial: Using XMakefile with Code Composer Studio 4.x

Tutorial: Using XMakefile with Code Composer Studio 4.x

In this section...

“Introduction” on page 54-85

“Set Up XMakefile for CCSv4” on page 54-85

“Prepare Your Model for CCSv4 and Makefiles” on page 54-87

“Create Target Configuration File in CCSv4” on page 54-87

“Load and Run the Embedded Software” on page 54-88

Introduction
This tutorial shows you how to use the XMakefile feature in your MathWorks
software to build and run embedded software with Code Composer Studio 4.x
(CCSv4). For more information about XMakefile, see “Makefiles” on page
43-24

Note The Embedded Coder Project Generator feature is not available for
CCSv4 in the current release. For more information about Project Generator,
see “IDE Projects” on page 43-18

To build the target software, complete the process covered in this chapter:

• Set up XMakefile for CCSv4.

• Prepare your model for CCSv4.

• Create a Target Configuration File in CCSv4.

• Load and run the embedded software.

Set Up XMakefile for CCSv4
The XMakefile feature tells your MathWorks software how to create makefiles
for a configuration, which is a specific combination of tool chain and embedded
target. Some configurations require additional information before you can
use them.

54-85

54 Working with Texas Instruments™ Code Composer Studio™ IDE

Select and complete a configuration for Code Composer Studio 4.0 (CCSv4):

1 Enter xmakefilesetup at the MATLAB command prompt. This action
opens the XMakefile User Configuration dialog box.

2 Deselect Display operational configurations only.

3 Set Configurations to the choice that matches your target and ends with
ccsv4, and click Apply.

4 If the configuration is incomplete, the software displays a series of Browse
For Folder dialog boxes that include instructions to provide missing
information.

5 Examine the Tool Directories tab to see if the paths are correct.

6 When you have supplied the missing information, and the configuration is
complete, click OK to close the XMakefile User Configuration dialog box.

For example, to generate code for CCSv4 and a C6000 processor:

1 Enter xmakefilesetup on the command line.

2 In the XMakefile dialog box, deselect Display operational
configurations only, set Configurations to ticcs_c6000_ccsv4, and
click Apply.

3 A Browse For Folder appears, stating “Select the C6000 Code Generation
Tools root installation directory...”.

Browse and select a path such as C:\Program Files\Texas
Instruments\C6000 Code Generation Tools.

4 Another Browse For Folder dialog appears, stating “Select the C6000
CSL root installation directory...”.

Browse and select a path such as C:\Program Files\C6xCSL\.

5 Examine the Tool Directories tab to see if the paths are correct.

54-86

Tutorial: Using XMakefile with Code Composer Studio 4.x

6 With the updated information, the ticcs_c6000_ccsv4 configuration is
operational. Click OK to save the updated configuration, and close the
dialog box.

Prepare Your Model for CCSv4 and Makefiles
Configure your model to generate code for CCSv4 by updating the Target
Preferences block.

If your model does not contain a Target Preferences block:

1 Open the Common block library by entering idelinklib_common on the
command line.

2 Copy the Target Preferences block to your model.

3 Complete the Target Preferences: Initialize Configuration
Parameters dialog box:

• Set IDE/Tool Chain to Texas Instruments Code Composer Studio
v4 (makefile generation only).

• Set Board and Processor to the appropriate choices.

4 Click Yes. This action updates the appropriate values in your Target
Preferences and model Configuration Parameters.

5 Build your embedded software by pressing CTRL+B.

If your model already contains a Target Preferences block, open the block and
update the parameters described in step 3 and 4.

Create Target Configuration File in CCSv4
Before loading and running your target software, use the CCSv4 IDE to
create a “target configuration file”. The TI Debug Server uses this file while
it works with CCSv4 to load and run your target software. The XML-based
target configuration file describes the target board and processor. The file
name ends with a *.ccxml extension.

Create a target configuration file:

54-87

54 Working with Texas Instruments™ Code Composer Studio™ IDE

1 In the CCSv4, select File > New > Target Configuration File to display
a New Target Configuration dialog box:

• For File name, update the file name that ends with .ccxml to describe
your project and hardware.

• Click Finish. This action displays a utility in the CCS editor pane for
customizing the target configuration file.

2 Use the utility to select the Connection and Device type. Typing a partial
string next to Device filters the list of devices.

3 Click Save.

Note For more information about target configuration files, consult the
Texas Instruments for CCSv4.

Load and Run the Embedded Software
First set the Windows system variable, Path, so you can call the TI Debug
Server Scripting (DSS) API from any folder.

1 In Windows, right-clickMy Computer, and select Properties. This action
opens the System Properties dialog box.

2 In System Properties, select the Advanced tab, and click Environment
Variables. This action opens the Environment Variables dialog box.

3 In Environment Variables, under System variables, select the Path
variable, and click Edit. This action opens the Edit System Variable dialog
box.

4 In Edit System Variable, for Variable value, append a semicolon and the
full path of the \ccsv4\scripting\bin subdirectory. For example, append
;C:\Program Files\Texas Instruments\ccsv4\scripting\bin.

For more information about using DSS, see
http://processors.wiki.ti.com/index.php/Debug_Server_Scripting.

54-88

http://processors.wiki.ti.com/index.php/Debug_Server_Scripting

Tutorial: Using XMakefile with Code Composer Studio 4.x

MathWorks provides an example JavaScript file, runProgram.js, for you to
use with DSS. This script loads and runs the specified program on the target
specified in the target configuration file. You can create a copy of this script
and modify it to suit your needs. The location of runProgram.js is:

[MATLABROOT]\toolbox\idelink\extensions\ticcs\ccsdemos

The specific syntax for running dss.bat with runProgram.js is:

> dss runProgram.js targetConfigurationFile programFile

Replace targetConfigurationFile and programFile with the appropriate
paths and file names. For example, if you are using a working directory called
the CCSv4 workspace, and the model name is myProgram, enter:

> dss runProgram.js c:\workspace\myC6416dsk.ccxml myProgram.out

This command builds and loads your software on the target or simulator. You
have completed the process of using XMakefile with CCSv4 to load and run
software on an target or simulator.

You have completed the process of loading and running embedded software
using XMakefile and CCSv4.

54-89

54 Working with Texas Instruments™ Code Composer Studio™ IDE

Tip To use advanced DSS features, you can also use the CCSv4 example
batch file, loadti.bat, as follows:

Change directories to the loadti subdirectory. For example:

> cd c:\ccs4_install\ccsv4\scripting\examples\loadti

Run loadti.bat using the following syntax:

> loadti -a -c=targetConfigurationFile programFile

Replace targetConfigurationFile with the complete path of the target
configuration file.

Replace programFile with the name of the .out created using the XMakefile
feature. For example:

> loadti -a -c=c:\workspace\myC6416dsk.ccxml myProgram.out

For more information about loadti and its options, type the following on your
system command prompt

> loadti -help

54-90

Reported Limitations and Tips

Reported Limitations and Tips

In this section...

“Demonstration Programs Do Not Run Properly Without Correct GEL
Files” on page 54-92

“Changing Values of Local Variables Does Not Take Effect” on page 54-92

“Code Composer Studio Cannot Find a File After You Halt a Program” on
page 54-93

“C54x XPC Register Can Be Modified Only Through the PC Register” on
page 54-94

“Working with More Than One Installed Version of Code Composer Studio”
on page 54-95

“Changing CCS Versions During a MATLAB Session” on page 54-95

“MATLAB Hangs When Code Composer Studio Cannot Find a Board” on
page 54-95

“Using Mapped Drives” on page 54-97

“Uninstalling Code Composer Studio 3.3 Prevents Embedded Coder From
Connecting” on page 54-97

“PostCodeGenCommand Commands Do Not Affect Embedded Coder
Projects” on page 54-98

Some long-standing issues affect the Embedded Coder product. When you are
using ticcs objects and the software methods to work with Code Composer
Studio and supported hardware or simulators, recall the information in this
section.

The latest issues in the list appear at the bottom. HIL refers to “hardware in
the loop,” also called processor in the loop (PIL) here and in other applications,
and sometimes referred to as function calls.

54-91

54 Working with Texas Instruments™ Code Composer Studio™ IDE

Demonstration Programs Do Not Run Properly
Without Correct GEL Files
To run the Embedded Coder demos, you must load the appropriate GEL files
before you run the demos. For some boards, the demos run fine with the
default CCS GEL file. Some boards need to run device-specific GEL files for
the demos to work correctly.

Here are demos and boards which require specific GEL files.

• Board: C5416 DSK

Demos: rtdxtutorial, rtdxlmsdemo

Emulator: XDS-510

GEL file to load: c5416_dsk.gel

In general, if a demo does not run correctly with the default GEL file, try
using a device-specific GEL file by defining the file in the CCS Setup Utility.

Changing Values of Local Variables Does Not Take
Effect
If you halt the execution of your program on your DSP and modify a local
variable’s value, the new value may not be acknowledged by the compiler. If
you continue to run your program, the compiler uses the original value of
the variable.

This problem happens only with local variables. When you write to the local
variable via the Code Composer Studio Watch Window or via a MATLAB
object, you are writing into the variable’s absolute location (register or
address in memory).

However, within the processor function, the compiler sometimes saves
the local variable’s values in an intermediate location, such as in another
register or to the stack. That intermediate location cannot be determined or
changed/updated with a new value during execution. Thus the compiler uses
the old, unchanged variable value from the intermediate location.

54-92

Reported Limitations and Tips

Code Composer Studio Cannot Find a File After You
Halt a Program
When you halt a running program on your processor, Code Composer Studio
may display a dialog box that says it cannot find a source code file or a library
file.

When you halt a program, CCS tries to display the source code associated
with the current program counter. If the program stops in a system library
like the runtime library, DSP/BIOS, or the board support library, it cannot
find the source code for debug. You can either find the source code to debug it
or select the Don’t show this message again checkbox to ignore messages
like this in the future.

For more information about how CCS responds to the halt, refer the online
Help for CCS. In the online help system, use the search engine to search for
the keywords “Troubleshooting” and “Support.” The following information
comes from the online help for CCS, starting with the error message:

File Not Found
The debugger is unable to locate the source file necessary to enable
source-level debugging for this program.

To specify the location of the source file

1 Click Yes. The Open dialog box appears.

2 In the Open dialog box, specify the location and name of the source file
then click Open.

The next section provides more details about file paths.

Defining a Search Path for Source Files
The Directories dialog box enables you to specify the search path the debugger
uses to find the source files included in a project.

54-93

54 Working with Texas Instruments™ Code Composer Studio™ IDE

To Specify Search Path Directories

1 Select Option > Customize.

2 In the Customize dialog box, select the Directories tab. Use the scroll
arrows at the top of the dialog box to locate the tab.

The Directories dialog box offers the following options.

• Directories. The Directories list displays the defined search path.
The debugger searches the listed folders in order from top to bottom.

If two files have the same name and are located in different folders,
the file located in the folder that appears highest in the Directories
list takes precedence.

• New. To add a new folder to the Directories list, click New. Enter the
full path or click browse [...] to navigate to the appropriate folder. By
default, the new folder is added to the bottom of the list.

• Delete. Select a folder in the Directories list, then click Delete to
remove that folder from the list.

• Up. Select a folder in the Directories list, then click Up to move that
folder higher in the list.

• Down. Select a folder in the Directories list, then click Down to move
that folder lower in the list.

3 Click OK to close the Customize dialog box and save your changes.

C54x XPC Register Can Be Modified Only Through
the PC Register
You cannot modify the XPC register value directly using regwrite to write
into the register. When you are using extended program addressing in C54x,
you can modify the XPC register by using regwrite to write a 23-bit data
value in the PC register. Along with the 16-bit PC register, this operation also
modifies the 7-bit XPC register that is used for extended program addressing.
On the C54x, the PC register is 23 bits (7 bits in XPC + 16 bits in PC).

You can then read the XPC register value using regread.

54-94

Reported Limitations and Tips

Working with More Than One Installed Version of
Code Composer Studio
When you have more than one version of Code Composer Studio installed on
your machine, you cannot select which CCS version MATLAB Embedded
Coder attaches to when you create a ticcs object. If, for example, you have
both CCS for C5000 and CCS for C6000 versions installed, you cannot choose
to connect to the C6000 version rather than the C5000 version.

When you issue the command

IDE_obj = ticcs

Embedded Coder starts the CCS version you last used. If you last used your
C5000 version, the IDE_obj object accesses the C5000 version.

Workaround
To make your ticcs object access the correct processor:

1 Start and close the appropriate CCS version before you create the ticcs
object in MATLAB.

2 Create the ticcs object using the boardnum and procnum properties to
select your processor, if needed.

Recall that ccsboardinfo returns the boardnum and procnum values for
the processors that CCS recognizes.

Changing CCS Versions During a MATLAB Session
You can use only one version of CCS in a single MATLAB session. Embedded
Coder does not support using multiple versions of CCS in a MATLAB session.
To use another CCS version, exit MATLAB software and restart it. Then
create your links to the new version of CCS.

MATLAB Hangs When Code Composer Studio Cannot
Find a Board
In MATLAB software, when you create a ticcs object, the construction
process for the object automatically starts CCS. If CCS cannot find a processor

54-95

54 Working with Texas Instruments™ Code Composer Studio™ IDE

that is connected to your PC, you see a message from CCS like the following
DSP Device Driver dialog box that indicates CCS could not initialize the
processor.

Four options let you decide how to respond to the failure:

• Abort — Closes CCS and suspends control for about 30 seconds. If you
used MATLAB software functions to open CCS, such as when you create
a ticcs object, the system returns control to MATLAB command window
after a considerable delay, and issues this warning:

??? Unable to establish connection with Code Composer Studio.

• Ignore— Starts CCS without connecting to any processor. In the CCS IDE
you see a status message that says EMULATOR DISCONNECTED in the
status area of the IDE. If you used MATLAB to start CCS, you get control
immediately and Embedded Coder creates the ticcs object. Because
CCS is not connected to a processor, you cannot use the object to perform
processor operations from MATLAB, such as loading or running programs.

54-96

Reported Limitations and Tips

• Retry— CCS tries again to initialize the processor. If CCS continues not
to find your hardware processor, the same DSP Device Driver dialog box
reappears. This process continues until either CCS finds the processor or
you choose one of the other options to respond to the warning.

One more option, Diagnostic, lets you enter diagnostic mode if it is enabled.
Usually, Diagnostic is not available for you to use.

Using Mapped Drives
Limitations in Code Composer Studio do not allow you to load programs after
you set your CCS working folder to a read-only mapped drive. When you set
the CCS working folder to a mapped drive for which you do not have write
permissions, you cannot load programs from any location. Load operations
fail with an Application Error dialog box.

The following combination of commands does not work:

1 cd(IDE_obj,'mapped_drive_letter') % Change CCS working
directory to read-only mapped drive.

2 load(IDE_obj,'program_file') % Loading any program fails.

Uninstalling Code Composer Studio 3.3 Prevents
Embedded Coder From Connecting
Description On a machine where CCS V3.3 and CCS V3.1 are installed,
uninstalling V3.3 makes V3.1 unusable from MATLAB. This is because the
CCS V3.3 uninstaller leaves stale registry entries in the Windows Registry
that prevent MATLAB from connecting to CCS V3.1.

Texas Instruments has documented this uninstall problem and the solution
on their Web site.

Updated information on this issue may also be available
from the Bug Reports section of www.mathworks.com at
http://www.mathworks.com/support/bugreports/379676

54-97

http://www-k.ext.ti.com/SRVS/CGI-BIN/WEBCGI.EXE/,/?St=76,E=0000000000008373418,K=3818,Sxi=9,Case=obj(52837)
http://www.mathworks.com/support/bugreports/379676

54 Working with Texas Instruments™ Code Composer Studio™ IDE

PostCodeGenCommand Commands Do Not Affect
Embedded Coder Projects
PostCodeGenCommand commands, such as the addCompileFlags and
addLinkFlags functions in the BuildInfo API do not affect code generated
by Embedded Coder.

Use the ’Compiler options string’ and ’Linker options string’ parameters in the
Configuration Parameters > Code Generation > IDE Link pane instead.
You can also automate this process using a model callback to SET_PARAM
the ’CompilerOptionsStr’ and ’LinkerOptionsStr’ parameters.

54-98

55

Working with Texas
Intruments C2000
Processors

• “Setting Up and Configuring” on page 55-2

• “Data Type Support” on page 55-5

• “Scheduling and Timing” on page 55-6

• “Sharing General Purpose Timers between C281x Peripherals” on page
55-12

• “Overview of Creating Models for C2000 Processors” on page 55-21

• “Using the c2000lib Blockset” on page 55-23

• “Configuring Timing Parameters for CAN Blocks” on page 55-29

• “Configuring Acquisition Window Width for ADC Blocks” on page 55-47

• “Using the IQmath Library” on page 55-53

• “Programming Flash Memory” on page 55-62

• “Configuring LIN Communications” on page 55-68

55 Working with Texas Intruments C2000 Processors

Setting Up and Configuring

In this section...

“Installing and Configuring Software” on page 55-2

“Verifying the Configuration” on page 55-3

Installing and Configuring Software
Uninstall unsupported or untested versions of the third party products before
installing supported versions. Doing so prevents errors that occur when the
Windows Environment Variables points to the unsupported versions.

Install the software listed in the following order:

1 Install the required and optional MathWorks software. (The software
license you purchase determines which products are available.)

2 Install TI Code Composer Studio (CCS).

3 Install TI Service Release for CCS.

4 Install the TI Code Generation Tools for Windows.

5 If you are using a Spectrum Digital board, download and install the
matching Spectrum Digital Driver.

6 If you are using RTDX for C28x host/target communications, download
and install TI DSP/BIOS.

7 If you are going to program flash memory with stand-alone code, download
the TI Flash API for your target processor.

Configure CCS as follows:

1 In CCS, open Help > About > Component manager > Build tools >
TMS320C28XX and select (check) C2000 Code Generation Tools.

2 With the Component manager open, open Target Content(DSP/BIOS) >
TMS320C28XX and select Texas Instruments DSP/BIOS.

55-2

Setting Up and Configuring

3 Save, exit, and restart CCS.

Verifying the Configuration
To determine whether Embedded Coder software is present on your system,
enter this command at the MATLAB prompt:

c2000lib

MATLAB displays the C2000 block libraries.

If you do not see the listed libraries, or MATLAB does not recognize the
command, install the Embedded Coder software. Without the software, you
cannot use Simulink and Simulink Coder software to develop applications
targeted to the TI boards.

To verify that Code Composer Studio (CCS) is present on your machine, enter
this command at the MATLAB prompt:

ccsboardinfo

With CCS installed and configured, MATLAB returns a list of the boards that
CCS recognizes on your machine like the following example:

Board Board Proc Processor Processor
Num Name Num Name Type
--- ---------------------------------- ---
1 F2812 Simulator 0 CPU TMS320C28xx
0 F2812 PP Emulator 0 CPU_1 TMS320C28xx

If MATLAB does not return information about any boards, revisit the
installation and setup instructions in your CCS documentation. If you have
not done so already, install the third-party “Board Support Packages” for
your boards.

As a final test, launch CCS to ensure that it starts up successfully. For
Embedded Coder software to operate with CCS, the CCS IDE must be able to
run on its own.

55-3

55 Working with Texas Intruments C2000 Processors

Note For any model to work in the targeting environment, select the
discrete-time solver in the Solver pane of the Simulink Configuration
Parameters dialog box. Targeting does not work with continuous-time solvers.

To select the discrete-time solver, from the main menu in your model window,
select Simulation > Configuration Parameters. Then in the Solver pane,
set the Solver option to Discrete (no continuous states).

55-4

Data Type Support

Data Type Support
TI C2000 DSPs support 16 and 32–bit data types, but does not have native
8-bit data types. Simulink models and Embedded Coder software support
many data types, including 8-bit data types.

If you select int8 or uint8 in your model, your simulation runs with 8-bit
data, but in the generated code, that data will be represented as 16-bit. This
may cause instances where data overflow and wraparound occurs in the
simulation, but not in the generated code.

For example, to make the overflow behavior of the simulation and generated
code match for a Simulink Add block in your model, select Saturate on
integer overflow in that block.

55-5

55 Working with Texas Intruments C2000 Processors

Scheduling and Timing

In this section...

“Overview” on page 55-6

“Timer-Based Interrupt Processing” on page 55-6

“Asynchronous Interrupt Processing” on page 55-7

Overview
Normally the code generated by Embedded Coder software runs in the context
of a timer interrupt. Model blocks run in a periodical fashion clocked by the
periodical interrupt whose period is tied to the base sample time of the model.

This execution scheduling model, however, is not flexible enough for many
systems, especially control and communication systems, which must respond
to external events in real time. Such systems require the ability to handle
various hardware interrupts in an asynchronous fashion.

Embedded Coder software lets you model and generate code for such systems
by creating tasks driven by Hardware Interrupt blocks in addition to the
tasks that are left to be handled in the context of the timer interrupt.

Timer-Based Interrupt Processing
For code that runs in the context of the timer interrupt, each iteration of
the model solver is run after an interrupt has been posted and serviced by
an interrupt service routine (ISR). The code generated for the C280x, C281x,
and C28x3x uses CPU_timer0.

The timer is configured so that the model’s base rate sample time corresponds
to the interrupt rate. The timer period and prescaler are calculated and set
up to ensure the desired rate as follows:

BaseRateSampleTime
TimerPeriod

TimerClockSpeed
=

55-6

Scheduling and Timing

The minimum achievable base rate sample time depends on the model
complexity. The maximum value depends on the maximum timer period value
(232-1 for the F2812, F2808, and F28x35) and the CPU clock speed. The CPU
clock speed is 100 MHz for the F2808, and 150 MHz for the F2812 and F28335.

If all the blocks in the model inherit their sample time value, and no sample
time is explicitly defined, the default value is 0.2 s.

High-Speed Peripheral Clock
The Event Managers and their general-purpose timers, which drive PWM
waveform generation use the high-speed peripheral clock (HISCLK). By
default, this clock is always selected in Embedded Coder software. This clock
is derived from the system clock (SYSCLKOUT):

HISCLK = [SYSCLKOUT / (high-speed peripheral prescaler)]

The high-speed peripheral prescaler is determined by the HSPCLK bits
set in SysCtrl. The default value of HSPCLK is 1, which corresponds to a
high-speed peripheral prescaler value of 2.

For example, on the F2812, the HISCLK rate becomes

HISCLK = 150 MHz / 2 = 75 MHz

Asynchronous Interrupt Processing
Simulink and Simulink Coder software facilitate the modeling and
generation of code for asynchronous event handling, including servicing of
hardware-generated interrupts, by using the following special blocks:

• Hardware Interrupt block

This block enables selected hardware interrupts, generates the
corresponding interrupt service routines (ISRs), and connects them to the
corresponding interrupt service vector table entries. When you connect
the output of the Hardware Interrupt block to the control input of a
triggered subsystem (for example, a function-call subsystem), the generated
subsystem code is called from the ISRs.

Embedded Coder software provides a Hardware Interrupt block for each of
the supported processor families.

55-7

55 Working with Texas Intruments C2000 Processors

• Rate Transition blocks

These blocks support data transfers between blocks running with different
sample rates. The built-in Simulink Rate Transition blocks can be used
for this purpose.

The following diagram illustrates a use case where a Hardware Interrupt
block triggers two tasks, connected to other blocks that run periodically in the
context of the synchronous scheduler.

In the preceding figure, the Hardware Interrupt block is set to react on two
interrupts. Since only one Hardware Interrupt block is allowed in a model
and the output of this block is a vector of length two, you must connect the
Hardware Interrupt block to a Demux block to trigger the two function-call
subsystems. The function-call subsystems contain the blocks that are
executed asynchronously in the context of the hardware interrupt.

The following example shows how to build and configure a model to react on an
eCAN message using a hardware interrupt and an asynchronous scheduler:

1 Place the eCAN Receive block in a function-call subsystem.

55-8

Scheduling and Timing

2 On the eCAN Receive block dialog, check the box labeled Post interrupt
when message is received.

3 Set the Sample Time of the eCAN Receive block to -1 since the block will
be triggered by the ISR, as shown in the preceding figure.

4 Add the C281x Hardware Interrupt block to your model.

55-9

55 Working with Texas Intruments C2000 Processors

5 The eCAN interrupt on C281x chips is on CPU line 9 and PIE line 5
for module 0. These parameters can be found in the C281x Hardware
Interrupt block, C281x Peripheral Interrupt Vector Values figure. Set the
hardware interrupt parameters CPU interrupt number(s): to 9, and PIE
interrupt number(s): to 5 as shown in the following figure.

55-10

Scheduling and Timing

6 Connect the output of the Hardware Interrupt block to the function-call
subsystem containing the eCAN block.

At execution time, when a new eCAN message is received, the eCAN
interrupt is triggered, and the code you placed in the function-call subsystem
is executed. In this example, the eCAN Receive block is placed in the
function-call subsystem, which means that the message is read and is passed
to the rest of the code.

For more information, see the section on Asynchronous Support in the
Simulink Coder documentation.

55-11

55 Working with Texas Intruments C2000 Processors

Sharing General Purpose Timers between C281x
Peripherals

In this section...

“Example 1” on page 55-13

“Example 2” on page 55-17

TMS320x281x DSP devices have four General Purpose (GP) timers. Each
Event Manager (EV) module includes two GP timers:

• EVA includes GP Timer 1 and GP Timer 2.

• EVB includes GP Timer 3 and GP Timer 4.

You can use the GP Timers independently or to operate peripherals associated
with the EV Manager, such as PWM, QEP, and CAP.

The following table describes the timer-peripheral mapping of the c281xlib
block library.

GP Timer Use for C281x Peripheral Blocks

GP Timer 1 GP Timer 2 GP Timer 3 GP Timer 4

PWM1-PWM6

PWM7-PWM12

QEP1-QEP2

QEP3-QEP4

CAP1-CAP3

CAP4-CAP6

Each PWM and QEP peripheral has access to only one timer, while each CAP
peripheral has access to two timers. In the PWM and QEP blocks, you can
set theModule option to A or B to determine which unique timer-peripheral
combination the block configures. By comparison, in the CAP block, you can
use the Time base option to select one of two timers for each CAP peripheral.

55-12

Sharing General Purpose Timers between C281x Peripherals

Each GP timer is available to multiple peripherals. For example:

• PWM1-PWM6 and CAP1-CAP3 share GP Timer 1

• PWM7-PWM12 and CAP4-CAP6 share GP Timer 3

• QEP1-QEP2 and CAP1-CAP3 share GP Timer 2

• QEP3-QEP4 and CAP4-CAP6 share GP Timer 4

The PWM, QEP, CAP, and Timer blocks each provide independent access to
key timer registers. If the blocks in your model share a specific GP timer,
ensure that all the timer-related settings are compatible. If the peripheral
settings for a shared timer are not compatible, the software generates an
error when you update the model or generate code.

Example 1

The model contains Timer and CAP blocks that both use Timer 1 (GP Timer 1).

55-13

55 Working with Texas Intruments C2000 Processors

55-14

Sharing General Purpose Timers between C281x Peripherals

Both blocks have the same values for Timer prescaler and Counting
mode. However, each block has different values for Timer period. The
value of Timer period for Timer 1 is 65535 in the CAP block and 10000 in
the Timer block.

55-15

55 Working with Texas Intruments C2000 Processors

Since both blocks configure the same timer, and settings conflict, the software
generates an error when you update the model.

55-16

Sharing General Purpose Timers between C281x Peripherals

Example 2

The model contains QEP and CAP blocks that both use Timer 2. In the CAP
block, the Time base option shows which timer the block uses. In the QEP
block, settingModule to A configures the block to use QEP1–QEP2. GP Timer
Use for C281x Peripheral Blocks on page 55-12 shows that QEP1–QEP2 use
Timer 2.

55-17

55 Working with Texas Intruments C2000 Processors

55-18

Sharing General Purpose Timers between C281x Peripherals

Currently, both blocks define different clock sources for Timer 2. The CAP
block uses Internal as a Clock source. The QEP block, which does not have
a configurable Clock source setting, uses the QEP circuit as a clock source.
If you build the model, the software generates the following error message.

55-19

55 Working with Texas Intruments C2000 Processors

To avoid generating errors when you build the model, change Clock source
in the CAP block to QEP device.

55-20

Overview of Creating Models for C2000 Processors

Overview of Creating Models for C2000 Processors

In this section...

“Accessing the Embedded Coder Block Library” on page 55-21

“Building Your Model” on page 55-21

Accessing the Embedded Coder Block Library
After you have installed the supported development board, start MATLAB.

You can open the c2000lib blockset in the Simulink library browser, or by
typing the following command at the MATLAB command prompt:

c2000lib

Create your real-time model for your application the same way you create any
other Simulink model. Select blocks to build your model from the following
sources or products:

• The Target Preferences library block (for setting target and application
preferences)

• The appropriate libraries in the c2000lib block library (for handling input
and output functions for on your target hardware)

• Simulink Coder software

• Discrete time blocks from Simulink

• Any other blockset that meets your needs and operates in the discrete
time domain

Building Your Model
With this configuration, you can generate a real-time executable and
download it to your TI development board by clicking Generate Code on the
Code Generation pane. Simulink Coder software automatically generates
C code and inserts the I/O device drivers as specified by the hardware
blocks in your block diagram, if any. These device drivers are inserted in
the generated C code.

55-21

55 Working with Texas Intruments C2000 Processors

During the same build operation, block parameter dialog box entries are
combined into a project file for CCS for your TI C2000 board. If you selected
the Build and execute build action in the configuration settings, the TI
cross-compiler builds an executable file. After automatically downloading the
executable file to the target, the build process runs the file on the board’s DSP.

Note After using the run-time Build option to generate and build code
for your application, you must perform the following reset sequence before
you can run that code on your board. If you want to rerun your application
manually once it has been generated, you must also use this procedure.

F2812, F2808, and F28335 eZdsp Reset Sequence

1 Reset the board CPU.

2 Load your code onto the target.

3 Run your code on the target.

55-22

Using the c2000lib Blockset

Using the c2000lib Blockset

In this section...

“Introduction” on page 55-23

“Hardware Setup” on page 55-23

“Starting the c2000lib Library” on page 55-24

“Setting Up the Model” on page 55-24

“Adding Blocks to the Model” on page 55-26

“Generating Code from the Model” on page 55-28

Introduction
This section uses an example to demonstrate how to create a Simulink model
that uses Embedded Coder blocks to target your board. The example creates a
model that performs PWM duty cycle control via pulse width change. It uses
the C2812 ADC block to sample an analog voltage and the C2812 PWM block
to generate a pulse waveform. The analog voltage controls the duty cycle
of the PWM and you can observe the duty cycle change on the oscilloscope.
This model is also provided in the Demos library. The model in the Demos
library also includes a model simulation.

Hardware Setup
The following hardware is needed for this example:

• Spectrum Digital eZdsp F2812

• Function generator

• Oscilloscope and probes

To connect the hardware:

1 Connect the function generator output to the ADC input ADCINA0 on
the eZdsp F2812.

2 Connect the output of PWM1 on the eZdsp F2812 to the analog input of
the oscilloscope.

55-23

55 Working with Texas Intruments C2000 Processors

3 Connect VREFLO to AGND on the eZdsp F2812. See the section
on the Analog Interface in Chapter 2 of the eZdsp™ F2812
Technical Reference, available from the Spectrum Digital Web site at
http://c2000.spectrumdigital.com/ezf2812/

Starting the c2000lib Library
At the MATLAB prompt, type the following command:

c2000lib

This command open the c2000lib library blockset, which contains libraries of
blocks designed for targeting your board.

Setting Up the Model
Preliminary tasks for setting up a new model include adding a Target
Preferences block, setting or verifying Target Preferences, and setting the
simulation parameters.

1 In MATLAB, open the Simulink Library Browser.

2 Search for Target Preferences.

3 Right-click the Target Preferences block and select Add to a new model.
This opens a new model with the Target Preferences block in it.

4 Click Yes to allow automatic setup. The following settings are
made, referenced in the table below by their locations in the
Simulation > Configuration Parameters dialog box:

Pane Field Setting

Solver Stop time 10

Solver Type Fixed-step

Data
Import/Export

Save to workspace - Time tout

Data
Import/Export

Save to workspace -
Output

yout

55-24

http://c2000.spectrumdigital.com/ezf2812/

Using the c2000lib Blockset

Pane Field Setting

Hardware
Implementation

Device type C2000

Code Generation Target selection - System
target file

idelink_grt.tlc
or
idelink_ert.tlc

Note Generated code does not honor Simulink stop time from the
simulation. Stop time is interpreted as inf. To implement a stop in
generated code, you must put a Stop Simulation block in your model.

Note One Target Preferences block must be in each target model at the
top level. It does not connect to any other blocks, but stands alone to set the
Target Preferences for the model.

5 From your model’s main menu, select Simulation > Configuration
Parameters to verify and set the simulation parameters for this model.
Parameters you set in this dialog box belong to the model you are building.
They are saved with the model and stored in the model file. Refer to your
Simulink documentation for information on the Configuration Parameters
dialog box.

6 Use the Code Generation pane to set options for the real-time model.
Refer to your “Simulink Coder” documentation for detailed information on
the Code Generation pane options.

7 Use the Browse button to locate and select a target configuration file,
idelink_grt.tlc or idelink_ert.tlc. When you do this, your coder
product chooses the appropriate system target file, and make command.

8 Set the configuration parameters by typing Ctrl-E and adjust these
parameters.

55-25

55 Working with Texas Intruments C2000 Processors

Adding Blocks to the Model

1 Open or double-click the C281x library, c281xlib.

2 Drag the ADC block into your model. Double-click the ADC block in the
model and set Sample time to 64/80000.

3 Drag the PWM block into your model. Double-click the PWM block in the
model and set the following parameters.

Pane Field Parameter

Module A

Waveform
period source

Specify via dialog

Waveform
period units

Clock cycles

Waveform
period

64000

Timer

Waveform type Asymmetric

Enable
PWM1/PWM2

SelectedOutputs

Duty cycle
source

Input port

PWM1 control
logic

Active highLogic

PWM2 control
logic

Active low

55-26

Using the c2000lib Blockset

Pane Field Parameter

Use
deadband for
PWM1/PWM2

Selected

Deadband
prescaler

16

Deadband

Deadband
period

12

ADC Control ADC start event Period interrupt

4 Enter Simulink at the MATLAB command line to open the Simulink
Library browser. Drag a Gain block from the Math Operations library into
your model. Double-click the Gain block in the model and set the following
parameters in the Function Block Parameters dialog box. Click OK.

Pane Field Parameter

Gain 30

Multiplication Element-wise(K.*u)

Main

Sample time -1

Output data type
mode

uint(16)Signal Attributes

Integer rounding
mode

Floor

Parameter
Attributes

Parameter data type
mode

Inherit from input

5 Connect the ADC block to the Gain block and the Gain block to the PWM
block.

55-27

55 Working with Texas Intruments C2000 Processors

Generating Code from the Model
This section summarizes how to generate code from your real-time model.

You start the automatic code generation process from the Simulink model
window by clicking Generate code in the Code Generation pane of the
Configuration Parameters dialog. Other ways of starting the code generation
process are by clicking the Incremental Build button on the toolbar of
your model, or by pressing the keyboard shortcut, Ctrl+B, while your model
is open and in focus.

Note In CCS, you see your project with the files in place in the folder
structure.

55-28

Configuring Timing Parameters for CAN Blocks

Configuring Timing Parameters for CAN Blocks

In this section...

“The CAN Blocks” on page 55-29

“Setting Timing Parameters” on page 55-29

“Parameter Tuning and Signal Logging” on page 55-34

The CAN Blocks
The bit rate of these four CAN blocks cannot be set directly:

C281x eCAN Receive
C281x eCAN Transmit
C280x/C28x3x eCAN Receive
C280x/C28x3x eCAN Transmit

Setting Timing Parameters

• “Accessing the Timing Parameters” on page 55-29

• “Determining Timing Parameter Values” on page 55-32

• “CAN Bit Timing Example” on page 55-33

Accessing the Timing Parameters
To set the bit rate for a block whose bit rate cannot be set directly:

1 Double click the Target Preferences block in your model. This opens the
Target Preferences dialog box.

2 Under the Peripherals tab, use the TSEG1, TSEG2, and
BaudRatePrescaler (BRP) parameters to set the bit rate.

For example, the Target Preferences block for the F2812 eZdsp, this dialog
box is shown in the following figure.

55-29

55 Working with Texas Intruments C2000 Processors

The C280x/C28x3x blocks have two independent eCAN modules, as shown by
the Target Preferences Setup dialog box.

55-30

Configuring Timing Parameters for CAN Blocks

The following sections describe the series of steps and rules that govern the
process of setting these timing parameters.

55-31

55 Working with Texas Intruments C2000 Processors

Determining Timing Parameter Values
To determine the appropriate values for the timing parameters, complete the
following steps:

1 Determine the CAN Bitrate specification based on your application.

2 Determine the frequency of the CAN module clock. For example:

• 100 MHz for the F2808 (Same as SYSCLKOUT)

• 150 MHz for the F2812 (Same as SYSCLKOUT)

• 75 MHz for the F28x3x (150 MHz SYSCLKOUT/2)

3 Estimate the value of the BaudRatePrescaler (BRP).

4 Solve this equation for BitTime:

BitTime = CAN module clock frequency/(BRP * Bitrate)

5 Solve this equation for Bitrate:

Bitrate = CAN module clock frequency/(BRP * BitTime)

6 Estimate values of TSEG1 and TSEG2 that satisfy the following equation:

BitTime TSEG TSEG= + +1 2 1

7 Use the following rules to determine the values of TSEG1and TSEG2:

TSEG1 >= TSEG2
IPT (Information Processing Time) = 3/BRP
IPT <= TSEG1 <= 16 TQ
IPT <= TSEG2 <= 8 TQ
1 TQ <= SJW <= min (4 TQ, TSEG2)

where IPT is Information Processing Time, TQ is Time Quanta, and SJW
is Synchronization Jump Width, also set in the Target Preferences
dialog box. .

8 Iterate steps 4 through 7 until the values selected for TSEG1, TSEG2, and
BRP meet all of the criteria.

55-32

Configuring Timing Parameters for CAN Blocks

The following illustration shows the relationship between the eCAN bit
timing parameters.

CAN Bit Timing Example
Assume that SYSCLKOUT = 150 MHz, and a bit rate of 1 Mbits/s is required.

1 Set the BRP to 10. Then substitute the values of bit rate, BRP, and
SYSCLKOUT into the following equation, solving for BitTime:

BitTime SYSCLKOUT BRP Bitrate
BitTime TQ

=
= =

/(*)
/(*)150 10 1 15

2 Set the values of TSEG1 and TSEG2 to 8TQ and 6TQ respectively.
Substitute the values of BitTime from the previous equation, and the
chosen values for TSEG1 and TSEG2 into the following equation:

BitTime TSEG TSEG
TQ TQ TQ

= + +
= + +

1 2 1
15 8 6 1

3 Finally, check the selected values against the rules:

IPT = 3/BRP = 3/10 = .3

55-33

55 Working with Texas Intruments C2000 Processors

IPT <= TSEG1 <= 16 TQ True! .3<=8TQ<=16TQ
IPT <= TSEG2 <= 8TQ True! .3 <= 6TQ <= 8TQ
1TQ <= SJW <= min(4TQ, TSEG2) which means that SJW can be set to
either 2, 3, or 4

4 All chosen values satisfy the criteria, so no further iteration is necessary.

The following table provides common timing parameter settings for typical
values of Bit Rate and SYSCLKOUT = 150 MHz. This clock frequency is
the maximum for the C281x blocks.

Bit Rate TSEG1 TSEG2 Bit Time BRP SJW

.5 Mbit/s 8 6 15 20 2

1 Mbit/s 8 6 15 10 2

2 Mbit/s 8 6 15 5 2

The following table provides common timing parameter settings for typical
values of Bit Rate and SYSCLKOUT = 100 MHz. This clock frequency is the
maximum for the C280x/C28x3x blocks.

Bit Rate TSEG1 TSEG2 Bit Time BRP SJW

.5 6 3 10 20 2

1 5 4 10 10 2

2 6 3 10 5 2

Parameter Tuning and Signal Logging

• “Overview” on page 55-35

• “Using External Mode” on page 55-35

• “Using a Third Party Calibration Tool” on page 55-45

55-34

Configuring Timing Parameters for CAN Blocks

Overview
Embedded Coder software supports parameter tuning and signal logging
either using Simulink external mode or with a third party calibration tool. In
both cases the model must include a CAN Calibration Protocol block.

Using External Mode
The Simulink external mode feature enables you to log signals and tune
parameters without requiring a calibration tool. This section describes the
steps for converting a model to use external mode.

External mode is supported using the CAN Calibration Protocol block and
ASAP2 interface. The CAN Calibration Protocol block is used to communicate
with the target, download parameter updates, and upload signal information.
The ASAP2 interface is used to get information about where in the target
memory a parameter or signal lives.

Note You must configure the host-side CAN application channel. See
“Configuring the Host Vector CAN Application Channel” on page 55-36.

To prepare your model for external mode, follow these steps:

1 Add a CCP driver block.

2 Add a Switch External Mode Configuration Block (for ease of use; you can
also make changes manually).

3 Identify signals you want to tune, and associate them with
Simulink.Parameter or canlib.Parameter objects with ExportedGlobal
storage class. It is important to set the data type and value of the object.
See “Using Supported Objects and Data Types” on page 55-37.

4 Identify signals you want to log, and associate them with canlib.Signal
objects. It is important to set the data type of the canlib.Signal. See
“Using Supported Objects and Data Types” on page 55-37.

For information about visualizing logged signal data, see “Viewing and
Storing Signal Data” on page 55-40.

55-35

55 Working with Texas Intruments C2000 Processors

5 Load the Simulink.Parameter or canlib.Parameter and canlib.Signal
data objects into the base workspace.

6 Configure the model for building by double-clicking the Switch External
Mode Configuration block. In the dialog box, select Building an
executable, and click OK.

7 Build the model, and download the executable to the target

8 After downloading the executable to the target, you can switch the model to
external mode by double-clicking the Switch External Mode Configuration
Block. In the dialog box that appears, select External Mode, and click OK.

9 You can now connect to the target using external mode by clicking the
Connect button.

10 If you have set up tunable parameters, you can now tune them. See
“Tuning Parameters” on page 55-39.

If you do not want to use the Switch External Mode Configuration block, you
can configure for building and then external mode manually. For instructions,
see “Manual Configuration For External Mode” on page 55-43.

See the following topics for more information:

• “Configuring the Host Vector CAN Application Channel” on page 55-36

• “Using Supported Objects and Data Types” on page 55-37

• “Tuning Parameters” on page 55-39

• “Viewing and Storing Signal Data” on page 55-40

• “Manual Configuration For External Mode” on page 55-43

• “Limitations” on page 55-44

Configuring the Host Vector CAN Application Channel. External
mode expects that the host-side CAN connection is using the 'MATLAB 1'
application channel. To configure the application channel used by the Vector
CAN drivers, enter the following at the MATLAB command line:

TargetsComms_VectorApplicationChannel.configureApplicationChannels

55-36

Configuring Timing Parameters for CAN Blocks

The Vector CAN Configuration tool appears. Use this tool to configure your
host-side CAN channel settings.

If you try to connect using an application channel other than 'MATLAB 1',
then you see the following warning in the command window:

Warning:
It was not possible to connect to the target using CCP.
An error occurred when issuing the CONNECT command.

If you have not already installed the Vector CAN drivers, you will get the
following error message:

??? Error using ==>

TargetsComms_VectorApplicationChannel.TargetsComms_VectorApplicationChannel>

TargetsComms_VectorApplicationChannel.configureApplicationChannels at 40

Unable to launch the application channel configuration utility.

The "vcanconf" utility was not found on the Windows System Path.

To fix this error, make sure the required CAN drivers are installed on this computer;

refer to the product documentation for details.

If you want to use CAN to transmit or receive CAN messages between your
host PC and your target, you require Vector-Informatik CAN hardware
supported by the Vector CAN Driver Library. You must install the correct
driver libraries to support profiling, downloading, and external mode.

Note For CANcaseXL, you must install both the Vector XL-driver library
and Vector CAN Driver Library vcand32.dll.

For older CAN hardware, you must install the Vector CAN Driver Library
vcand32.dll.

Make sure that the library, vcand32.dll, is placed in the Windows system32
folder.

Using Supported Objects and Data Types. Supported objects:

• Simulink.Parameter or canlib.Parameter for parameter tuning

55-37

http://www.vector-informatik.com/vi_can_hardware_en,,223.html
http://www.vector-worldwide.com/downloads/drivers/canlib43.zip

55 Working with Texas Intruments C2000 Processors

• canlib.Signal for signal logging

Supported data types:

• uint8, int8

• uint16, int16

• uint32, int32

• single

You need to define data objects for the signals and parameters of interest for
ASAP 2 file generation. For ease of use, create a MATLAB file to define the
data objects, so that you only have to set up the objects once.

To set up tunable parameters and signal logging:

1 Associate the parameters to be tuned with Simulink.Parameter or
canlib.Parameter objects with ExportedGlobal storage class. It is
important to set the data type and value of the parameter object. See the
following code for an example of how to create such a Simulink.Parameter
object for tuning:

stepSize = Simulink.Parameter;
stepSize.DataType = 'uint8';
stepSize.RTWInfo.StorageClass = 'ExportedGlobal';
stepSize.Value = 1;

2 Associate the signals to be logged with canlib.Signal objects. It is important
to set the data type of the canlib.Signal. The following code example shows
how to declare such a canlib.Signal object for logging:

counter = canlib.Signal;
counter.DataType = 'uint8';

3 Associate the data objects you defined in the MATLAB file with parameters
or signals in the model. For the previous code examples, you could set the
Constant value in a Source block to stepSize, and set a Signal name
to counter in the Signal Properties dialog box. Remember that stepSize
and counter are data objects defined in the code.

55-38

Configuring Timing Parameters for CAN Blocks

Tuning Parameters. To tune a parameter, follow these steps:

1 Set dataobject.value in the workspace while the model is running in
external mode. For example, to tune the parameter stepSize (that is, to
change its value) from 1 to 2, enter the following at the command line:

stepSize.value = 2

55-39

55 Working with Texas Intruments C2000 Processors

You see output similar to the following:

stepSize =

Simulink.Parameter (handle)
RTWInfo: [1x1 Simulink.ParamRTWInfo]

Description: ''
DataType: 'uint8'

Min: -Inf
Max: Inf

DocUnits: ''
Value: 2

Complexity: 'real'
Dimensions: [1 1]

2 Return to your model, and update the model (press Ctrl+D) to apply the
changed parameter.

Viewing and Storing Signal Data. To view the logged signals attach
a supported scope type to the signal (see “Limitations” on page 55-44 for
supported scope types).

Select which signals you want to log by using the External Signal &
Triggering dialog box. Access the External Mode Control Panel from the Tools
menu, and click the Signal & Triggering button. By default, all displays
appear as selected to be logged, as shown in the following example. Edit
these settings if you do not want to log all displays. Individual displays can
be selected manually.

55-40

Configuring Timing Parameters for CAN Blocks

Storing signal data for further analysis. It is possible to store the logged
data for further analysis in MATLAB.

1 To use the Data Archiving feature of external mode, click Data Archiving
in the External Mode Control Panel. The External Data Archiving dialog
box appears.

55-41

55 Working with Texas Intruments C2000 Processors

a Select the check box Enable archiving

b Edit the Folder and Filename and any other desired settings.

c Close the dialog box.

2 Open the Scope parameters, and select the check box Save data to
workspace.

55-42

Configuring Timing Parameters for CAN Blocks

3 You may want to edit the Variable name in the edit box. The data that is
displayed on the scope at the end of the external mode session is available
in the workspace with this variable name.

The data that was previously displayed in the scope is stored in .mat files
as previously setup using Data Archiving.

For example, at the end of an external mode session, the following variable
and files could be available in the workspace and current folder:

• A variable ScopeData5 with the data currently displayed on the scope:

ScopeData5

ScopeData5 =

time: [56x1 double]
signals: [1x1 struct]

blockName: 'mpc555rt_ccp/Scope1'

• In the current folder, .mat files for the three previous Durations of
scope data:

ExternalMode_0.mat
ExternalMode_2.mat
ExternalMode_1.mat

Manual Configuration For External Mode. As an alternative to using
the Switch External Mode Configuration block, you can configure models
manually for build and execution with external mode.

To configure a model to be built for external mode:

1 Select Inline parameters (under Optimization in the Configuration
Parameters dialog box). The Inline parameters option is required for
ASAP2 generation.

2 Select Normal simulation mode (in either the Simulation menu, or the
drop-down list in the toolbar).

3 Select ASAP2 as the Interface (under Code Generation, Interface, in
the Data Exchange pane, in the Configuration Parameters dialog box).

55-43

55 Working with Texas Intruments C2000 Processors

After you build the model, you can configure it for external mode execution:

1 Make sure Inline parameters are selected (under Optimization in the
Configuration Parameters dialog box). The Inline parameters option is
required for external mode.

2 Select External simulation mode (in either the Simulation menu, or
the drop-down list in the toolbar).

3 Select External mode as the Interface (under Code Generation,
Interface, in the Data Exchange pane, in the Configuration Parameters
dialog box).

Limitations. Multiple signal sinks (e.g. scopes) are not supported.

Only the following kinds of scopes are supported with External Mode Logging:

• Simulink Scope block

• Simulink Display block

• Viewer type: scope — To use this option, right-click a signal in the model,
and select Create & Connect Viewer > Simulink > Scope. The other
scope types listed there are not supported (e.g., floating scope).

Before connecting to external mode, you also need to right-click the signal,
and select Signal Properties. In the dialog box, select the Test point
check box, and click OK.

GRT is supported but only for parameter tuning.

It is not possible to log signals with sample rates in excess of 10 kHz.

Subsystem builds are not supported for external mode, only top-level builds
are supported.

Logging and tuning of nonscalars is not supported. It is possible to log
nonscalar signals by breaking the signal down into its scalar components. For
an example of how to do this signal deconstruction, see the CCP demo models,
which use a Demux and Signal Conversion block with contiguous copy.

55-44

Configuring Timing Parameters for CAN Blocks

Logging and tuning of complex numbers is not supported. It is possible to
work with complex numbers by breaking the complex number down into its
real and imaginary components. This breakdown can be performed using
the following blocks in the Simulink Math Operations library: Complex to
Real-Imag, Real-Imag to Complex, Magnitude-Angle to Complex, Complex
to Magnitude-Angle.

Using a Third Party Calibration Tool
Embedded Coder allows an ASAP2 data definition file to be generated during
the code generation process. This file can be used by a third party tool to
access data from the real-time application while it is executing.

ASAP2 is a data definition standard by the Association for Standardization
of Automation and Measuring Systems (ASAM). ASAP2 is a standard
description for data measurement, calibration, and diagnostic systems.
Embedded Coder software lets you export an ASAP2 file containing
information about your model during the code generation process.

Before you begin generating ASAP2 files with Embedded Coder software, see
“Generating an ASAP2 File” in the product help for Simulink Coder. That
section describes how to define the signal and parameter information required
by the ASAP2 file generation process.

Select the ASAP2 option before the build process as follows:

1 Select Simulation > Configuration Parameters.

The Configuration Parameters dialog box appears.

2 Select Interface (under Code Generation) in the tree.

3 Select the ASAP2 option from the Interface drop-down menu, in the Data
exchange frame.

4 Click Apply.

The build process creates an ASAM-compliant ASAP2 data definition file for
the generated C code.

55-45

55 Working with Texas Intruments C2000 Processors

• The standard ASAP2 file generation does not include the memory address
attributes in the generated file. Instead, it leaves a placeholder that must
be replaced with the actual address by postprocessing the generated file.

• The map file options in the template project need to be set up a certain way
for this procedure to work. If you have created your own template projects,
and you do not have the correct settings, you see the following instructions:

Warning: It was not possible to do ASAP2 processing on your
.map file.This is because your IDE project template is not
configured to generate a .map file in the correct format.
To generate a .map file in the correct format you need to
setup the following options in your IDE project template:
Generate section map should be checked on
Generate register map should be checked off
Generate symbol table should be checked on
Format list file into pages should be checked off
Generate summary should be checked off
Page width should be equal to 132 characters
Symbol colums should be 1
You can change these options via Project -> Project Options
-> Linker/Locator -> Map File -> Map File Format.

Embedded Coder software performs this postprocessing for you. To do this, it
first extracts the memory address information from the map file generated
during the link process. Secondly, it replaces the placeholders in the ASAP2
file with the actual memory addresses. This postprocessing is performed
automatically and requires no additional input from you.

55-46

Configuring Acquisition Window Width for ADC Blocks

Configuring Acquisition Window Width for ADC Blocks

In this section...

“What Is an Acquisition Window?” on page 55-47

“Configuring ADC Parameters for Acquisition WindowWidth” on page 55-49

What Is an Acquisition Window?
ADC blocks take a signal from an analog source and measure it with a digital
device. The digital device does not measure in a continuous process, but in a
series of discrete measurements, close enough together to approximate the
source signal with the required accuracy.

P&�	���-��&�	 %�����	�$��
���.�&�

The digital measurement itself is not an instantaneous process, but is a
measurement window, where the signal is acquired and measured, as shown
in the following figure.

55-47

55 Working with Texas Intruments C2000 Processors

-�����
-��&�	

$��
���.�&� $��
���.�&�
P�O��
����&
��&��#

Ideally, as soon as the measurement window is opened, the actual signal
coming in would be measured perfectly. In reality the signal does not reach
its full magnitude immediately. The measurement process can be modeled by
a circuit similar to the one shown in the following figure for the ADC found on
the F2812 eZdsp

where the measurement circuit is characterized by a certain capacitance. In
the preceding figure, when the switch is closed, the measurement begins. In
this circuit, which is characterized by its capacitance, the signal received
is not in a form of a step function as shown by the ideal measurement, but
a ramp up to the true signal magnitude. The following figure shows what
happens to the signal when the sampler switch is closed and the signal is
received to be measured.

55-48

Configuring Acquisition Window Width for ADC Blocks

P����	�-��&�	
P�O��
����&
��&��#
����!

Because the signal acquisition is not instantaneous, it is very important to
set a wide enough acquisition window to allow the signal to ramp up to full
strength before the measurement is taken. If the window is too narrow,
the measurement is taken before the signal has reached its full magnitude,
resulting in erroneous data. If the window is too wide, the source signal
itself may change, and the sampling may be too infrequent to reflect the
actual value, also resulting in erroneous data. You must calculate the
necessary width of the acquisition window based on the circuit characteristics
of resistance and capacitance of your specific circuit. Then, using the ADC
parameters described in the following section, you can configure the necessary
acquisition window width.

Configuring ADC Parameters for Acquisition Window
Width

• “Accessing the ADC Parameters” on page 55-49

• “Examples” on page 55-51

Accessing the ADC Parameters
The ADC parameters can be set from the Peripherals tab of the Target
Preferences block.

• You can set ACQ_PS — Acquisition Prescaler — to a value from 0 to 15.
To obtain the actual value, increment the setting by 1. This produces an
actual range from 1 to 16.

• You can set ADCLKPS — AD Clock Prescaler — to a value from 0 to 15.
To obtain the actual value, increment the setting by 1. This produces an
actual range from 1 to 16.

55-49

55 Working with Texas Intruments C2000 Processors

• You can set CPS— Clock Prescaler — to a value from 0 to 1. To obtain the
actual value, increment the setting by 1. This produces an actual range
from 1 to 2.

These three prescalers serve to reduce the speed of the clock and to set the
acquisition window width. The following diagram shows how these prescalers
are used.

55-50

Configuring Acquisition Window Width for ADC Blocks

P%�"Q�-
(���(=
/;������	���
�������1

 ,-��"Q
/!��!�
����
�����!���	
�	���1 P%�"Q�-��

������
��!�
�&��.�&���	���
���O��&�������
����������(����(=

��-

��-

��-��
����!���������

�!���	���
���O��&�������
����������(����)

P�R@�-

P%��"Q��
�!�
��
��!�
P%���	���

��&�	

P�R@�-��
P�O��
����&
���
��	����
�&������

!�#�.�&�
P%��"Q
����
�#�		
��.���
�
�!��#�&��#

-�.�	�
 �	�
�	���
��	
�

In the preceding diagram, the high speed peripheral clock frequency is
received and then divided by the ADCLKPS. The reduced clock frequency
is then further divided by CPS. The resulting frequency is the ADCCLK
signal. The value of ACQ_PS then determines how many ADCCLK ticks
comprise one S/H (sample and hold) period, or in other words, the length of
the acquisition window.

Examples
The following examples show how you can use ADC parameters to configure
the acquisition window width:

Example 1:

If the HISPCLK = 30 MHz, and ADCLKPS=1 (which is a value of 2), the
result is 15 MHz.

If CPS= 1 (which is a value of 2), then ADCCLK = 7.5 MHz.

If ACQ_PS = 0 (which is a value of 1), then the sample/hold period is 1
ADCCLK tick, or .1333 microseconds.

55-51

55 Working with Texas Intruments C2000 Processors

Example 2:

If the HISPCLK = 30 MHz, and ADCLKPS=1 (which is a value of 2), the
result is 15 MHz.

If CPS= 1 (which is a value of 2), then ADCCLK = 7.5 MHz.

If ACQ_PS = 15 (which is a value of 16), then the sample/hold period is 16
ADCCLK ticks, or 2.1333 microseconds.

Note HISPCLK is set automatically for the user, and it is not possible to
change the rate. For more information, see “High-Speed Peripheral Clock”
on page 55-7

55-52

Using the IQmath Library

Using the IQmath Library

In this section...

“About the IQmath Library” on page 55-53

“Fixed-Point Numbers” on page 55-54

“Building Models” on page 55-59

About the IQmath Library

• “Introduction” on page 55-53

• “Common Characteristics” on page 55-54

• “References” on page 55-54

Introduction
The C28x IQmath Library blocks perform processor-optimized fixed-point
mathematical operations. These blocks correspond to functions in the Texas
Instruments C28x IQmath Library, an assembly-code library for the TI C28x
family of digital signal processors.

Note The implementation of this library for the TI C28x processor produces
the same simulation and code-generation output as the TI version of this
library, but it does not use a global Q value, as does the TI version. The Q
format is dynamically adjusted based on the Q format of the input data.

The IQmath Library blocks generally input and output fixed-point data types
and use numbers in Q format. The C28x IQmath Library block reference
pages discuss the data types accepted and produced by each block in the
library. For more information, consult the “Fixed-Point Numbers” on page
55-54 and “Q Format Notation” on page 55-56 topics, as well as the Simulink
Fixed Point product documentation, which includes more information on
fixed-point data types, scaling, and precision issues.

55-53

55 Working with Texas Intruments C2000 Processors

You can use IQmath Library blocks with some core Simulink blocks and
Simulink Fixed Point blocks to run simulations in Simulink models before
generating code. Once you develop your model, you can generate equivalent
code that is optimized to run on a TI C28x DSP. During code generation, a
call is made to the IQmath Library for each IQmath Library block in your
model to create target-optimized code. To learn more about creating models
that include IQmath Library blocks and blocks from other blocksets, consult
“Building Models” on page 55-59.

Common Characteristics
The following characteristics are common to all IQmath Library blocks:

• Sample times are inherited from driving blocks.

• Blocks are single rate.

• Parameters are not tunable.

• All blocks support discrete sample times.

To learn more about characteristics particular to each block in the library, see
C28x IQmath for links to the individual block reference pages.

References
For detailed information on the IQmath library, see the user’s guide for the
C28x IQmath Library - A Virtual Floating Point Engine, Literature Number
SPRC087, available at the Texas Instruments Web site. The user’s guide
is included in the zip file download that also contains the IQmath library
(registration required).

Fixed-Point Numbers

• “Notation” on page 55-55

• “Signed Fixed-Point Numbers” on page 55-56

• “Q Format Notation” on page 55-56

55-54

Using the IQmath Library

Notation
In digital hardware, numbers are stored in binary words. A binary word is a
fixed-length sequence of binary digits (1s and 0s). How hardware components
or software functions interpret this sequence of 1s and 0s is defined by the
data type.

Binary numbers are used to represent either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The position of the binary
point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a fractional fixed-point number
(either signed or unsigned) is shown below:

where

• bi is the ith binary digit.

• ws is the word size in bits.

• bws–1 is the location of the most significant (highest) bit (MSB).

• b0 is the location of the least significant (lowest) bit (LSB).

• The binary point is shown four places to the left of the LSB. In this
example, therefore, the number is said to have four fractional bits, or a
fraction length of 4.

Note For Embedded Coder, the results of fixed-point and integer
operations in MATLAB/Simulink match the results on the hardware target
down to the least significant bit (bit-trueness). The results of floating-point
operations in MATLAB/Simulink do not match those on the hardware
target, because the libraries used by the third-party compiler may be
different from those used by MATLAB/Simulink.

55-55

55 Working with Texas Intruments C2000 Processors

Signed Fixed-Point Numbers
Signed binary fixed-point numbers are typically represented in one of three
ways:

• Sign/magnitude

• One’s complement

• Two’s complement

Two’s complement is the most common representation of signed fixed-point
numbers and is used by TI digital signal processors.

Negation using signed two’s complement representation consists of a bit
inversion (translation to one’s complement representation) followed by the
binary addition of a 1. For example, the two’s complement of 000101 is
111011, as follows:

000101 ->111010 (bit inversion) ->111011 (binary addition of a 1 to the
LSB)

Q Format Notation
The position of the binary point in a fixed-point number determines how you
interpret the scaling of the number. When it performs basic arithmetic such
as addition or subtraction, hardware uses the same logic circuits regardless of
the value of the scale factor. In essence, the logic circuits have no knowledge of
a binary point. They perform signed or unsigned integer arithmetic — as if the
binary point is to the right of b0. Therefore, you determine the binary point.

In the IQmath Library, the position of the binary point in the signed,
fixed-point data types is expressed in and designated by Q format notation.
This fixed-point notation takes the form

Qm.n

where

• Q designates that the number is in Q format notation — the Texas
Instruments representation for signed fixed-point numbers.

55-56

Using the IQmath Library

• m is the number of bits used to designate the two’s complement integer
portion of the number.

• n is the number of bits used to designate the two’s complement fractional
portion of the number, or the number of bits to the right of the binary point.

In Q format, the most significant bit is always designated as the sign bit.
Representing a signed fixed-point data type in Q format always requires
m+n+1 bits to account for the sign.

Note The range and resolution varies for different Q formats. For specific
details, see Section 3.2 in the Texas Instruments C28x Foundation Software,
IQmath Library Module User’s Guide.

When converting from Q format to floating-point format, the accuracy of the
conversion depends on the values and formats of the numbers. For example,
for single-precision floating-point numbers that use 24 bits, the resolution of
the corresponding 32-bit number cannot be achieved. The 24-bit number
approximates its value by truncating the lower end. For example:

32-bit integer 11110000 11001100 10101010 00001111
Single-precision float +1.1110000 11001100 10101010 x 231
Corresponding value 11110000 11001100 10101010 00000000

Example — Q.15. For example, a signed 16-bit number with n = 15 bits to
the right of the binary point is expressed as

Q0.15

in this notation. This is (1 sign bit) + (m = 0 integer bits) + (n = 15 fractional
bits) = 16 bits total in the data type. In Q format notation, the m = 0 is often
implied, as in

Q.15

In Simulink Fixed Point software, this data type is expressed as

sfrac16

or

55-57

55 Working with Texas Intruments C2000 Processors

sfix16_En15

In DSP System Toolbox software, this data type is expressed as

[16 15]

Example — Q1.30. Multiplying two Q0.15 numbers yields a product that is
a signed 32-bit data type with n = 30 bits to the right of the binary point. One
bit is the designated sign bit, thereby forcing m to be 1:

m+n+1 = 1+30+1 = 32 bits total

Therefore, this number is expressed as

Q1.30

In Simulink Fixed Point software, this data type is expressed as

sfix32_En30

In DSP System Toolbox software, this data type is expressed as

[32 30]

Example — Q-2.17. Consider a signed 16-bit number with a scaling of 2(-17).
This requires n = 17 bits to the right of the binary point, meaning that the
most significant bit is a sign-extended bit.

Sign extension fills additional bits with the value of the MSB. For example,
consider a 4-bit two’s complement number 1011. When this number is
extended to 7 bits with sign extension, the number becomes 1111101 and the
value of the number remains the same.

One bit is the designated sign bit, forcing m to be -2:

m+n+1 = -2+17+1 = 16 bits total

Therefore, this number is expressed as

Q-2.17

In Simulink Fixed Point software, this data type is expressed as

55-58

Using the IQmath Library

sfix16_En17

In DSP System Toolbox software, this data type is expressed as

[16 17]

Example — Q17.-2. Consider a signed 16-bit number with a scaling of
2^(2) or 4. This means that the binary point is implied to be 2 bits to the right
of the 16 bits, or that there are n = -2 bits to the right of the binary point. One
bit must be the sign bit, thereby forcing m to be 17:

m+n+1 = 17+(-2)+1 = 16

Therefore, this number is expressed as

Q17.-2

In Simulink Fixed Point software, this data type is expressed as

sfix16_E2

In DSP System Toolbox software, this data type is expressed as

[16 -2]

Building Models

• “Overview” on page 55-59

• “Converting Data Types” on page 55-60

• “Using Sources and Sinks” on page 55-60

• “Choosing Blocks to Optimize Code” on page 55-60

• “Double and Single-Precision Parameter Values” on page 55-60

Overview
You can use IQmath Library blocks in models along with certain core
Simulink, Simulink Fixed Point, and other blockset blocks. This section
discusses issues you should consider when building a model with blocks from
these different libraries.

55-59

55 Working with Texas Intruments C2000 Processors

Converting Data Types
As always, it is vital to make sure that any blocks you connect in a model
have compatible input and output data types. In most cases, IQmath Library
blocks handle only a limited number of specific data types. You can refer to
any block reference page in the alphabetical block reference for a discussion of
the data types that the block accepts and produces.

When you connect IQmath Library blocks and Simulink Fixed Point blocks,
you often need to set the data type and scaling in the block parameters of the
Simulink Fixed Point block to match the data type of the IQmath Library
block. Many Simulink Fixed Point blocks allow you to set their data
type and scaling through inheritance from the driving block, or through
backpropagation from the next block. This can be a good way to set the data
type of a Simulink Fixed Point block to match a connected IQmath Library
block.

Some DSP System Toolbox blocks and core Simulink blocks also accept
fixed-point data types. Make the appropriate settings in these blocks’
parameters when you connect them to an IQmath Library block.

Using Sources and Sinks
The IQmath Library does not include source or sink blocks. Use source or
sink blocks from the core Simulink library or Simulink Fixed Point in your
models with IQmath Library blocks.

Choosing Blocks to Optimize Code
In some cases, blocks that perform similar functions appear in more than
one blockset. For example, the IQmath Library and Simulink Fixed Point
software have a Multiply block. When you are building a model to run on
C2000 DSP, choosing the block from the IQmath Library always yields better
optimized code. You can use a similar block from another library if it gives
you functionality that the IQmath Library block does not support, but you
will generate code that is less optimized.

Double and Single-Precision Parameter Values
When you enter double-precision floating-point values for parameters in the
IQ Math blocks, the software converts them to single-precision values that

55-60

Using the IQmath Library

are compatible with the behavior on c28x processor. For example, with the
Ramp Generator block, the software converts the value of the Maximum
step angle parameter to a single-precision value.

55-61

55 Working with Texas Intruments C2000 Processors

Programming Flash Memory

In this section...

“Introduction” on page 55-62

“Installing TI Flash APIs” on page 55-62

“Configuring the DSP Board Bootloader” on page 55-63

“Configuring the Software for Automatic Flash Programming” on page 55-64

“Selectively Erase, Program, or Verify Specific Flash Sectors” on page 55-64

“Placing Additional Code or Data on Unused Flash Sectors” on page 55-65

Introduction
The Embedded Coder software includes a feature for programming Flash
memory on the DSP target. You can configure this feature to automatically
program Flash memory when you build and execute models for DSP boards.
You can also use the Flash programming feature to selectively erase, program,
or verify specific sectors of Flash memory.

Note Reprogramming Flash memory thousands of times may deplete
its ability to hold data. Consult the manufacturer’s documentation for
specifications.

Requirements:

• A F2812, F2808, or F28335 eZdsp board

• A working model that includes a Target Preferences block for “Stand
alone code using Flash Memory”

• The TI Flash API for your specific target

Installing TI Flash APIs

1 Visit the Texas Instruments Web site and download the TI Flash API
installation software for your target:

55-62

Programming Flash Memory

• F281x: http://focus.ti.com/docs/toolsw/folders/print/sprc125.html

• F280x: http://focus.ti.com/docs/toolsw/folders/print/sprc193.html

• F2802x: http://focus.ti.com/docs/toolsw/folders/print/sprc848.html

• F2804x: http://focus.ti.com/docs/toolsw/folders/print/sprc325.html

• F2823x: http://focus.ti.com/docs/toolsw/folders/print/sprc665.html

• F2833x: http://focus.ti.com/docs/toolsw/folders/print/sprc539.html

2 Start the TI Flash API installation software (.exe) contained in the ZIP file.

3 During installation, use the default folder location for Location to Save
Files.

Otherwise, each time you create a model, you must configure Specify API
Location, located under the Peripherals tab of the Target Preferences
block.

4 Complete the installation process.

Configuring the DSP Board Bootloader
Configure the bootloader switch or jumper on the DSP board so that, upon
startup, the DSP board executes the program from Flash memory. Consult
the manufacturer’s hardware documentation to identify the specific switch
and settings.

Typically, you can enable the bootloader switch or jumper by moving it from
the factory default position (Flash disabled) to the opposite position (enabled).
For example:

• On the F2812 eZdsp, change jumper JP7 from the factory default setting.

• On the F2808 eZdsp, change switches 1 and 3 on bank SW1 from the
factory default settings.

• On F28335 eZdsp, change switch 3 on bank SW1 from the factory default
setting.

55-63

http://focus.ti.com/docs/toolsw/folders/print/sprc125.html
http://focus.ti.com/docs/toolsw/folders/print/sprc193.html
http://focus.ti.com/docs/toolsw/folders/print/sprc848.html
http://focus.ti.com/docs/toolsw/folders/print/sprc325.html
http://focus.ti.com/docs/toolsw/folders/print/sprc665.html
http://focus.ti.com/docs/toolsw/folders/print/sprc539.html

55 Working with Texas Intruments C2000 Processors

Configuring the Software for Automatic Flash
Programming
Configure Embedded Coder software to program Flash memory on the target
board when you build and execute a model.

1 On your keyboard, press Ctrl+E to open the Configuration Parameters
dialog box, select Code Generation and IDE Link, and confirm Build
Action is set to Build_and_execute.

2 Open the Target Preferences block in your model, select the Peripherals
tab, and then select Flash_loader.

3 Set Enable flash programmer to Erase, Program, Verify.

4 Click OK to save and close the new configuration.

When you build the model, the software automatically erases, programs, and
verifies Flash memory. When the DSP board restarts, it loads and executes
the program from Flash memory.

Selectively Erase, Program, or Verify Specific Flash
Sectors
You can manually erase, program, and verify specific sectors of Flash memory:

1 Open the Target Preferences block in your model, and select the
Peripherals tab.

2 Select Flash_loader from the Peripherals list.

3 Set Enable flash programmer to erase, program, or verify flash.

4 (Optional) To protect specific Flash sectors:

a Disable Detect Flash sectors to erase from COFF file.

b Deselect the flash sectors you want to protect.

5 Click Execute. The software performs the action you specified upon the
unprotected flash sectors.

55-64

Programming Flash Memory

Note Erase Flash sectors before programming them.

Placing Additional Code or Data on Unused Flash
Sectors
To place additional code or data on unused Flash sectors:

1 Determine the address and length of the individual Flash sectors. You may
need to refer to the manufacturer’s specifications.

2 Determine the size of the primary C code program and the number of Flash
sectors it occupies.

3 Determine the size of the additional code or data and the number of Flash
sectors it will occupy.

4 Under the Target PreferencesMemory tab, click Add to create two or more
new memory banks; one for the primary C code program (e.g., FLASH_AB)
and one or more for the additional code or data (e.g., FLASH_CD). The
address and length of each memory bank must align with those of the flash
sectors.

55-65

55 Working with Texas Intruments C2000 Processors

5 Under the Sections tab, underDefault sections, select .text. Then, under
Placement, select the new memory bank (e.g., FLASH_AB) you created
for the primary C code program. The next time you program the Flash
memory, the software places the .text C code file in the new memory bank.

55-66

Programming Flash Memory

6 Similarly, select items from the Default sections or Custom sections
list, and place them in the new memory banks (e.g., FLASH_CD) for the
previously unoccupied Flash sectors.

55-67

55 Working with Texas Intruments C2000 Processors

Configuring LIN Communications

In this section...

“Overview” on page 55-68

“Configuring Your Model” on page 55-68

Overview
The LIN communications architecture supports a single master node and up
to 16 slave nodes on a LIN network.

LIN nodes use message frames to exchange data. The message has two parts:

• Frame header, generated by the Master node.

• Frame response, which contains data generated by either Slave node or a
slave task on a Master node (but not both).

Configuring Your Model
First, study, and understand the LIN addressing system. See the “Message
Filtering and Validation” topic in the TMS320F2803x Piccolo Local
Interconnect Network (LIN) Module, Literature Number: SPRUGE2A.

Configure the LIN node in your model as a master or slave node:

1 Add a Target Preferences block to your model.

2 In the Target Preferences block, select the Peripherals tab, and then
select LIN.

3 Set LIN mode to Master or Slave.

If the LIN node is a Master node:

• Add a LIN Transmit block to the model. This block enables the Master to
generate message headers.

• To send data, set the ID input and Tx ID Mask input to make Tx ID
Match happen on this node.

55-68

http://focus.ti.com/lit/ug/spruge2a/spruge2a.pdf

Configuring LIN Communications

• To receive data, place LIN Receive block in the model. Set the Rx ID Mask
input to make Rx ID Match happen on this node.

For example, to configure a model with a master node that receives data
from a slave node:

• Add a LIN Transmit block and a LIN Receive block to the model.

• In the Target Preferences block, configure the ID Slave Task Byte.

• For the LIN Transmit block, set the ID input.

• For the LIN Receive block, set the Rx ID Mask input so that: Rx ID Mask
= ID XOR Slave Task ID Byte.

If the LIN node is a Slave node:

• To send data, place LIN Transmit block in the model. Set the ID input
to match the LIN frame header issued by the remote Master. Set Tx ID
Mask to make a Tx ID Match happen on this node.

• To receive data, place LIN Receive block in the model. Set the Rx ID Mask
input to make an Rx ID Match happen on this node.

For example, to configure a model with a slave node that transmits data
to a master node:

• Add a LIN Transmit block to the model.

• In the Target Preferences block, configure the ID byte or ID Slave Task
Byte (depending on the ID filtering option).

• In the LIN Transmit block, set the ID input and Tx ID Mask input so that:
Tx ID Mask = ID XOR (ID Byte or ID Slave Task Byte).

Always set the Data type and Data length values in your LIN Receive blocks
to match the type and length of the transmitted data. These values enable the
receive block reconstruct the data from the message frames correctly.

Note The LIN Transmit block inherits the data type and length from its
input.

55-69

55 Working with Texas Intruments C2000 Processors

55-70

56

Working with Texas
Instruments C6000
Processors

• “Getting Started” on page 56-2

• “Targeting C6000 DSP Hardware” on page 56-7

• “Targeting with DSP/BIOS Options” on page 56-71

• “Using the C62x and C64x DSP Libraries” on page 56-99

• “Configuring Timing Parameters for CAN Blocks” on page 56-109

• “Hardware Issues” on page 56-113

56 Working with Texas Instruments™ C6000™ Processors

Getting Started

In this section...

“Overview” on page 56-2

“Using This Guide” on page 56-2

“Configuration Information” on page 56-3

“Setting Up and Configuring” on page 56-4

Overview

Product Description
Use Embedded Coder to deploy generated code for real-time execution on
embedded microprocessors, microcontrollers, and DSPs. Using Embedded
Coder, you can integrate peripheral devices with the algorithms created using
Embedded MATLAB™, Simulink®, and Stateflow®. You can deploy the
resulting executable onto embedded hardware for on-target rapid prototyping,
real-time performance analysis, and field production.

Using This Guide

Expected Background
This document introduces you to using Embedded Coder software to develop
digital signal processing applications for the Texas Instruments C6000 family
of DSP development hardware, such as the TI TMS320C6713 DSP Starter
Kit. To get the most out of this manual, you should be familiar with MATLAB
software and its associated programs, such as DSP System Toolbox software
and Simulink software. We do not discuss details of digital signal processor
operations and applications, except to introduce concepts related to using
specific targets. For more information about digital signal processing, you
may find one or more of the following books helpful:

• McClellan, J. H., R. W. Schafer, and M. A. Yoder, DSP First: A Multimedia
Approach, Prentice Hall, 1998.

56-2

Getting Started

• Lapsley, P., J. Bier, A. Sholam, and E. A. Lee, DSP Processor Fundamentals
Architectures and Features, IEEE Press, 1997.

• Oppenheim, A.V., R. W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989.

• Mitra, S. K., Digital Signal Processing — A Computer-Based Approach, The
McGraw-Hill Companies, Inc, 1998.

• Steiglitz, K, A Digital Signal Processing Primer, Addison-Wesley
Publishing Company, 1996.

Refer to the documentation for your TI boards for information about setting
them up and using them.

If You Are a New User. New users should read “Getting Started”
on page 56-2, which introduces the Embedded Coder environment—the
required software and hardware, installation requirements, and the board
configuration settings that you need. You will find descriptions of the blocks
associated with the targeting software, and an introduction to the range of
digital signal processing applications of which the Embedded Coder is capable.

If You Are an Experienced User. All users should read “Targeting C6000
DSP Hardware” on page 56-7 for information and examples about using
the new blocks and build software to target your C6713 DSK. Two example
models introduce the targeting software and build files, and give you an idea
of the range of applications supported by the Embedded Coder.

Configuration Information
To determine whether Embedded Coder software is installed on your system,
type this command at the MATLAB prompt.

c6000lib

Entering that command displays the C6000 block library:

56-3

56 Working with Texas Instruments™ C6000™ Processors

To verify that the CCS IDE is installed on your machine, enter:

>> ccsboardinfo

Board Board Proc Processor Processor

Num Name Num Name Type

--- ---------------------------------- --- ------------------------------

0 C6713 Device Cycle Accurate Si ... 0 TMS320C6713 TMS320C6000

With the CCS IDE installed and configured, the command line returns
information about the boards that CCS IDE recognizes on your machine, in a
form similar to the preceding example.

If the command line does not return information about any boards, revisit
your CCS IDE installation and setup in your CCS IDE documentation.

As a final test, launch CCS IDE to ensure that it starts up successfully. For
the Embedded Coder to operate with this application, the CCS IDE must be
able to run on its own.

Setting Up and Configuring

• “System Requirements” on page 56-4

• “Supported Hardware” on page 56-5

• “Installing and Configuring Software” on page 56-5

System Requirements
For detailed information about the software and hardware required to use
Embedded Coder software, refer to the Embedded Coder system requirements
areas on the MathWorks Web site:

• Requirements for Embedded Coder:
www.mathworks.com/products/target-package/requirements.html

• Requirements for use with TI’s C6000:
www.mathworks.com/products/target-package/ti-adaptor/

56-4

http://www.mathworks.com/products/target-package/requirements.html
http://www.mathworks.com/products/target-package/ti-adaptor/

Getting Started

Supported Hardware
For a list of supported hardware, visit
http://www.mathworks.com/products/target-package/supportedio.html.

Installing and Configuring Software
Consult the “System Requirements” on page 56-4 for Embedded Coder . Only
use supported versions of the software listed under “Third-Party Embedded
Coder Requirements”. Uninstall unsupported versions before installing
supported versions. Doing so prevents errors that occur when the Windows
Environment Variables points to the unsupported versions.

The System Requirements describe where you can obtain the additional
third-party software, and when available, provide links for downloading that
software.

Install the software (only the supported versions!) in the following order:

1 If needed, install the required and optional MathWorks software. (The
software license you purchase determines which products are available.)

2 If needed, install TI Code Composer Studio (CCS).

3 Install TI Service Release for CCS.

4 Install the TI Code Generation Tools for you processor.

5 If you are using a Spectrum Digital board, download and install the
matching Spectrum Digital Driver.

6 Install additional board-specific packages in the order in which they appear
on the System Requirements web page.

Configure CCS as follows:

1 In CCS, open Help > About > Component Manager > Build tools

2 Open each target processor you will be using and enable the supported
version of Code Generation Tools.

56-5

http://www.mathworks.com/products/target-package/supportedio.html

56 Working with Texas Instruments™ C6000™ Processors

3 Open Help > About > Component Manager > Build Tools > Target
Content (DSP/BIOS) .

4 Open each target processor you will be using and enable the supported
version of Texas Instruments DSP/BIOS.

5 In Component Manager, select Save the changes. Then exit and restart
CCS.

6 If you have a Spectrum Digital DM6437EVM board and or an Avnet
S3ADSP DM6437 board, refer to “Installing and Configuring the Avnet
Board Support Library” on page 56-116.

7 Verify the installation by repeating the instructions in “Configuration
Information” on page 56-3.

56-6

Targeting C6000™ DSP Hardware

Targeting C6000 DSP Hardware

In this section...

“Introduction to Targeting” on page 56-7

“C6000 and Code Composer Studio IDE” on page 56-8

“Targeting Tutorial — Single Rate Application” on page 56-11

“Schedulers and Timing” on page 56-21

“Model Reference and Embedded Coder Software” on page 56-34

“Targeting Supported Boards” on page 56-38

“Simulink Models and Targeting” on page 56-43

“Targeting Tutorial II — A More Complex Application” on page 56-43

“Targeting Your C6713 DSK and Other Hardware” on page 56-50

“Creating Code Composer Studio Projects Without Building” on page 56-54

“Targeting Custom Hardware” on page 56-55

“Using Embedded Coder Software” on page 56-69

Introduction to Targeting

• “Overview” on page 56-7

• “About the Tutorials” on page 56-8

Overview
The Embedded Coder software lets you use Simulink Coder software to
generate a C language real-time implementation of your Simulink model.
You can compile, link, download, and execute the generated code on the
C6713 DSP Starter Kit (DSK). The Embedded Coder is ideal for rapid
prototyping and developing embedded systems applications for C6713 digital
signal processors. The Embedded Coder focuses on developing real-time
digital signal processing (DSP) applications for C6000 hardware. Additional
hardware that we support is listed in “Hardware Issues” on page 56-113.

56-7

56 Working with Texas Instruments™ C6000™ Processors

Although the tutorials in this chapter focus on the C6713 DSK, the techniques
and processes apply to any supported hardware, with minor adjustments for
the processor involved.

This chapter describes how to use the Embedded Coder to create and execute
applications on Texas Instruments C6000 development boards. To use the
targeting software, you should be familiar with using Simulink software
to create models and with the basic concepts of Simulink Coder software
automatic code generation. To read more about Simulink Coder software,
refer to your Simulink Coder documentation.

About the Tutorials
In most cases, this chapter deals with the C6713 DSK targets. Fortunately,
all members of the C6000 family of processors that we support work in
a manner similar to the C6713 DSK. While you review the contents of this
chapter, and follow the tutorials, recall that the concepts and techniques or
development processes apply, with a few adjustments, to all supported C6000
processors and boards.

Later sections discuss the Embedded Coder software and targeting custom
hardware.

Tip To make your figure easier to read, use easily distinguishable colors
and line styles.

C6000 and Code Composer Studio IDE

• “Using Code Composer Studio with Embedded Coder Software” on page
56-8

• “About Simulators” on page 56-9

• “Typical Hardware Setup for a Development Board” on page 56-10

Using Code Composer Studio with Embedded Coder Software
Texas Instruments (TI) markets a complete set of software tools to use
when you develop applications for your C6000 hardware boards. This

56-8

Targeting C6000™ DSP Hardware

section provides a brief example of how Embedded Coder software uses Code
Composer Studio (CCS) Integrated Development Environment (IDE) with the
Simulink Coder software and the c6000lib blockset.

Executing code generated from Simulink Coder software on a particular
target in real time requires that Simulink Coder software generate target code
that is tailored to the specific hardware target. Target-specific code includes
I/O device drivers and an interrupt service routine (ISR). Since these device
drivers and ISRs are specific to particular hardware targets, you must ensure
that the target-specific components are compatible with the target hardware.

To allow you to build an executable, TI C6000 uses the MATLAB links in
Embedded Coder software to invoke the code building process within the CCS
IDE. After you download your executable to your target and run it, the code
runs wholly on the target; you can access the running process only from the
CCS IDE debugging tools. Otherwise the running process is not accessible.

Used in combination with your Embedded Coder and Simulink Coder
software, TI products provide an integrated development environment that,
once installed, needs no additional coding.

About Simulators
The CCS IDE offers simulators for the C6000 processors in the CCS IDE
Setup utility. Much of your model and algorithm development efforts work
with the simulators, such as code generation. And, since the Embedded Coder
provides a software-based scheduler, your models and generated code run on
the simulators just as they do on your hardware. For more information about
the simulators in CCS IDE, refer to your CCS online help system.

When you set up a simulator, match the processor on your target exactly to
simulate your target hardware. For example, to target a C6713DSK board,
your simulator must contain a C6713 processor, not just a C6xxx simulator.
Simulators must match the target processor because the codecs on the board
are not the same and the simulator needs to identify the correct codec.
Correctly matching your simulator to your hardware ensures that the memory
maps and registers match those of your intended target signal processor.

To use a simulator. Open the Target Preferences block. On the Board pane,
under IDE Support, use the Get from IDE button to get a list of simulators

56-9

56 Working with Texas Instruments™ C6000™ Processors

installed with your IDE. The use Board Name to select one of the installed
simulators.

In general, use the device cycle accurate simulators provided by CCS Setup
to simulate your processor.

Typical Hardware Setup for a Development Board
The following block diagram represents typical inputs and output for a C6713
DSK development board.

After installing a supported development board, start MATLAB software.
At the command prompt, type c6000lib. This opens a Simulink blockset
named c6000lib that includes libraries that contain blocks predefined for
C6000 input and output devices.

The board-based block library for the C6713 DSK contains these blocks:

• ADC block

• DAC block

• DIP Switch block (optional, refer to the reference page for the DIP Switch
block for your target)

• LED block

• Reset block

56-10

Targeting C6000™ DSP Hardware

Blocks from these libraries are associated with your boards and hardware.
As needed, add the devices to your model. If you choose not to include either
an ADC or DAC block in your model (they are available in the target specific
libraries), the Embedded Coder provides a timer that produces the interrupts
required for timing and running your model, either on your hardware target
or on a simulator.

Targeting Tutorial — Single Rate Application

• “Overview” on page 56-11

• “Building the Audio Reverberation Model” on page 56-12

• “Adding C6713 DSK Blocks to Your Model” on page 56-13

• “Configuring Embedded Coder Blocks” on page 56-14

• “Specifying Configuration Parameters for Your Model” on page 56-18

Overview
In this tutorial you create and build a model that simulates audio
reverberation applied to an input signal. Reverberation is similar to the echo
effect you can hear when you shout across an open valley or canyon, or in
a large empty room.

You can choose to create the Simulink model for this tutorial from blocks in
DSP System Toolbox software and Simulink block libraries, or you can find
the model in Embedded Coder demos. For this example, you see the model as
it appears in the demonstration program. The demonstration model name is
c6713dskafxr.mdl as shown in the next figure. Open this model by entering
c6713dskafxr at the MATLAB prompt.

To run this model you need a microphone connected to the Mic In connector
on your C6713 DSK, and speakers and an oscilloscope connected to the
Line Out connector on your C6713 DSK. To test the model, speak into the
microphone and listen to the output from the speakers. You can observe the
output on the oscilloscope as well.

To download and run your model on your C6713 DSK, complete the following
tasks:

56-11

56 Working with Texas Instruments™ C6000™ Processors

1 Use Simulink blocks, DSP System Toolbox software blocks, and blocks from
other blocksets to create your model application.

2 Add Embedded Coder blocks that let your signal sources and output devices
communicate with your C6713 DSK—the C6713 DSK ADC and C6713 DSK
DAC blocks that you find in Embedded Coder c6000lib blockset.

3 Add the Target Preferences block to your model. Verify and set the block
parameters for your hardware. In most cases, the default settings work
fine.

If you are using a C6713 simulator, use the Get from IDE button on the
Board pane of the Target Preferences block. Then set Board Name under
IDE Support to C6713 Device Cycle Accurate Simulator.

4 Set the configuration parameters for your model, including

• Solver parameters such as simulation start and solver options

• Simulink Coder software options such as target configuration and target
compiler selection

5 Build your model to the selected target.

6 Test your model running on the target by changing the input to the target
and observing the output from the target.

Your target for this tutorial is your C6713 DSK installed on your PC. Be sure
to configure and test your board as directed in “Configuring Your C6713DSK”
on page 56-41 in this guide before continuing this tutorial.

Building the Audio Reverberation Model
To build the model for audio reverberation, follow these steps:

1 Start Simulink.

2 Create a new model by selecting File > New > Model from the Simulink
menu bar.

3 Use Simulink blocks and DSP System Toolbox software blocks to create
the following model.

56-12

Targeting C6000™ DSP Hardware

Look for the Integer Delay block in the Signal Operations library of the
DSP System Toolbox software. You do not need to add the input and output
signal lines at this time. When you add the C6713 DSK blocks in the next
section, you add the input and output to the sum blocks.

4 Save your model with a suitable name before continuing.

Adding C6713 DSK Blocks to Your Model
So that you can send signals to your C6713 DSK and get signals back from
the board, Embedded Coder software includes a block library containing five
blocks designed to work with the codec on your C6713 DSK:

• Input block (C6713 DSK ADC)

• Output block (C6713 DSK DAC)

• Light emitting diode block (C6713 DSK LED)

• Software reset block (Reset C6713 DSK)

• DIP switch block (C6713 DSK DIP Switch)

Entering c6713dsklib at the MATLAB prompt opens the block library for
the C6713 DSK. This block library is included in Embedded Coder c6000lib
blockset in the Simulink Library browser.

The C6713 DSK ADC and C6713 DSK DAC blocks generate code that
configures the codec on your C6713 DSK to accept input signals from the input
connectors on the board, and send the model output to the output connector

56-13

56 Working with Texas Instruments™ C6000™ Processors

on the board. Essentially, the C6713 DSK ADC and C6713 DSK DAC blocks
add driver software that controls the behavior of the codec for your model.

To add C6713 DSK target blocks to your model, follow these steps:

1 Double-click Embedded Coder software in the Simulink Library browser to
open the c6000lib blockset.

2 Click the block library for the C6713 DSK to see the blocks available for
your C6713 DSK.

3 Drag and drop C6713 DSK ADC and C6713 DSK DAC blocks to your model
as shown in the figure.

4 Connect new signal lines as shown in the figure.

5 Finally, add the Target Preferences block to the model. Notice that it is
not connected to any other block in the model.

Configuring Embedded Coder Blocks
To configure Embedded Coder blocks in your model, follow these steps:

1 Click the C6713 DSK ADC block to select it.

2 Select Block Parameters from the Simulink Edit menu.

3 Set the following parameters for the block:

• Clear the Stereo check box.

56-14

Targeting C6000™ DSP Hardware

• Select the +20 dB mic gain boost check box.

From the list, set Sample rate to 8000.

• Set Codec data format to 16-bit linear.

• For Output data type, select Double from the list.

• Set Scaling to Normalize.

• Set Source gain to 0.0.

• Enter 64 for Samples per frame.

Include a signal path directly from the input to the output so you can
display both the input signal and the modified output signal on the
oscilloscope for comparison.

4 For C6713 DSK ADC source, select Mic In.

5 Click OK to close the C6713 DSK ADC dialog box.

6 Now set the options for the C6713 DSK DAC block.

• Set Codec data format to 16-bit linear.

• Set Scaling to Normalize.

• For DAC attenuation, enter 0.0.

• Set Overflow mode to Saturate.

7 Click OK to close the dialog box.

8 Click the Target Preferences block.

9 Select Block Parameters from the Simulink Edit menu.

10 Verify the parameter settings for the C6713 DSK target. The figures below
show the proper values.

56-15

56 Working with Texas Instruments™ C6000™ Processors

Board Settings

56-16

Targeting C6000™ DSP Hardware

Memory Settings

56-17

56 Working with Texas Instruments™ C6000™ Processors

Section Settings

You have completed the model. Now configure the Simulink Coder software
options to build and download your new model to your C6713 DSK.

Specifying Configuration Parameters for Your Model
The following sections describe how to build and run real-time digital signal
processing models on your C6713 DSK. Running a model on the target starts
with configuring and building your model from the Configuration Parameters
dialog box in Simulink software.

Setting Simulink Configuration Parameters. After you have designed
and implemented your digital signal processing model in Simulink software,
complete the following steps to set the configuration parameters for the model:

56-18

Targeting C6000™ DSP Hardware

1 Open the Configuration Parameters dialog box and set the appropriate
options on the Solver category for your model and for Embedded Coder
software.

• Set Start time to 0.0 and Stop time to inf (model runs without
stopping). Generated code does not honor this setting if you set a stop
time. Set this to inf for completeness.

• Under Solver options, select the Fixed-step and Discrete settings
from the lists

• Set the Fixed step size to Auto and the Tasking Mode to Single
Tasking

Note Generated code does not honor Simulink stop time from the simulation.
Stop time is interpreted as inf. To implement a stop in generated code, you
must put a Stop Simulation block in your model.

Ignore the Data Import/Export, Diagnostics, and Optimization categories
in the Configuration Parameters dialog box. The default settings are correct
for your new model.

Setting Simulink Coder Target Build Options. You can configure
Simulink Coder software to generate and build code that is appropriate for
your hardware target. Follow these steps to set the Simulink Coder options
to target your C6713 DSK:

1 Open the Configuration Parameters dialog box by entering Ctrl+E
or by selecting the Simulation menu item and then Configuration
Parameters.

2 From the Select tree, choose Code Generation.

3 Verify that the system target file is set to idelink_grt.tlc. If needed, click
Browse and select idelink_grt.tlc.

4 From the Select tree, choose IDE Link.

5 Among the Runtime Options, set Build action to Build_and_execute,
and set Interrupt overrun notification method to Print_message.

56-19

56 Working with Texas Instruments™ C6000™ Processors

6 Among the Project Options, keep the default settings.

7 Among the Code Generation options, clear Profile real-time execution.

8 Among the Link Automation options, verify that Export IDE link
handle to base workspace is selected and that IDE link handle name
has a name (e.g., CCS_Obj).

9 From the Select tree, choose Hardware Implementation.

10 Verify that Byte ordering is Little endian.

When you have completed these steps, you have configured the Simulink
Coder options for the C6713 DSK target. Some Simulink Coder categories on
the Select tree, such as Comments, Symbols, and Optimization, do not
require configuration. The default values for the options in these categories
are already correct for your new model. For other models, you may want to
set the options in these categories to provide information during the build and
to run TLC debugging when you generate code.

Building and Executing Your Model on Your C6713 DSK. After you
set the configuration parameters and configure Simulink Coder software
to create the files you need, you direct Simulink Coder software to build,
download, and run your model executable on your target:

1 Change the category to Code Generation on the Configuration Parameters
dialog box.

2 Clear Generate code only and click Build to generate and build an
executable file targeted to your C6713 DSK.

When you click Build with Build_and_execute selected for Build action,
the automatic build process creates an executable file that can be run by
the C6713 DSP on your C6713 DSK, and then downloads the executable
file to the target and runs the file.

3 To stop model execution, click the Reset C6713 DSK block or use the
Halt option in CCS IDE. You could type halt from the MATLAB command
prompt as well.

56-20

Targeting C6000™ DSP Hardware

Testing Your Audio Reverb Model. With your model running on your
C6713 DSK, speak into the microphone you connected to the board. The
model should generate a reverberation effect out of the speakers, delaying
and echoing the words you speak into the mike. If you built the model
yourself, rather than using the supplied model c6713dskafxr, try running
the demonstration model to compare the results.

Schedulers and Timing

• “Timer-Based Versus Asynchronous Interrupt Processing” on page 56-21

• “Synchronous Scheduling” on page 56-22

• “Asynchronous Scheduling” on page 56-23

• “Asynchronous Scheduler Examples” on page 56-24

• “Uses for Asynchronous Scheduling” on page 56-28

• “Scheduling Considerations” on page 56-33

Timer-Based Versus Asynchronous Interrupt Processing
Code generated for periodic tasks, both single- and multitasking, runs out of
the context of a timer interrupt. The generated code that represents model
blocks for periodic tasks runs periodically, clocked by the periodic interrupt
whose period is equal to the base sample time of the model. This description
of scheduling and timing applies both to generated code operation that
incorporates DSP/BIOS real-time operating system (RTOS) and basic code
generation mode where DSP/BIOS RTOS is not included.

Note In timer-based models, the timer counts through one full
base-sample-time before it creates an interrupt. When the model is finally
executed, it is for time 0.

This execution scheduling scheme is not flexible enough for some systems,
such as control and communication systems that must respond to
asynchronous events in real time. Such systems may need to handle a variety
of hardware interrupts in an asynchronous, or aperiodic, fashion.

56-21

56 Working with Texas Instruments™ C6000™ Processors

When you plan your project or algorithm, select your scheduling technique
based on your application needs.

• If your application processes hardware interrupts asynchronously, add the
appropriate asynchronous scheduling blocks from the Embedded Coder
library to your model, listed here.

Blocks in the DSP/BIOS (dspbioslib) library

- Hardware Interrupt — Create interrupt service routine on C6000
hardware target.

- Task — Create task that runs as separate DSP/BIOS thread.

- Triggered Task — Create asynchronously triggered task.
Blocks in the Scheduling (c6000dspcorelib) library

- Block Processing — Repeat user-specified operation on submatrices of
input matrix, using internal memory of DSP for increased efficiency.

- CPU timer — Generate interrupt service routine.

- EDMA — Configure EDMA Controller on C6000 processor.
Blocks in the Embedded Coder library for Texas Instruments Code

Composer Studio (idelinklib_ticcs)

- C6000 Hardware Interrupt — Generate interrupt service routine. Same
as the DSP/BIOS interrupt block.

Blocks in the idelinklib_common library

- Idle Task — Create free-running background task

• If your application does not service asynchronous interrupts, your model
should include only the algorithm and device driver blocks that specify
the periodic sample times. Generating code from a model like this
automatically enables and manages a timer interrupt. The periodic timer
interrupt clocks the entire model.

Synchronous Scheduling
For code that runs synchronously in the context of the timer interrupt, each
iteration of the model runs after an interrupt has been posted and serviced by
an interrupt service routine (ISR). The code generated for Embedded Coder
software uses Timer 1 in DSP/BIOS mode and bare-board mode. Timer 1 is
configured so that the base rate sample time for the coded process corresponds

56-22

Targeting C6000™ DSP Hardware

to the interrupt rate. The Embedded Coder calculates and configures the
timer period to ensure the desired sample rate.

The minimum achievable base rate sample time depends on the algorithm
complexity and the CPU clock speed. The maximum value depends on the
maximum timer period value and the CPU clock speed.

If all the blocks in the model inherit their sample time value, and no sample
time is defined explicitly, Simulink assigns a default sample time of 0.2
second.

Note In timer-based models, the timer counts through one full
base-sample-time before it creates an interrupt. When the model is finally
executed, it is for time 0.

Asynchronous Scheduling
Embedded Coder software facilitates modeling and automatically generating
code for asynchronous systems by using the following scheduling blocks:

• Hardware Interrupt and Idle Task blocks for bare-board code generation
mode

• DSP/BIOS Hardware Interrupt, DSP/BIOS Task, and DSP/BIOS Triggered
Task blocks for DSP/BIOS code generation mode

C6000 Hardware Interrupt blocks enable selected hardware interrupts for the
TI TMS320C6000 DSP, generate corresponding ISRs, and connect them to the
corresponding interrupt service vector table entries.

When you connect the output of the C6000 Hardware Interrupt block to the
control input of a function-call subsystem, the generated subsystem code is
called from the ISRs each time the interrupt is raised.

The C6000 Idle Task block specifies one or more functions to execute as
background tasks in the code generated for the model. The functions are
created from the function-call subsystems to which the Idle Task block is
connected.

56-23

56 Working with Texas Instruments™ C6000™ Processors

The DSP/BIOS Hardware Interrupt block (in DSP/BIOS code generation
mode) has the same functionality as the bare-board C6000 Hardware
Interrupt block. The configuration and low-level handling of the hardware
interrupts is implemented through DSP/BIOS using DSP/BIOS Hardware
Interrupt module and DSP/BIOS dispatcher.

DSP/BIOS Task blocks (DSP/BIOS code generation mode) spawn free-running
tasks as separate DSP/BIOS threads. The spawned task runs the function-call
subsystem connected to its output. Blocks in the subsystem may use various
conditions and techniques to control sharing sources with other tasks.

DSP/BIOS Triggered Task blocks (in DSP/BIOS code generation mode) spawn
semaphore-controlled tasks as separate DSP/BIOS threads. The semaphore
that enables execution of a single instance of the task is posted by an ISR that
is created by a DSP/BIOS Hardware Interrupt block. This block is connected
to a DSP/BIOS Triggered Task block.

Asynchronous Scheduler Examples
Now you can use an asynchronous (real-time) scheduler for your target
application. Earlier versions of Embedded Coder software used a synchronous
CPU timer interrupt-driven scheduler. With the asynchronous scheduler
you can define interrupts and tasks to occur when you want them to using
blocks in the following libraries:

• Core Support library (idelinklib_common)

• DSP/BIOS library (dspbioslib)

Also, you can schedule multiple tasks for asynchronous execution using those
blocks libraries.

The following figures show a model updated to use the asynchronous
scheduler rather than the synchronous scheduler.

56-24

Targeting C6000™ DSP Hardware

Before.

After.

56-25

56 Working with Texas Instruments™ C6000™ Processors

Model Inside the Function Call Subsystem Block.

Compatibility Considerations

The V3.0 changes in the real-time scheduler can break some existing
multirate models that contain codec blocks such as the ADC and DAC. The
models affected contain at least one sample rate that is faster than the codec
block rate. You do not run into this problem if all rates in the model are lower
than the codec rate.

The new scheduler provides improved control for your processing and
improved performance. You should recast all of your models to use the new
asynchronous scheduler. To update your models, embed the entire processing
algorithm or system in a function-call subsystem driven by a DSP/BIOS Task
or Idle Task block from the DSP/BIOS library.

An example of such a model contains a combination of an ADC block and a
DAC block, with a processing algorithm between them that executes at the
higher rate. If you run code generated for such a model in multitasking or
auto solver mode, you might hear occasional audio glitches or your program

56-26

Targeting C6000™ DSP Hardware

may overrun. The exact symptom of the problem depends on the run-time
overrun action setting in the IDE Link options.

The following model demonstrates one possible model configuration that can
demonstrate the audio problems.

This multirate model uses two interrupts to control real-time execution of the
generated code:

• A DMA interrupt to drive the execution of the code for ADC and DAC blocks

• A timer interrupt to drive the execution of the code for the FIR filter at an
increased sample rate

In earlier product versions, the generated scheduler constantly synchronized
the DMA and timer interrupts to ensure they remained in sync with one
another, despite the possible clock drift with interrupts that are recorded by
independent clock sources.

With the new real-time scheduler, the product does not synchronize the ADC
and timer interrupts.

One interrupt may get out of sync with the other, with the time difference
between them (drift) fluctuating with changes in the independent interrupt
clocks. When the drift reaches a critical threshold, processing may skip an
instance of a lower-priority task.

At that point, the interrupts are back in sync and the process continues.
Losing synchronization between the interrupts can corrupt the audio signal or
lead to an interrupt overrun.

To avoid the audio problems in an existing model that you cannot update to
the new scheduler, set the run-time overrun action for the model to either
None or Notify_and_continue to prevent the program from overrunning.

56-27

56 Working with Texas Instruments™ C6000™ Processors

Uses for Asynchronous Scheduling
The following sections present common cases for the scheduling blocks
described in the previous sections.

Free-Running DSP/BIOS Task. The following model illustrates a case
where a reverberation algorithm runs in the context of a free-running
DSP/BIOS task.

Normally, the algorithms in this type of task run in free-running mode,
that is, they run repetitively and indefinitely. However, in this function-call
subsystem (shown in detail in the following figure), ADC and DAC blocks
suspend the execution of the task until the ADC and DAC data is available.

Each instance of the reverberation algorithm is triggered only after the data
buffer is available (for both ADC and DAC). An asynchronous ADC/DAC
device driver layer separate from the task function manages the triggers
condition. This device driver layer uses a direct memory access (DMA)
interrupt to signal to the DSP/BIOS task when ADC and DAC data become
available for the task function.

56-28

Targeting C6000™ DSP Hardware

This model also illustrates how synchronous and asynchronous tasks can
work together. The code generated for C6416 DSK DIP Switch block runs
as a periodic task at the rate of 0.01 s. This is the only periodic task in the
model. It runs out of the context of a DSP/BIOS task scheduled via a timer
interrupt configured to go off every 0.01 second.

In general, Simulink blocks that specify nonzero sample rates, such as the
DIP Switch block, are scheduled by the C6000 synchronous scheduler and
executed either from the context of a DSP/BIOS task (if you incorporate
DSP/BIOS in your project) or a hardware interrupt (when you do not
incorporate DSP/BIOS).

To ensure data integrity, Simulink Rate Transition blocks connect the C6416
DSK DIP Switch block with the reverberation algorithm. This transition is
required because the blocks belong to different rate groups. If the synchronous
and asynchronous parts of the model do not interact, the Rate Transition
blocks are not needed.

56-29

56 Working with Texas Instruments™ C6000™ Processors

Idle Task. The following model illustrates a case where the reverberation
algorithm runs in the context of a background task in bare-board code
generation mode.

The function generated for this task normally runs in free-running
mode—repetitively and indefinitely. However, the ADC and DAC blocks in
this subsystem run in blocking mode. As a result, subsystem execution of
the reverberation function is the same as the subsystem described for the
Free-Running DSP/BIOS Task. It is data driven via a background DMA
interrupt-controlled ISR, shown in the following figure.

56-30

Targeting C6000™ DSP Hardware

Hardware Interrupt Triggered DSP/BIOS Task. The next model
illustrates a case where a function (Location Command) runs in the context of
a hardware interrupt-triggered DSP/BIOS task.

56-31

56 Working with Texas Instruments™ C6000™ Processors

The DSP/BIOS Hardware Interrupt block installs an ISR function that signals
a DSP/BIOS task to run when the ISR detects an RTDX interrupt. Signaling
between the ISR and DSP/BIOS triggered task occurs via semaphores. This
task receives an RTDX message carrying the location command for the
downstream Text Insert block in the Text Overlay from the host computer.

The blocks running inside the Location Command and Text Overlay
subsystems are shown in the following figure.

The text overlay subsystem is executed as for the Free-Running DSP/BIOS
Task. A Rate Transition block connects the two subsystems that run at two
different asynchronous rates to ensure data integrity. The execution of two
asynchronous rates is ordered based on the priority settings for the DSP/BIOS
Task blocks.

Hardware Interrupt Triggered Task. In the next figure, you see a case
where a function (LED Control) runs in the context of a hardware interrupt
triggered task.

56-32

Targeting C6000™ DSP Hardware

In this model, the C6000 Hardware Interrupt block installs a task that runs
when it detects an external interrupt. This task then toggles an external
C6416DSK LED on or off.

Scheduling Considerations
When you use the DSP/BIOS task blocks for scheduling, either the DSP/BIOS
Task block or the DSP/BIOS Triggered Task block, you must take care to
avoid some common scheduling pitfalls.

First, the DSP/BIOS operating system always executes the task with the
highest priority. Contrast this execution scheme with that of some other
real-time operating systems (RTOS) where each task gets its fair share of
processing time. Therefore, depending on the situation, there may be cases
where lower-priority tasks never execute because a higher priority task is
never blocked.

A DSP/BIOS task blocks only when a blocking device driver block is included
in the function call subsystem the task is executing, such as ADC/DAC blocks
and C6000 UDP Receive blocks. If a particular DSP/BIOS task executes
a function call subsystem that does not include any device driver blocks,
and this particular task has the highest priority, it never releases the CPU,
effectively disabling all other lower priority tasks in the application.

For more information about asynchronous schedulers, refer to the “Handling
Asynchronous Events” chapter in your Simulink Coder documentation in
the online help system.

56-33

56 Working with Texas Instruments™ C6000™ Processors

Model Reference and Embedded Coder Software

• “Overview” on page 56-34

• “How Model Reference Works” on page 56-34

• “Using Model Reference with Embedded Coder Software” on page 56-35

• “Configuring Targets to Use Model Reference” on page 56-37

Overview
Model reference lets your model include other models as modular components.
This technique provides useful features because it:

• Simplifies working with large models by letting you build large models
from smaller ones, or even large ones.

• Lets you generate code once for all the modules in the entire model and
only regenerate code for modules that change.

• Lets you develop the modules independently.

• Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

Your Simulink Coder documentation provides much more information about
model reference.

How Model Reference Works
Model reference behaves differently in simulation and in code generation. For
this discussion, you need to know the following terms:

• Top model — The root model block or model. It refers to other blocks or
models. In the model hierarchy, this is the topmost model.

• Referenced models — Blocks or models that other models reference, such
as models the top model refers to. All models or blocks below the top model
in the hierarchy are reference models.

56-34

Targeting C6000™ DSP Hardware

The following sections describe briefly how model reference works. More
details are available in your Simulink Coder documentation in the online
help system.

Model Reference in Simulation. When you simulate the top model,
Simulink Coder software detects that your model contains referenced models.
Simulink generates code for the referenced models and uses the generated
code to build shared library files for updating the model diagram and
simulation. It also creates an executable (a MEX file, .mex) for each reference
model that is used to simulate the top model.

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink rebuilds the model reference files. Whether reference
files or models are rebuilt depends on whether and how you change the models
and on the Rebuild options settings. You can access these setting through
theModel Reference pane of the Configuration Parameters dialog box.

Model Reference in Code Generation. Simulink Coder software requires
executables to generate code from models. If you have not simulated your
model at least once, Simulink Coder software creates a .mex file for simulation.

Now, for each referenced model, the code generation process calls make_rtw
and builds each referenced model. This build process creates a library file for
each of the referenced models in your model.

After building all the referenced models, Simulink Coder software calls
make_rtw on the top model, linking to all the library files it created for the
associated referenced models.

Using Model Reference with Embedded Coder Software
With few limitations or restrictions, the Embedded Coder provides full
support for generating code from models that use model reference.

Build Action Setting. The most important requirement for using model
reference with the TI targets is that you must set the Build action (go to
Configuration Parameters > IDE Link) for all models referred to in the
simulation to Archive_library.

To set the build action

56-35

56 Working with Texas Instruments™ C6000™ Processors

1 Open your model.

2 Select Simulation > Configuration Parameters from the model menus.

The Configuration Parameters dialog box opens.

3 From the Select tree, choose IDE Link.

4 In the right pane, under Runtime, set Build action to Archive_library.

If your top model uses a reference model that does not have the build action
set to Archive_library, the build process automatically changes the build
action to Archive_library and issues a warning about the change.

As a result of selecting the Archive_library setting, other options are
disabled:

• DSP/BIOS is disabled for all referenced models. Only the top model
supports DSP/BIOS operation.

• Overrun action, Overrun notification method, Exporting CCS
object to the workspace, and Stack size are all disabled for the
referenced models.

Target Preferences Blocks in Reference Models. Each referenced model
and the top model must include a Target Preferences block for the correct
target. You must configure all the Target Preferences blocks for the same
target.

To obtain information about which compiler to use and which archiver to
use to build the referenced models, the referenced models require Target
Preferences blocks. Without them, the compile and archive processes does
not work.

By design, model reference does not allow information to pass from the top
model to the referenced models. Referenced models must contain all the
necessary information, which the Target Preferences block in the model
provides.

Other Block Limitations. Model reference with Embedded Coder software
does not allow you to use certain blocks or S-functions in reference models:

56-36

Targeting C6000™ DSP Hardware

• No blocks from the C62x DSP Library (tic64dsplib) (because these are
noninlined S-functions)

• No blocks from the C64x DSP Library (tic62dsplib) (because these are
noninlined S-functions)

• No noninlined S-functions

• No driver blocks, such as the ADC or DAC blocks from any Embedded
Coder library

Configuring Targets to Use Model Reference
Targets that you plan to use in Model Referencing must meet some general
requirements.

• A model reference compatible target must be derived from the ERT or
GRT targets.

• When you generate code from a model that references another model, you
need to configure both the top-level model and the referenced models for
the same code generation target.

• The External mode option is not supported in model reference Simulink
Coder target builds. Embedded Coder software supports External mode,
but not with model reference. If you select this option, it is ignored during
code generation. For more information, please see the “Communicating
With Code Executing on a Target System Using Simulink External Mode”
chapter in the Simulink Coder User’s Guide.

• To support model reference builds, your TMF must support use of the
shared utilities folder, as described in Supporting Shared Utility folders
in the Build Process.

To use an existing target, or a new target, with Model Reference, you set the
ModelReferenceCompliant flag for the target. For information on how to set
this option, refer to ModelReferenceCompliant in the online help system.

If you start with a model that was created prior to version 2.4 (R14SP3),
to make your model compatible with the model reference target, use the
following command to set the ModelReferenceCompliant flag to On:

set_param(bdroot,'ModelReferenceCompliant','on')

56-37

56 Working with Texas Instruments™ C6000™ Processors

Models that you target with the Embedded Coder versions 2.4 and later
automatically include the model reference capability. You do not need to
set the flag.

Targeting Supported Boards

• “Overview” on page 56-38

• “Typical Targeting Process” on page 56-39

• “Targeting the C6713 DSP Starter Kit” on page 56-39

• “Configuring Your C6713DSK” on page 56-41

• “Confirming Your C6713DSK Installation” on page 56-42

Overview
Texas Instruments markets a complete set of tools for you to use with
the a range of development boards, such as the C6713 DSK. These tools
are primarily intended for rapid prototyping of control systems and
hardware-in-the-loop applications. This section provides a brief example of
how to use TI development tools with Simulink Coder software and the C6713
DSK blocks.

Executing code generated from Simulink Coder software on a particular
target in real time requires target-specific code. Target-specific code includes
I/O device drivers and an interrupt service routine. Other components, such
as Embedded Coder software, are required if you need the ability to download
parameters on the fly to your target hardware.

Since these components are specific to particular hardware targets (in this
case, the C6713 DSK), you must ensure that the target-specific components
are compatible with the target hardware.

To allow you to build an executable, Embedded Coder software provides
a target makefile specific to the evaluation module. This target makefile
invokes the optimizing compiler, provided as part of TI Code Composer Studio
software.

56-38

Targeting C6000™ DSP Hardware

Used in combination with Simulink Coder software, TI products provide an
integrated development environment that, once installed, needs no additional
coding.

Typical Targeting Process
Generally, targeting hardware, or a development environment as some call it,
requires that you complete a series of processes that starts with building your
model and ends with generating code to suit your target.

1 Build the Simulink model of your algorithm or process to be converted to
code for your target.

2 Add target-specific blocks to your model, such as ADC and DAC blocks,
and configure the block parameters.

3 Add a Target Preferences block to your model.

4 Configure the options on the Target Preferences block to select the target,
map memory segments, allocate sections to the memory segments, and
configure other target-specific options.

5 Set the configuration parameters for your model. Notice that you do this
step after you add the Target Preferences block to your model.

6 Build your model to your target.

Targeting the C6713 DSP Starter Kit
After you install the C6713 DSK development board and supporting TI
products on your PC, start the MATLAB software. At the MATLAB
command prompt, enter c6713dsklib. This opens a Simulink block library,
c6713dsklib, that includes a set of blocks for C6713 DSK I/O devices, as
described in the following table.

Block Description

C6713 DSK ADC Configure the analog to digital converter

C6713 DSK DAC Configure the digital to analog converter

56-39

56 Working with Texas Instruments™ C6000™ Processors

Block Description

C6713 DSK LED Control the user status LEDs on the C6713 DSK

C6713 DSK Reset Reset the processor on the C6713 DSK

These blocks are associated with your C6713 DSK board. As needed, add the
blocks to your model.

With your model open, select Simulation > Configuration Parameters.
From this dialog box, select Code Generation from the Select tree. You
must specify the appropriate versions of the system target file. For the
C6713 DSK, in the Code Generation pane, specify System target file
—idelink_grt.tlc

With this configuration, you can generate a real-time executable and
download it to the TI C6713 evaluation board. You generate the executable by
clicking Build on the Code Generation pane. The Simulink Coder software
automatically generates C code and inserts the I/O device drivers as specified
in your block diagram. These device drivers are inserted in the generated C
code as inlined S-functions. Inlined S-functions offer speed advantages and
simplify the generated code. For more information about inlining S-functions,
refer to Target Language Compiler Reference documentation. For a complete
discussion of S-functions, refer to your Writing S-Functions documentation.

During the same build operation, the software invokes the TI compiler
to build an executable file. If you select the Build_and_execute option,
Simulink Coder software automatically downloads the executable to the TI
evaluation board via the peripheral component interface (PCI) bus. After
downloading the executable file to the C6713 DSK, the build process runs the
file on the processor.

Starting and Stopping DSP Applications on the C6713 DSK. When you
generate code, build the project, and download the code for your Simulink
model to your C6713 DSK, you are running actual machine code corresponding
to the block diagram you built in Simulink software. To start running your
DSP application on the evaluation module, you must open your Simulink
model and rebuild the machine executable by clicking Build. To start the
application on the C6713 DSK, you use Simulink Coder software to rebuild
the executable from the Simulink model and download the code to the board.

56-40

Targeting C6000™ DSP Hardware

Your model runs until it encounters one of the following actions:

• You select Debug > Halt in CCS IDE.

• You shut down the host PC.

• The process encounters a Stop block in the model code.

• The running application encounters an error condition that stops the
process.

If you included a Reset C6713 DSK block in your model, clicking the block
stops the running application and restores the digital signal processor to
its initial state.

Note When you build and execute a model on the C6713 DSK, the Simulink
Coder build process resets the evaluation module automatically. You do not
need to reset the board before building models. To stop processes that are
running on the evaluation module, or to return the board to a known state
for any reason, use the Reset C6713 DSK block.

Configuring Your C6713DSK
When you install the C6713DSK, set the dual inline pin (DIP) switches as
shown in the following table. If you have installed the board with different
settings, reconfigure the board. Refer to your TMS320C6201/6713Evaluation
Module User’s Guide for details.

DIP Switch Name Setting Effect

SW2-1 BOOTMODE4 On Boot mode setting

SW2-2 BOOTMODE3 On Boot mode setting

SW2-3 BOOTMODE2 Off Sets memory map = 1
when SW2-5 is off

SW2-4 BOOTMODE1 On Boot mode setting

SW2-5 BOOTMODE0 Off Sets memory map =1
when SW2-3 is off

56-41

56 Working with Texas Instruments™ C6000™ Processors

DIP Switch Name Setting Effect

SW2-6 CLKMODE On Sets multiply-by-4 mode

SW2-7 CLKSEL On Selects oscillator A

SW2-8 ENDIAN On Selects little endian mode

SW2-9 JTAGSEL Off Selects internal Test Bus
Controller (TBC)

SW2-10 USER2 On User-defined option

SW2-11 USER1 On User-defined option

SW2-12 USER0 On User-defined option

Confirming Your C6713DSK Installation
Texas Instruments supplies a test utility to verify the operation of the board
and its associated software. For complete information about running the
test utility and interpreting the results, refer to your TMS320C6201/6713
DSP Starter Kit User’s Guide.

To run the C6713 DSK verification test, complete the following steps after
you install your board:

1 Start CCS IDE.

2 Select Start > Programs > Code Composer Studio > DSK Confidence
Test. As the test runs, the results appear on your display.

By default, the test utility does not create a log file to store the test results.
To specify the name and location of a log file to contain the results of
the confidence test, use the command line options in CCS IDE to run
the confidence test utility. For further information about running the
verification test from a DOS window and using the command line options,
refer to TMS320C6201/6713 Evaluation Module User’s Guide.

3 Review the test results to verify that everything works. Check that the
options settings match the settings listed in the table above.

56-42

Targeting C6000™ DSP Hardware

If your options settings do not match the configuration shown in the
preceding table, reconfigure your C6713 DSK. After you change your board
configuration, rerun the verification utility to check your new settings.

Simulink Models and Targeting

Creating Your Simulink Model for Targeting
You create real-time digital signal processing models the same way you create
other Simulink models—by combining standard DSP blocks and C-MEX
S-functions.

You add blocks to your model in several ways:

• Use blocks from the DSP System Toolbox software

• Use blocks from the fixed-point blocks library TI C62x DSPLIB or TI C64x
DSPLIB

• Use other Simulink discrete-time blocks

• Use the blocks provided in the C6000 blockset: ADC, DAC, LED and Reset
blocks for specific supported target hardware

• Use blocks that provide the functions you need from any blockset installed
on your computer

• Create and use custom blocks

Once you have designed and built your model, you generate C code and build
the real-time executable by clicking Build on the Code Generation pane
of the Configuration Parameters dialog box. The automatic build process
creates the file modelname.out containing a real-time model image in COFF
file format that can run on your target.

The file modelname.out is an executable whose format is target-specific. You
can load the file to your target and execute it in real time. Refer to your
Simulink Coder documentation for more information about the build process.

Targeting Tutorial II — A More Complex Application

• “Overview” on page 56-44

56-43

56 Working with Texas Instruments™ C6000™ Processors

• “Working and Build folders” on page 56-45

• “Setting Simulation Program Parameters” on page 56-45

• “Selecting the Target Configuration” on page 56-46

• “Building and Running the Program” on page 56-49

• “Contents of the Build folder” on page 56-50

Overview
For this tutorial, we demonstrate an application that uses multiple
stages—using wavelets to remove noise from a noisy signal. Open the
demo model, c6713dskwdnoisf. As with any model file, you can run this
denoising demonstration by typing c6713dskwdnoisf at the MATLAB
prompt. The model also appears in the MATLAB demos collection in the Help
browser—under Simulink demos, in the Embedded Coder category. Here is a
picture of the model as it appears in the demonstration library.

Unlike the audio reverberation demo, this model is difficult to build from
blocks in Simulink software. It uses complex subsystems for the Delay
Alignment block and the Soft Threshold block. For this tutorial, you work
with a copy of the demonstration model, rather than creating the model.

56-44

Targeting C6000™ DSP Hardware

This tutorial takes you through generating C code and building an executable
program from the demonstration model. The resulting program runs on your
C6713 DSK as an executable COFF file.

Working and Build folders
It is convenient to work with a local copy of the c6713dskwdnoisf model,
stored in its own folder, which you named (something like c6713dnoisfex).
This discussion assumes that the c6713dnoisfex folder resides on drive d:.
Use a different drive letter if necessary for your machine. Set up your working
folder as follows:

1 Create the new model folder from the MATLAB command line by typing

!mkdir d:\c6713dnoisfex (on PC)

2 Make c6713dnoisfex your working folder.

cd d:/c6713dnoisfex

3 Open the c6713dskwdnoisf model.

c6713dskwdnoisf

The model appears in the Simulink window.

4 From the File menu, choose Save As. Save a copy of the c6713dskwdnoisf
model as d:/c6713dnoisfex/dnoisfrtw.mdl.

During code generation, Simulink Coder software creates a build folder within
your working folder. The build folder name is model_target_rtw, derived
from the name of your source model and your chosen target. In the build
folder, Simulink Coder software stores generated source code and other files
created during the build process. You examine the contents of the build folder
at the end of this tutorial.

Setting Simulation Program Parameters
To generate code correctly from the dnoisfrtw model, you must change some
of the configuration parameters. In particular, Simulink Coder software uses
a fixed-step solver. To set the parameters, use the Configuration Parameters
dialog box as follows:

56-45

56 Working with Texas Instruments™ C6000™ Processors

1 From the Simulation menu, choose Configuration Parameters. The
Configuration Parameters dialog box opens.

2 Click Solver and enter the following parameter values on the Solver
pane. Note that Embedded Coder software does not honor a stop time if
you set one here.

Start Time: 0.0

Stop Time: inf

Solver options: set Type to Fixed-step. Select the Discrete solver
algorithm. (Targeting does not work with continuous time solvers.)

Fixed step size: auto

Tasking mode for periodic sample times: Auto

3 Click Apply, and then click OK to close the dialog box.

4 Save the model. Configuration parameters persist with the model (as the
model configuration set), for you to use in future sessions.

In the next figure you see the Solver pane with the correct parameter settings.

Selecting the Target Configuration
To specify the desired target configuration, choose the System target file.

56-46

Targeting C6000™ DSP Hardware

In these tutorials, you do not need to specify these parameters individually.
Instead, you use the ready-to-run idelink_grt.tlc target configuration.

Note The Code Generation category has several subcategories that you
select using the Select tree in the Configuration Parameters dialog box.
During this tutorial you change or review options in just a few of the
categories in the tree.

To target your C6713 DSK:

1 From the Simulation menu, choose Configuration Parameters. The
Configuration Parameters dialog box opens.

2 Click Code Generation on the Select tree. The Code Generation pane
activates.

3 Click Browse next to the System target file field. This opens the System
Target File Browser. The browser displays a list of available target
configurations. When you select a target configuration, Simulink Coder
software automatically chooses the appropriate system target file.

4 From the list of available configurations, select idelink_grt.tlc, and
click OK.

56-47

56 Working with Texas Instruments™ C6000™ Processors

5 To decide whether to export a CCS handle to your MATLAB workspace
when you generate code, or run your model, select IDE Link from the
Select tree.

6 Set the Runtime and Project options as shown in the preceding figure.

7 To export the handle (a variable) that CCS IDE creates when you
generate code from your model, select Export IDE link handle to base
workspace, and enter a name for the handle in IDE link handle name.

8 Select Optimization from the Select tree. A new set of options appears.
The options displayed here are common to all target configurations. Make
sure that all options are set to their defaults, as shown in the following
figure.

9 Click OK to close the Configuration Parameters dialog box. Save the model
to retain your new build settings.

56-48

Targeting C6000™ DSP Hardware

Building and Running the Program
The Simulink Coder build process generates C code from your model, and
then compiles and links the generated program.

To build and run your program:

1 Access the Configuration Parameters dialog box for your model.

2 Click Build in the Code Generation pane to start the build process.

3 A number of messages concerning code generation and compilation appear
in the MATLAB workspace. The initial messages are

Starting Simulink Coder build procedure for model:

dnoisfrtw

Generating code into build folder: .\dnoisfrtw_c6000_rtw

The content of the succeeding messages depends on your compiler and
operating system. The final message is

Successful completion of Simulink Coder build procedure

for model: dnoisfrtw

4 The working folder now contains an executable, dnoisfrtw.exe.
In addition, Simulink Coder software created a build folder,
dnoisfrtw_c6000_rtw.

To review the contents of the working folder after the build, type the dir
command at the MATLAB command prompt.

dir
. dnoisfrtw.exe dnoisfrtw_c6000_rtw
.. dnoisfrtw.mdl

5 To run the executable from the MATLAB command prompt, type

!dnoisfrtw

The “!” character passes the command that follows it to the operating
system, which runs the stand-alone dnoisfrtw program.

The program produces one line of output.

56-49

56 Working with Texas Instruments™ C6000™ Processors

starting the model

6 To see the contents of the build folder, type

dir dnoisfrtw_c6713_rtw

Contents of the Build folder
The build process creates a build folder and names it model_target_rtw,
concatenating the name of your source model and your chosen target. In this
example, your build folder is named dnoisfrtw_c6713_rtw.

dnoisfrtw_c6713_rtw contains these generated source code files:

• dnoisfrtw.c— The stand-alone C code that implements the model.

• dnoisfrtw.h — An include header file containing information about the
state variables

• dnoisfrtw_export.h — An include header file containing information
about exported signals and parameters

The build folder also contains other files used in the build process, such as the
object (.obj) files and the generated makefile (dnoisfrtw.mk).

Targeting Your C6713 DSK and Other Hardware

• “Overview” on page 56-50

• “Confirming Your C6713 DSK Installation” on page 56-51

• “Running Models on Your C6713 DSK” on page 56-52

Overview
Embedded Coder software lets you use Simulink Coder software to generate,
target, and execute Simulink models on the Texas Instruments (TI) C6713
DSP Starter Kit (C6713 DSK). In combination with the C6713 DSK, your the
Embedded Coder is the ideal resource for rapidly prototyping and developing
embedded systems applications for the TI C6713 Digital Signal Processor.
The Embedded Coder focuses on developing real-time digital signal processing
(DSP) applications for the C6713 DSK.

56-50

Targeting C6000™ DSP Hardware

This chapter describes how to use the Embedded Coder to create and execute
applications on the C6713 DSK. To use the targeting software, you should be
familiar with using Simulink to create models and with the basic concepts
of Simulink Coder software automatic code generation. To read more about
Simulink Coder software, refer to your Simulink Coder documentation.

Confirming Your C6713 DSK Installation
Texas Instruments supplies a test utility to verify operation of the board and
its associated software. For complete information about running the test
utility and interpreting the results, refer to your “TMS320CDSK Help” under
TMS320C6000 Code Composer Studio Help in the CCS online help system.

To run the C6713 DSK confidence test, complete the following steps after
you install and configure your board.

1 Open a DOS command window.

2 Access the folder \..\ti\c6000\dsk6x11\conftest

CCS IDE creates this folder when you install it. It contains the files to run
the C6713 confidence test.

3 Start the confidence test by typing dsk6xtst at the DOS prompt.

By default, the test utility creates a log file named dsk6xtst.log where
it stores the test results. To specify the name and location of a log file
to contain the results of the confidence test, use the CCS IDE command
line options to run the confidence utility. For further information about
running the confidence test from a DOS window and using the command
line options, refer to the "DSK Confidence Test" topic in the CCS IDE
online help.

4 Review the test results to verify that everything works.

If your confidence test fails, reconfigure your C6713 DSK. After you change
your board configuration, rerun the confidence utility to check your new
settings.

56-51

56 Working with Texas Instruments™ C6000™ Processors

Running Models on Your C6713 DSK
Texas Instruments markets a complete set of tools for use with the
C6713 DSK. These tools are primarily intended for rapid prototyping of
control systems and hardware-in-the-loop applications.

This section provides a brief example of how the TI development tools work
with Simulink Coder software, the Embedded Coder, and the C6713 DSK
block library.

Executing code generated from Simulink Coder software on a particular
target in real-time requires target-specific code. Target-specific code includes
I/O device drivers and an interrupt service routine.

Other components, such as Embedded Coder software, are required if you
need the ability to download parameters on-the-fly to your target hardware.

Since these components are specific to particular hardware targets (in this
case, the C6713 DSK), you must ensure that the target-specific components
are compatible with the target hardware.

To allow you to build an executable, the Embedded Coder provides a target
makefile specific to C6000 hardware targets. This target makefile invokes the
optimizing compiler provided as part of CCS IDE.

Used in combination with the Embedded Coder and Simulink Coder software,
TI products provide an integrated development environment that, once
installed, needs no additional coding.

After you have installed the C6713 DSK development board and supporting
TI products on your PC, start the MATLAB software. At the MATLAB
command prompt, type c6713dsklib. This opens a Simulink block library,
c6713dsklib, that includes a set of blocks for C6713 DSK I/O devices:

• C6713 DSK ADC — Configure the analog to digital converter

• C6713 DSK DAC — Configure the digital to analog converter

• C6713 DSK LED — Control the user-defined light emitting diodes (LED)
on the C6713 DSK

56-52

Targeting C6000™ DSP Hardware

• C6713 DSK DIP Switch — Set the dual inline pin switches on the C6713
DSK

• C6713 DSK Reset — Reset the processor on the C6713 DSK

These devices are associated with your C6713 DSK board.

With your model open, select Simulation > Configuration Parameters
from the menu bar to open the Configuration Parameters dialog box.

From this dialog box, click Code Generation on the select tree. You must
specify the appropriate versions of the system target file. For the C6713 DSK,
in the Code Generation pane of the dialog box, specify System target file
— idelink_grt.tlc

With this configuration, you can generate and download a real-time
executable to your TI C6713 DSK. Start the Simulink Coder build process by
clicking Build on the Code Generation pane. Simulink Coder software
automatically generates C code and inserts the I/O device drivers as specified
by the ADC and DAC blocks in your block model.

These device drivers are inserted in the generated C code as inlined
S-functions. Inlined S-functions offer speed advantages and simplify the
generated code. For more information about inlining S-functions, refer to
your Target Language Compiler documentation. For a complete discussion of
S-functions, refer to your documentation about writing S-functions.

During the same build operation, the software invokes the TI compiler to
build an executable file.

If you select the Build_and_execute option, the executable file is
automatically downloaded via the peripheral component interface (PCI) bus
to the TI evaluation board. After downloading the executable file to the C6713
DSK, the build process runs the file on the digital signal processor.

56-53

56 Working with Texas Instruments™ C6000™ Processors

Starting and Stopping DSP Applications on the C6713 DSK. When
you create, build, and download a Simulink model to the C6713 DSK, you
are not running a simulation of your DSP application. You are running the
actual machine code corresponding to the block diagram you built in Simulink
software. To start running your DSP application on the evaluation module,
you must open your Simulink model and rebuild the machine executable by
clicking Build on the Code Generation pane. Each time you want to start
the application on the C6713 DSK, you use Simulink Coder software to rebuild
the executable from the Simulink model and download the code to the board.

Your model runs until the model encounters one of the following actions:

• Using the Debug > Halt option in CCS IDE

• Using halt from the MATLAB command prompt

• Encountering a Stop block in the model.

• Clicking the C6713 DSK Reset block in your model (if you added one) or in
the DSK block library

Clicking the Reset block stops the running application and restores the digital
signal processor to its initial state.

Creating Code Composer Studio Projects Without
Building

• “Introduction” on page 56-54

• “Creating Projects in CCS IDE Without Loading Files to Your Target” on
page 56-55

Introduction
Rather than targeting your C6000 board when you build your signal
processing application, you can create Texas Instruments Code Composer
Studio (CCS) IDE projects. Creating projects for CCS IDE lets you use the
tools provided by the CCS IDE software suite to debug your real-time process.

If you build and download your Simulink model to CCS IDE, Embedded Coder
software opens Code Composer Studio software, creates a new CCS IDE

56-54

Targeting C6000™ DSP Hardware

project named for your model, and populates the new project with all the
files it creates during the build process—the object code files, the assembly
language files, the map files, and any other necessary files. As a result,
you can immediately use CCS IDE to debug your model using the features
provided by the CCS IDE.

Creating a project in CCS IDE is the same as targeting C6000 hardware. You
configure your target options, select your build action to create a CCS IDE
project, and then build the project in CCS IDE by clickingMake Project.

Creating Projects in CCS IDE Without Loading Files to Your
Target
From the Select tree in the Configuration Parameters dialog box, under Code
Generation, select IDE Link. Select Create_Project for the Build action,
as shown in the next figure. The Build and Build_and_execute options
create CCS IDE projects as well. The Archive_library option does not create
a CCS IDE project. None of the other options has an effect here. Ignore them
when you are creating a project in CCS IDE rather than generating code.

After you select Create_CCS_Project, set the options for the Code
Generation options on the IDE Link category on the Select tree.

Return to the Simulink Coder category, clear Generate code only and click
Build to build your new CCS IDE project.

Simulink Coder software and Embedded Coder software generate all the
files for your project in CCS IDE and create a new project in the IDE. Your
new project is named for the model you built, with a custom project build
configuration CustomMW, not Release or Debug.

In CCS IDE you see your project with the files in place in the folder tree.

Targeting Custom Hardware

• “Overview” on page 56-56

• “Typical Targeting Process” on page 56-57

• “Targeting a Custom Target” on page 56-59

56-55

56 Working with Texas Instruments™ C6000™ Processors

• “Section Pane” on page 56-64

• “To Create Memory Maps for Targets” on page 56-68

Overview
As long as the processor on your custom board is from the TI C6000 DSP
family, you can use Embedded Coder software to generate code for your target.

The blocks for the peripherals in the C6000 DSP Library, such as the C6416
DSK ADC or C6713 DSK DAC blocks, are specific to their hardware and will
not work with your custom board. None of the board-specific blocks provided
by this toolbox work with custom hardware.

The Target Preferences block provides a way to target boards that are not
specifically supported. Due to certain features related to memory maps and
other processor-specific attributes, custom hardware targeting only works
with the C6000 DSPs.

Several guidelines affect your targeting configuration decisions when you
decide to use custom targets and the custom Target Preferences block:

1 Specify the memory allocation (memory mapping) using theMemory and
Section panes on the Target Preferences dialog box. Set the memory
mapping for your target that best matches your hardware. For example,
if your custom target uses the C6713 processor, be sure your memory
configuration is the same as the one on the supported C6713 DSK, such
as has the same memory size, the same EMF settings, the same memory
sections, and the same cache organization.

2 To use on-chip memory only for your target, choose the Near_Calls setting
for theMemory model in the TI C6000 compiler options. To use external
memory that is specific to your board, choose the Far_Calls setting for the
Memory model. The other selection in the Memory model list offers a
combination of near and far allocation for data and aggregate data.

3 Do not use the existing ADC, DAC, DIP Switch, or LED blocks unless you
are quite sure that your hardware is identical to the appropriate EVM
or DSK in all important respects. Generally, the ADC, DAC, and other
target-specific blocks are design specifically for their designated targets and
can cause problems when you use them on hardware that is not identical.

56-56

Targeting C6000™ DSP Hardware

4 Set the Overrun notification method in the TI C6000 runtime category
to Print_message when you use the overrun notification feature. If you
choose to use the LED notification option, verify that on your specialized
target you access the LEDs in exactly the same way, and the LEDs respond
in the same way, as the LEDs on the corresponding supported DSK or EVM.

To use one of the custom targets, create your model, add and configure the
Target Preferences block, and then open the Configuration Parameters dialog
box for the model.

Typical Targeting Process
Generally, targeting hardware, or a development environment as it is called
by some, requires that you complete a series of processes that starts with
building your model and ends with generating code to suit your target.

1 Build the Simulink model of your algorithm or process to be converted to
code for your target.

2 Add target-specific blocks to your model, such as ADC and DAC blocks, and
configure the block parameters. (Skip this step when you are targeting a
processor on a custom board.)

3 Add a Target Preferences block to your model. The top level of the model
must contain a Target Preferences block.

4 Configure the options on the Target Preferences block to select the target,
map memory segments, allocate code and data sections to the memory
segments, and set other target-specific options.

5 Set the Simulink configuration parameters for your model. Notice that you
do this after you add the Target Preferences block to your model.

6 Build your model to your target.

Memory Maps. Memory maps are an essential part of targeting any
processor or board. Without the map, the code generation process cannot
determine where various features of the generated code, such as variables,
data, and executable code, reside on the target.

56-57

56 Working with Texas Instruments™ C6000™ Processors

To discuss memory maps and configuring memory, a few terms need to be
defined:

• Memory map — Map of the memory space for a target system. The memory
space is partitioned into functional blocks.

• memory segment — Memory partition that corresponds to a physical range
of memory on the target. The segment is named in some fashion, such as
IPRAM or SDRAM.

• Memory section — The smallest unit of an object file. This is a block of data
or code that, based on the memory map, resides in an area of contiguous
memory on the target and in the memory map. Sections of object files are
both distinct and separate. Memory sections come in two flavors:

- Uninitialized sections that reserve memory space for uninitialized data.
One example of an uninitialized section is .bss. The .bss section reserves
space for variables that are not initialized.

- Initialized sections contain code and data. The .text (containing
executable code) and .data (containing initialized data) sections are
initialized.

• Memory management — Process of specifying the memory segments that
the various memory sections use for your application. A logical memory
map of the hardware memory results from the process of managing memory.

During code generation, the linker and assembler work to allocate your code
and data into the memory on your target according to the memory map
specifications you provide. For more information about memory utilization
and memory management, refer to the CCS IDE online help, using keywords
like memory map, memory segment, and section.

The compiler does not interact with the memory map. It makes no
assumptions about memory allocation and is not aware of the memory map.
As far as the C6000 compiler is concerned, the physical memory on your target
is one continuous linear block of memory that is subdivided into smaller
blocks containing code, data, or both.

When you configure the block parameters for the Target Preferences block,
you are setting up the memory map for your target. You specify the memory
segments that are defined and the contents of each segment. You specify the

56-58

Targeting C6000™ DSP Hardware

sections, both named and default, and the segments to which the sections
are assigned.

These memory management functions are identical to the ones available
in the CCS IDE Configuration Tool.

Targeting a Custom Target
To use a board that has a TI C6000 processor but is not one of the supported
boards, configure the Target Preferences block as described in this section.

Configuring the block parameters software about your target processor and
how to generate code that will run on the target.

1 Add the Target Preferences block to your model, or edit the current Target
Preferences block.

2 Set Board to C6000 Custom.

3 Select your target processor from the Processor list. Most of the C6000
family of DSP processors are on the list. If the one you need is not listed,
pick one that closely matches your target.

4 Set the actual CPU clock rate for the CPU on your target in CPU clock
speed (MHz). Report the clock speed of the processor on your target.
When you enter a value, you are not changing the CPU clock rate, you
are reporting the actual rate. If the value you enter does not match the
rate on the target, your model real-time results might be wrong, and code
profiling results will not be correct. You must enter the actual clock rate
the board uses. The rate you enter here does not change the rate on the
board. Setting CPU clock to the actual board rate allows the code you
generate to run correctly according to the actual clock rate of the hardware.

5 If your target is a simulator rather than a hardware target, use the Get
from IDE button on the Board pane of the Target Preferences block. Then
set Board Name under IDE Support to one of the simulators installed
with your IDE.

6 To enable the Embedded Coder to connect to CCS IDE, select your target
from the Board Name list. On this list you see the names of the boards
you have configured in the CCS Setup Utility. If your target board does

56-59

56 Working with Texas Instruments™ C6000™ Processors

not appear on the list, start CCS Setup and add your board to the System
Configuration dialog box.

7 Select the processor to target from the Processor Name list. For the board
you selected in Board Name, Processor Name lists all the processors on
the board. The list comes from the processors you added to the board in
the CCS Setup Utility.

Now you have completed the process of identifying your target to the
Embedded Coder and Simulink Coder software. While this process is
necessary, it represents only one small part of enabling you to generate code
to run on your custom board.

One very important part of targeting custom hardware is to provide the target
memory map configuration to the linker and assembler.

Memory and Section panes on the Target Preferences dialog box provide the
controls required to specify how the linker and assembler arrange the code,
data, and variables on your target.

Memory Pane. The information that follows describes the options on the
panes in detail.

The Memory pane contains memory options in three areas:

• Physical Memory specifies the mapping for processor memory

• Heap specifies whether you use a heap and determines the size in words

• L2 Cache enables the L2 cache (where available) and sets the size in kB

Be aware that these options can affect the options on the Section pane.
You can make selections here that change how you configure options on the
Section pane.

Most of the information about memory segments and memory allocation is
available from the Code Composer Studio online help.

56-60

Targeting C6000™ DSP Hardware

Physical Memory Options. This list shows the physical memory segments
available on the board and processor. By default, Target Preferences blocks
show the memory segments found on the selected processor. In addition,
the Memory pane on preconfigured Target Preferences blocks shows the
memory segments available on the board, but off of the processor. Target
preferences blocks set default starting addresses, lengths, and contents of the
default memory segments.

The default memory segments for each processor and board are different.
For example:

• Custom boards based on C670x processors provide IPRAM and IDRAM
memory segments by default.

• C6713 DSK boards provide SDRAM memory segment by default

Name. When you highlight an entry on the Physical memory list, the
name of the entry appears here. To change the name of the existing memory
segment, select it in the Physical memory list and then type the new name
here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

After you add the segment, you can configure the starting address, length,
and contents for the new segment. New segments start with code and data as
the type of content that can be stored in the segment (refer to the Contents
option).

Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

Address. Address reports the starting address for the memory segment
showing in Name. Address entries are in hexadecimal format and limited
only by the board or processor memory.

56-61

56 Working with Texas Instruments™ C6000™ Processors

When you are using a processor-specific preferences block, the starting
address shown is the default value. You can change the starting value by
entering the new value directly in Address when you select the memory
segment to change.

Length. From the starting address, Length sets the length of the memory
allocated to the segment in Name. As in all memory entries, specify the
length in hexadecimal format, in minimum addressable data units (MADUs).
For the C6000 processor family, the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the length shown
is the default value. You can change the value by entering the new value
directly in this option.

Contents. Contents describes the kind of program sections that you can
store in the memory segment in Name. As the processor type for the Target
Preferences block changes, the kinds of information you store in listed memory
segments can change. Generally, the Contents list contains these strings:

• Code— Allow code to be stored in the memory segment in Name.

• Data— Allow data to be stored in the memory segment in Name.

• Code and Data— Allow code and data to be stored in the memory segment
in Name. When you add a new memory segment, this is the default setting
for the contents of the new element.

You can add or use as many segments of each type as you need, within the
limits of the memory on your processor.

Add. Click Add to add a new memory segment to the target memory map.
When you click Add, a new segment name appears, for example NEWMEM1, in
Name and on the Physical memory list. In Name, change the temporary
name NEWMEM1 by entering the new segment name. Entering the new name, or
clicking Apply updates the temporary name on the list to the name you enter.

Remove. This option lets you remove a memory segment from the memory
map. Select the segment to remove in the Physical memory list and click
Remove to delete the segment.

56-62

Targeting C6000™ DSP Hardware

Create Heap. If your processor supports using a heap, as does the C6713,
for example, selecting this option enables creating the heap and enables the
Heap size option. Create heap is not available on processors that either do
not provide a heap or do not allow you to configure the heap.

Using this option you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list and then
select Create heap to create a heap in the select segment. After you create
the heap, use the Heap size and Define label options to configure the heap.

The location of the heap in the memory segment is not under your control.
The only way to control the location of the heap in a segment is to make the
segment and the heap the same size. Otherwise, the compiler determines the
location of the heap in the segment.

Heap Size. After you select Create heap, this option lets you specify the
size of the heap in words. Enter the number of words in decimal format. When
you enter the heap size in decimal words, the system converts the decimal
value to hexadecimal format. You can enter the value directly in hexadecimal
format as well. Processors may support different maximum heap sizes.

Define Label. Selecting Create heap enables this option that allows you to
name the heap. Enter your label for the heap in the Heap label option.

Heap Label. Selecting Define label enables this option. You use Heap
Label to provide the label for the heap. Any combination of characters is
accepted for the label except reserved characters in C/C++ compilers.

Enable L2 Cache. C621x, C671x, and C641x processors support an L2 cache
memory structure that you can configure as SRAM and partial cache. Both
the data memory and the program share this second-level memory. C620x
DSPs do not support L2 cache memory, and this option is not available when
you choose one of the C620x processors as your target.

If your processor supports the two-level memory scheme, this option enables
the L2 cache on the processor.

L2 Cache Size. After you enable the L2 cache, select the size of the cache
from the list.

56-63

56 Working with Texas Instruments™ C6000™ Processors

Section Pane
Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments—sections
are portions of the executable code stored in contiguous memory locations.
Among the sections used generally are .text, .bss, .data, and .stack. Some
sections relate to the compiler, some to DSP/BIOS, and some can be custom
sections as you require.

For more information about program sections and objects, refer to the CCS
IDE online help. Most of the definitions and descriptions in this section
come from CCS IDE.

In the pane shown in the preceding figure, you configure the allocation of
sections for Compiler, DSP/BIOS, and Custom needs.

This table provides brief definitions of the various kinds of sections in the
Compiler, DSP/BIOS, and Custom lists. All sections do not appear on both
lists. The string appears on the list shown in the table.

String Section List
Description of the Section
Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the
code

.bios DSP/BIOS DSP/BIOS code if you are using
DSP/BIOS options in your program

.cinit Compiler Tables for initializing global and
static variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier
and string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global,
defined as far variables

56-64

Targeting C6000™ DSP Hardware

String Section List
Description of the Section
Contents

.gblinit DSP/BIOS Load allocation of the DSP/BIOS
startup initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service
routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the
target program can read

.pinit Compiler Load allocation of the table of global
object constructors section.

.stack Compiler The global stack

.switch Compiler Jump tables for switch statements
in the executable code

.sysdata DSP/BIOS Data about DSP/BIOS

.sysinit DSP/BIOS DSP/BIOS initialization startup
code

.sysmem Compiler Dynamically allocated object in the
code containing the heap

.text Compiler Load allocation for the literal
strings, executable code, and
compiler generated constants

.trcdata DSP/BIOS TRC mask variable and its initial
value section load allocation

You can learn more about memory sections and objects in your Code Composer
Studio online help.

Compiler Sections. During program compilation, the C6000 compiler
produces both uninitialized and initialized blocks of data and code. These
blocks are allocated into memory as required by the configuration of your
system. On the Compiler Sections list you find both initialized (sections
that contain data or executable code) and uninitialized (sections that reserve
space in memory) sections. The initialized sections are

56-65

56 Working with Texas Instruments™ C6000™ Processors

• .cinit

• .const

• .switch

• .text (created by the assembler)

These sections are uninitialized:

• .bss (created by the assembler)

• .far

• .stack

• .sysmem

Other sections appear on the list as well:

• .data (created by the assembler)

• .cio

• .pinit

Note The C/C++ compiler does not use this section.

When you highlight a section on the list, Description shows a brief
description of the section. Also, Placement shows you where the section is
currently allocated in memory.

Description. Provides a brief explanation of the contents of the selected
entry in the Compiler Sections list.

Placement. Shows you where the selected Compiler Sections list entry
is allocated in memory. You change the memory allocation by selecting a
different location from the Placement list. The list contains the memory
segments as defined in the physical memory map on the Memory pane.
Select one of the listed memory segments to allocate the highlighted compiler
section to the segment.

56-66

Targeting C6000™ DSP Hardware

DSP/BIOS Sections. During program compilation, DSP/BIOS produces
both uninitialized and initialized blocks of data and code. These blocks get
allocated into memory as required by the configuration of your system. On
the DSP/BIOS sections list you find both initialized (sections that contain
data or executable code) and uninitialized (sections that reserve space in
memory) sections.

Description. Provides a brief explanation of the contents of the selected
DSP/BIOS Sections list entry.

Placement. Shows where the selected DSP/BIOS Sections list entry is
allocated in memory. You change the memory allocation by selecting a
different location from the Placement list. The list contains the memory
segments available on C6000 processors, and changes based on the processor
you are using.

DSP/BIOS Object Placement. Distinct from the entries on the DSP/BIOS
Sections list, DSP/BIOS objects like STS or LOG, if your project uses them,
are placed in the memory segment you select from the DSP/BIOS Object
Placement list. All DSP/BIOS objects use the same memory segment. You
cannot select the locations for individual objects.

Custom Sections. When your program uses code or data sections that are
not included in either the Compiler Sections or DSP/BIOS Sections lists,
you add the new sections to this list. Initially, the Custom Sections list
contains no fixed entries, just a placeholder for a section for you to define.

Name. You enter the name for your new section here. To add a new section,
click Add. Then replace the temporary name with the name to use. Although
the temporary name includes a period at the beginning, you do not need to
include the period in your new name. Names are case sensitive. NewSection
is not the same as newsection, or newSection.

Placement. With your new section added to the Name list, select the
memory segment to which to add your new section. Within the restrictions
imposed by the hardware and compiler, you can select any segment that
appears on the list.

56-67

56 Working with Texas Instruments™ C6000™ Processors

Add. Clicking Add lets you configure a new entry to the list of custom
sections. When you click Add, the block provides a new temporary name
in Name. Enter the new section name to add the section to the Custom
Sections list. After typing the new name, click Apply to add the new section
to the list. Or click OK to add the section to the list and close the dialog box.

Remove. To remove a section from the Custom Sections list, select the
section to remove and click Remove. The selected section disappears from
the list.

To Create Memory Maps for Targets
Although each processor has memory map requirements, the C6000 DSP
family of processors share some memory features and not others. Details
of the memory sections and segments, as well as memory allocations and
limitations for each processor, are provided in your documentation for CCS
IDE and from TI.

To manage the memory on your processor, set the options within these panes
to specify the memory allocation to use. Recall that the memory map is the
result of the settings you provide for the options in theMemory and Section
panes in the Target Preferences dialog box.

Unfortunately, each processor has different needs, and the differences make
it impossible to provide details about how you set the options for your target.
You determine, from your model and code

• What memory segments you require

• Which sections you need and where

• Whether you need custom memory segments and sections

• Where to begin each memory segment and how much memory to allot to
each segment

• Any other information that you need to set the options on the Memory
and Section panes?

After you configure the options in the Target Preferences dialog box, you
are ready to set the Simulink configuration parameters for your model and
generate code.

56-68

Targeting C6000™ DSP Hardware

Using Embedded Coder Software

• “Introduction” on page 56-69

• “To Use the Embedded Coder Target File” on page 56-69

Introduction
To take advantage of Embedded Coder software features, you must migrate
your models to a system target file called idelink_ert.tlc. This target is
based on the embedded real-time target (ERT) used by Embedded Coder
software. Other Embedded Coder target files are based on the generic
real-time target (GRT).

To use Embedded Coder software, choose the system target file
idelink_ert.tlc, available in the System Target File Browser.

If you simply choose the system target file idelink_ert.tlc in the System
Target File Browser directly to change the target for the model, all the IDE
Link options are reset to default values by the switch. The C6000-specific
options are the same between the two system target files.

You can set your model to use this system target file the usual way, via the
System Target File Browser, available from the Simulink Coder pane in
the Configuration Parameters dialog box. However, when you use the system
target browser to switch your model between the ERT- and GRT-based TI
C6000 system target files, the TI C6000-specific options (the configuration
set) for the model are reset to default values.

To Use the Embedded Coder Target File
For setting up a new model to use the ERT-based target .tlc file.

1 From your model menu bar, select Simulation > Configuration
Parameters.

2 Click Code Generation on the Select tree to access the Simulink Coder
software options.

3 Click Browse to open the System Target File Browser.

56-69

56 Working with Texas Instruments™ C6000™ Processors

4 On the System Target File Browser, find and select the file
idelink_ert.tlc.

5 Click OK.

56-70

Targeting with DSP/BIOS Options

Targeting with DSP/BIOS Options

In this section...

“Introducing DSP/BIOS” on page 56-71

“DSP/BIOS and Targeting Your C6000 DSP” on page 56-72

“Code Generation with DSP/BIOS” on page 56-75

“Profiling Generated Code” on page 56-79

“Using DSP/BIOS with Your Target Application” on page 56-92

“Generating Code for Any C64x+ Processor or Board” on page 56-93

Introducing DSP/BIOS
Embedded Coder software supports DSP/BIOS features as options when you
generate code for your target. In the following sections, read more about
DSP/BIOS, how the Embedded Coder incorporates DSP/BIOS features into
your generated code, and ways to use the real-time operating system (RTOS)
features of DSP/BIOS in your applications. Follow these links for more
information on specific areas that interest you, or read on for more details.

• “DSP/BIOS and Targeting Your C6000 DSP” on page 56-72

• “Code Generation with DSP/BIOS” on page 56-75

• “Profiling Generated Code” on page 56-79

• “Using DSP/BIOS with Your Target Application” on page 56-92

As a part of the Texas Instruments eXpressDSP™ technology, TI designed
DSP/BIOS to include three components:

• DSP/BIOS Real-Time Analysis Tools — use these tools within Code
Composer Studio IDE to view your program as it executes on the target
in real time.

• DSP/BIOS Configuration Tool — enables you to add and configure any
DSP/BIOS objects that you use to instrument your application. Use this
tool to configure interrupt schedules and handlers, set thread priorities,
and configure the memory layout on your DSP.

56-71

56 Working with Texas Instruments™ C6000™ Processors

• DSP/BIOS Application Program Interface (API) — use C or assembly
language functions to access DSP/BIOS functions by calling over 150 API
functions. Embedded Coder software uses the API to access DSP/BIOS.

You link these components into your application, directly or indirectly
referencing only functions you need for your application to run efficiently and
optimally. Only functions that you specifically reference become part of your
code base. To avoid adding unused code to your project, the software excludes
functions you do not reference. After you add DSP/BIOS functions, the
configuration tool helps you disable features you do not need later, optimizing
your program for speed and size.

For details about DSP/BIOS and what it can do for your applications, refer to
your CCS IDE and DSP/BIOS documentation from Texas Instruments.

DSP/BIOS and Targeting Your C6000 DSP

• “Introduction” on page 56-72

• “DSP/BIOS Configuration File” on page 56-73

• “Memory Mapping” on page 56-74

• “Hardware Interrupt Vector Table” on page 56-74

• “Linker Command File” on page 56-74

Introduction
When you generate code from your DSP model, you can include DSP/BIOS
features provided by Embedded Coder software.

Including DSP/BIOS in your generated project adds the following files to
your project:

• modelname.tcf — a DSP/BIOS configuration file

• modelnamecfg.s62 — contains the DSP/BIOS objects required by your
application and the vector table for the hardware interrupts.

• modelnamecfg.h62— the header file for modelnamecfg.s62.

• modelnamecfg.h — model configuration header file.

56-72

Targeting with DSP/BIOS Options

• modelnamecfg_c.c — source code for the model.

• modelnamecfg.cmd — the linker command file for the project. Adds the
required DSP/BIOS libraries and the library RTS6201.lib, or the run-time
support library for your target.

The executable code and source code you generate when you use the DSP/BIOS
option are not the same as the code generated without DSP/BIOS included.

Instead of incorporating the DSP/BIOS files manually, as you would with CCS
IDE, the Embedded Coder software starts from your Simulink model and adds
the DSP/BIOS files automatically. As it adds the files, the support package:

• Configures the DSP/BIOS configuration file for your model needs

• Sets up the objects you use to analyze your program while it runs on your
target

• Handles memory mapping to optimize your code based on the blocks in
your model

DSP/BIOS Configuration File
DSP/BIOS projects all have a file with the extension .tcf. The file contains
the DSP/BIOS configuration information for your project, in the form of
objects for instrumenting and scheduling tasks in the program code. A
DSP/BIOS project can include the following files:

• Log (LOG) objects for logging events and messages (replace the *printf
statements, for instance)

• Statistics (STS) objects for tracking the performance of your code

• A clock (CLK) object for configuring the clock on your target, and various
memory functions

• Hardware and software interrupt (HWI, SWI) objects that control program
execution

• Other objects you use to meet your needs

Your TI DSP/BIOS documentation can provide all the details about the objects
and how to use them. In addition, your installed software from TI includes
tutorials to introduce you to using DSP/BIOS in projects.

56-73

56 Working with Texas Instruments™ C6000™ Processors

Not all of the DSP/BIOS objects get used by the code you generate from
Embedded Coder software. In the next sections, you learn about which objects
the targeting software uses and how. You can still add more objects to your
code through CCS IDE.

If you add DSP/BIOS objects beyond those provided by the Embedded Coder,
you lose your additions when you regenerate code from your Simulink model.

Memory Mapping
Memory mapping that takes place in the linker command file now appears
in the MEM object in the DSP/BIOS configuration file. Your memory sections,
such as the DATA_MEM assignments and definitions, move to the MEM object,
as do the memory segments. After completing this conversion, the memory
assignment portions of your non-DSP/BIOS linker command file are not
necessary in the linker command file.

Hardware Interrupt Vector Table
In non-DSP/BIOS project, the assembly language file vector.asm in your
project defines the hardware interrupt vector table. This file defines which
interrupts your project uses and what each one does.

When you use DSP/BIOS, the interrupts defined in the vector table move to
the Hardware Interrupt Service Routine Manager in the CCS Configuration
Tool. With your interrupts defined as Hardware Interrupts (HWI) in the
Configuration Tool, your project does not need vector.asm, so the file does
not appear in your DSP/BIOS enabled projects.

Linker Command File
After migrating your memory sections, segment, and hardware interrupt
vector table to the configuration file, building with the DSP/BIOS option
creates a compound linker command file. Because DSP/BIOS allows only one
command file per project, and your linker file may comprise command options
that did not relocate the DSP/BIOS configuration, Embedded Coder software
uses compound command files. Compound command files work to let your
project use more than one command file.

By starting your original linker command file with the statement

56-74

Targeting with DSP/BIOS Options

"-lmodelnamecfg.cmd"

added as the first line in the file, your DSP/BIOS enabled project uses both
your original linker command file and the DSP/BIOS command file. You get
the features provide by DSP/BIOS as well as the custom command directives
you need.

Code Generation with DSP/BIOS

• “Overview” on page 56-75

• “Generated Code Without and With DSP/BIOS” on page 56-75

Overview
While generating code that includes the DSP/BIOS options is straightforward,
changes occur between code that does not include DSP/BIOS and code that
does. Two things change when you generate code with DSP/BIOS—files are
added and removed from the project in CCS IDE, and DSP/BIOS objects
become part of your generated code. With these in place, you can use the
DSP/BIOS features in CCS IDE to debug your project, as well as use the
profiling option in Embedded Coder software to check the performance of your
application running on your target.

To generate code that includes DSP/BIOS options, open the Target
Preferences block and select DSP/BIOS from the Operating system list
on the Board pane.

Generated Code Without and With DSP/BIOS
The next two figures show the results of generating code without and with the
DSP/BIOS option enabled in the Simulation Parameters dialog.

56-75

56 Working with Texas Instruments™ C6000™ Processors

Example — c6713dskwdnoisf.pjt code Generated Without DSP/BIOS.
When you create your project in CCS IDE, the folder structure looks like this.

56-76

Targeting with DSP/BIOS Options

Example — c6713dskwdnoisf.pjt Code Including DSP/BIOS. If you
now create a project that includes DSP/BIOS, the folder structure for your
project changes to look like the following figure.

Added File Description

modelname.tcf Contains the DSP/BIOS objects required by your
application, and the vector table for the hardware
interrupts

modelnamecfg.s62 Shows all the included files in your project, the
variables, the DSP/BIOS objects, and more in this
file generated from the .tcf file

modelnamecfg.h62 The header file for modelnamecfg.s62

modelnamecfg.h Model configuration header file

56-77

56 Working with Texas Instruments™ C6000™ Processors

Added File Description

modelnamecfg_c.c Source code for the model

modelnamecfg.cmd The linker command file for the project. Adds
the required DSP/BIOS libraries and the library
RTS6201.lib or the run-time support library for your
target.

Notice that the new folder includes some new files, shown in the next table.

With DSP/BIOS functions enabled for your project, the following files no
longer appear in your project.

Filename Description

vectors.asm Defines the hardware interrupts (HWI) used
by interrupt service routines on the processor.
This file is removed after all of the hardware
interrupts appear in the HWI section of the
Configuration Tool.

Original linker
command
file—modelname.cmd

Assigns memory sections on the processor. This
file is removed if the SECTION directive is empty
because all of the section assignments moved to
the configuration file. Otherwise, include call to
the DSP/BIOS command file.

Some *.lib files Provide access to libraries for the processor, and
peripherals. These files are removed if their
contents have been incorporated in the new
compound linker command file.

When you investigate your generated code, notice that the function main
portion of modelname_main.c includes different code when you generate
DSP/BIOS-enabled source code, and modelname_main.c incorporates one or
more new functions.

56-78

Targeting with DSP/BIOS Options

Profiling Generated Code

• “Overview” on page 56-79

• “Profiling Subsystems” on page 56-80

• “Details About Timing and Profiling” on page 56-81

• “Profiling Multitasking Systems” on page 56-82

• “The Profiling Report” on page 56-83

• “Interrupts and Profiling” on page 56-85

• “Reading Your Profile Report” on page 56-86

• “Definitions of Report Entries” on page 56-87

• “Profiling Your Generated Code” on page 56-89

• “To Enable Profiling for Your Generated Code” on page 56-89

• “To Create Atomic Subsystems for Profiling” on page 56-90

Overview
When you use Embedded Coder software to generate code that incorporates
the DSP/BIOS options, you can easily profile your generated code to gauge
performance and find bottlenecks.

By selecting Profile real-time execution in the Simulink Coder
software options, Simulink Coder software inserts statistics (STS) object
instrumentation at the beginning and end of the code for each atomic
subsystem in your model. (For more about STS objects, refer to your
DSP/BIOS documentation from Texas Instruments.)

After your code has been running for a few seconds on your target, you can
retrieve the profiling results from your target and display the information
in a custom HTML report.

Code profiling works only on atomic subsystems in your model. To allow the
Embedded Coder to profile your model when you build it in Simulink Coder
software, you convert segments of your model into atomic subsystems using
Create subsystem.

56-79

56 Working with Texas Instruments™ C6000™ Processors

By designating subsystems of your model as atomic, you force each subsystem
to execute only when all of its inputs are available. Waiting for all the
subsystem inputs to be available before running the subsystem allows the
subsystem code to be profiled as a contiguous segment.

To enable the profile feature for your Simulink model, select Simulation >
Configuration Parameters from the model menu bar. In the Configuration
Parameters dialog box, select Code Generation > IDE Link. Under Code
Generation, enable Profile real-time execution.

Profiling Subsystems
Nested subsystems are profiled as part of their parent systems—the execution
time reported for the parent subsystem includes the time spent in any profiled
child subsystems. You cannot profile child subsystems separately.

For models that include multiple sample times, one or more subsystems
in your model might not be included in the profiling process. When your
model is configured to use single-tasking mode, all atomic subsystems in
your model are profiled and appear in the report. When your model uses
multitasking (refer to your Simulink Coder documentation for more about
multitasking models) profiling applies only to single-rate subsystems that
execute at the base rate of your model. This limitation arises because all
of the generated code segments must execute contiguously for the profiling
timing measurements to be correct. Setting the Tasking mode for periodic
sample times to Auto in the model configuration parameters does not
guarantee contiguous execution for all code segments and subsystems.

Notice two things in your code:

• STS objects are added to the generated code

• A generated DSP/BIOS configuration gets added to the project configuration
file

Embedded Coder software inserts and configures these objects specifically for
profiling your code. You do not have to make changes to the STS objects. To
see the statistics objects in use, download your generated application to your
board, select DSP/BIOS > Statistics View from the menu bar in CCS IDE,
and run the board for a few seconds. You see the statistics being accumulated
by the STS objects.

56-80

Targeting with DSP/BIOS Options

Details About Timing and Profiling
The profiling system in Embedded Coder software relies on DSP/BIOS STS
objects and the CLK_gethtime() function. CLK_gethtime() returns a high
resolution timing counter that enables profiling to measure the instruction
cycles the CPU spends executing code segments. To understand profiling, you
need to understand how CLK_gethtime() works.

This is how the system determines the value of CLK_gethtime:

CLK_gethtime() return val = CLK_getltime() *PRD0 + CNT0

PRD0 and CNT0 are timer 0 period and counter registers. In code generation,
BIOS allocates timer 0 as a system timer and set the timer to generate a
timer interrupt every 1ms. CLK_getltime() in turn returns the number of
BIOS system timer interrupts. By this logic, PRD0 is set to the number of
CPU clock cycles divided by the number of low resolution clock cycles that is
equivalent to 1 millisecond in absolute time (8 low resolution clock cycles for
C64x processors, for example).

The key point here is that function CLK_gethtime() relies on the
CLK_getltime() function which in turn relies on a timer 0 interrupt. If
your process globally disables interrupts during code execution for more
than 1 PRD0 instruction cycle, one or more timer interrupts can be missed,
resulting in a situation where both CLK_getltime() and CLK_gethtime()
can be inaccurate.

CLK_getltime() will be inaccurate because it does not report the correct time
value. But it is always positive. The situation is worse for CLK_gethtime()
It may report negative timing around code segments where interrupts are
disabled:

A = CLK_gethtime();
IRQ_globalDisable();
{

Code segment;
}
IRQ_globalEnable();
B = CLK_gethtime();

In this situation, if interrupts are disabled longer than 1ms around the code
segment to be profiled, B might be smaller than A since CTN0 might have

56-81

56 Working with Texas Instruments™ C6000™ Processors

rolled over. So the count of the instruction cycles computed as (B - A) might
be negative.

Correcting Inaccurate Profile Information Due to Timing. One way to
correct problems in profiling caused by the disabled interrupts is to set the
DSP/BIOS system timer interrupt to occur less frequently. As noted earlier,
the timer is set to 1 millisecond by default.

You can change setting manually after you generate code for your project.
Here are the steps to use to reset the DSP/BIOS system timer interval.

1 Open the .tcf file for the project.

2 Select Scheduling > CLK Clock Manager.

3 Right-click CLK Clock Manager to set the properties for the clock manager.

4 Change the Microseconds/Int value from the default 1000.00
microseconds to something larger, for example, 5000.00 microseconds.

5 Save the project.

This timing change reduces the chances of missing a system timer interrupt.
If you do this and profile the code again, the profiling results are usually
accurate. You can verify that if you reduce the system timer interrupt interval
further, to perhaps 100 microseconds, you get less and less accurate profiling
results, possibly reporting negative timing values.

Profiling Multitasking Systems
For a multitasking system, DSP/BIOS STS objects cannot reliably measure
the time the processor spends in all tasks. When tasks can be preempted
by other tasks (a result of multitasking operation), the profile timing
measurements may be incorrect. For this reason, Embedded Coder software
includes profiling instrumentation for atomic systems that run at the base
sample rate only.

When you run the same model in single tasking mode, you can get the timing
measurements for all the systems in your model for one iteration:

56-82

Targeting with DSP/BIOS Options

1 Select Simulation > Configuration Parameters from the model menu
bar.

2 Under Tasking on the Solver pane, select SingleTasking for Tasking
mode for periodic sample times.

3 Rebuild and execute your model on your C6000 hardware.

The program will probably overrun immediately since single tasking mode
requires that all tasks complete within the base sample time which usually
does not happen. However, all systems and subsystems do run once before the
program terminates. This allows you to obtain profiling results for all systems.

When the overrun occurs, click Halt in CCS IDE to stop DSP/BIOS operation.

Then, enter CCS_Obj.profile('report') at the MATLAB prompt to report
the statistics measurements.

Now you can view the timing measurements for each subsystem. Keep in
mind that the percentages are given relative to the base sample time, so you
must do some arithmetic to figure out whether a given system will fit in its
available time interval. For instance, if your base sample time is 1 second,
subsystem A executes every 3 seconds, the base-rate task takes 0.1 seconds
to run, and A takes 2.5 seconds to run, the system should execute without
overruns in multitasking mode.

If you change the overrun action option from its default setting of Notify
and halt to Notify and continue or None, you can get measurements for
multiple iterations of the system. Also, you will be able to request the profile
report without first halting the CPU.

The Profiling Report
To help you measure subsystem performance, Embedded Coder software
provides a custom report that analyzes and displays the profile statistics.
The report shows you the amount of time spent computing each subsystem,
including Outputs and Update code segments, and provides links that open
the corresponding subsystem in the Simulink model.

To view the profiling report, enter

56-83

56 Working with Texas Instruments™ C6000™ Processors

profile(IDE_Obj,'report')

at the MATLAB prompt, where IDE_Obj is the handle to your target and CCS
IDE, and report is one of the input arguments for profile.

When you generate the report, the Embedded Coder stores the report in your
code generation working folder, something like modelname.c6000.rtw, with
the name profileReport.html.

If the MATLAB® software cannot find your code generation folder, the profile
reports is stored in your temporary folder, tempdir. To locate your temporary
folder, enter

tempdir

at the MATLAB command prompt.

Caution Each time you run the profiling process, the software replaces
your existing report with a newer version. To save earlier reports, rename
and save the report before you generate a new one, or change your destination
temporary folder in the MATLAB workspace.

You must invoke profile after your Simulink Coder build, without clearing
MATLAB memory between operations, so that stored information about the
model is still available to the report generator. If you clear your MATLAB
memory, information required for the profile report gets deleted and the
report does not work properly. When this occurs, and if you have a CCS IDE
project that was previously created with Simulink Coder software, you must
repeat the Simulink Coder build to see the subsystem-based profile analysis
in the report.

Trace each subsystem presented in the profile report back to its corresponding
subsystem in your Simulink model by clicking a link in the report. (The
mapping from Simulink subsystems to generated system code is complex
and thus not detailed here.) Inspect your generated code, particularly
modelname.c, to determine where and how Simulink and Simulink Coder
software implemented particular subsystems.

56-84

Targeting with DSP/BIOS Options

Within the generated code, you see entries like the following that define STS
objects used for profiling.

STS_set(&stsSys0_Output, CLK_gethtime());

or

STS_delta(&stsSys0_Output, CLK_gethtime());

This pair of code examples perform the profiling of the code section that lies
between them in modelname.c.

In CCS IDE, STS objects show up in the Statistics Object Manager section
under Instrumentation in the modelname.tcf file. Double-click the file
modelname.tcf in the CCS IDE tree view to open the file and see the sections.

In some cases, Simulink Coder software may have pruned unused data paths,
causing related performance measurements to become meaningless. Reusable
system code, or code reuse, where a single function is called from multiple
places in the generated code, can exhibit extra measurements in the profile
statistics, while the duplicate subsystem may not show valid measurements.

Interrupts and Profiling
Although there are STS objects that measure the execution time of the
entire mdlOutputs and mdlUpdate functions, those measurements can be
misleading because they do not include other segments of code that execute
at each interrupt. Statistics for the SWI are used when calculating the
headroom (the difference between the number of CPU cycles your process
requires to complete and the number available for the process to complete,
which does not include the small overhead required for each interrupt. Note
that profiling of multitasking systems does not measure the headroom. In
addition, multitasking profiling does not use the SWI statistics.

To measure most accurately the overall application CPU usage, consider the
DSP/BIOS IDL statistics, which measure time spent not doing application
work. Your DSP/BIOS documentation from TI provides details about the
various DSP/BIOS objects in the tcf file.

The interrupt rate for a DSP/BIOS application created by Embedded Coder
software is the fastest block execution rate in the model. The interrupt rate

56-85

56 Working with Texas Instruments™ C6000™ Processors

is usually, but not always, the same as the codec frame rate. When there is
an upsampling operation or other rate increasing operation in your model,
interrupts are triggered by a timer (PRD) object at the faster rate. You can
determine the effective interrupt rate of the model by inverting the interrupt
interval reported by the profiler.

Profiling subsystems that contain “blocking” device drivers, such as the
ADC/DAC blocks and C6000 UDP Receive blocks may produce inaccurate and
misleading results, raising values for Max time spent in this subsystem
per interrupt and Max percent of base interval by many orders of
magnitude. To avoid this problem, design subsystems to isolate blocking
device drivers from algorithmic and other processing functions, and configure
profiling appropriately.

Reading Your Profile Report
After you have the report from your generated code, you need to interpret
the results. This section provides a link to sample report from a model and
explains each entry in the report.

Sample of a Profile Report. When you click Sample Profile Report, the
sample report opens in a new Help browser window. This opens the sample
report in a new window so you can read the report and the descriptions of the
report contents at the same time. Running the model c6713dskwdnoisf with
DSP/BIOS generates the sample profile report. The next sections explain
the headings in the report—what they mean and how they are measured
(where that applies).

Report Heading Information. At the beginning of the report, profiling
provides the name of the model you profiled, the target you used, and the date
of the report. Since the report changes each time you run it, the date can be
an important means of tracking model development.

Report Subsections and Contents. Within the body of your profile report,
sections report the overall performance of your generated code and the
performance of each atomic subsystem.

56-86

Targeting with DSP/BIOS Options

Report Heading Description

Timing Constants Shows you the base sample time in your model
(=1/base rate in Hz) and the CPU clock speed used
for the analysis.

Profiled Simulink
Subsystems

Presents the statistics for each profiled subsystem
separately, by subsystem. Each listing includes
the STS object name or names that instrument
the subsystem.

STS Objects Lists every STS object in the generated code and
the statistics for each. DSP/BIOS uses these
objects to determine the CPU load statistics. For
more information about STS objects, refer to your
DSP/BIOS documentation from TI.

STS objects that are associated with subsystem profiling are configured for
host operation at 4*x, reflecting the numerical relationship between CPU
clock cycles and high-resolution timer clicks, x. STS Average, Max, and
Total measurements return their results in counts of instructions or CPU
clock cycles.

Definitions of Report Entries
In the following sections, we provide definitions of the entries in the profile
report. These definitions help you decipher the report and better understand
how your process is performing.

System name. Provides the name of the profiled model, using the form
targetnameprofile. targetname is the processor or board assigned as the
target, via the Target Preferences block.

Number of Iterations Counted. The number of interrupts that occurred
between the start of model execution and the moment the statistics were
obtained.

56-87

56 Working with Texas Instruments™ C6000™ Processors

CPU Clock Speed. The instruction cycle speed of your digital signal
processor. On the C6713 DSK, you can adjust this speed to one of four
values, where 100 MHz is the default—25, 33.25, 100, 133 MHz. If you
change the speed to something other than the default setting of 100 MHz, you
must specify the new speed in the Simulink Coder software options. Use
the Current C6713DSK CPU clock rate option on the TIC6000 runtime
category on the Simulink Coder tab.

Set at a fixed 150 MHz, you cannot change the CPU clock rate on the C6713
DSK. You do not need to report the setting in the Simulink Coder software
options.

Maximum Time Spent in This Subsystem per Interrupt. The amount
of time spent in the code segment corresponding to the indicated subsystem
in the worst case. Over all the iterations measured, the maximum time that
occurs is reported here. Since the profiler only supports single-tasking solver
mode, no calculation can be preempted by a new interrupt. All calculations for
all subsystems must complete within one interrupt cycle, even for subsystems
that execute less often than the fastest rate.

Maximum Percent of Base Interval. The worst-case execution time of the
indicated subsystem, reported as a percentage of the time between interrupts.

STS Objects. Profiling uses STS objects to measure the execution time of
each atomic subsystem. STS objects are a feature of the DSP/BIOS run-time
analysis tools, and one STS object can be used to profile exactly one segment
of code. Depending on how Simulink Coder software generates code for each
subsystem, there may be one or two segments of code for the subsystem;
the computation of outputs and the updating of states can be combined or
separate. Each subsystem is assigned a unique index, i. The name of each
STS object helps you determine the correspondence between subsystems and
STS objects. Each STS object has a name of the form

stsSysi_segment

where i is the subsystem index and segment is Output, Update, or
OutputUpdate. For example, in the sample profile report shown in the
next section, the STS objects have the names stsSys1_OutputUpdate, and
stsSys2_OutputUpdate.

56-88

Targeting with DSP/BIOS Options

Profiling Your Generated Code
Before profiling your generated code, you must configure your model and
Simulink Coder software to support the profiling features in Embedded Coder
software. Your model must use DSP/BIOS features for profiling to work fully.

The following tasks compose the process of profiling the code you generate.

1 Enable DSP/BIOS for your code.

2 Enable profiling in the Simulink Coder software.

3 Create atomic subsystems to profile in your model.

4 Build, download, and run your model.

5 Use profile to view the MATLAB profile report.

To demonstrate profiling generated code, this procedure uses the wavelet
denoising model c6713dskwdnoisf.mdl that is included with Embedded
Coder demo programs. If you are using the C6713 DSK as your target, use the
model C6713dskwdnoisf throughout this procedure. Simulators work as well,
just choose the appropriate model for your simulator.

Begin by loading the model, entering

c6713dskwdnoisf

at the MATLAB prompt. The model opens on your desktop.

To Enable Profiling for Your Generated Code
Recall that you must use DSP/BIOS in your code to use profiling.

To enable the profile feature for your Simulink model, select Simulation >
Configuration Parameters from the model menu bar. In the Configuration
Parameters dialog box, select Code Generation > IDE Link. Under Code
Generation, enable Profile real-time execution.

56-89

56 Working with Texas Instruments™ C6000™ Processors

To Create Atomic Subsystems for Profiling
Profiling your generated code depends on two features—DSP/BIOS being
enabled and your model having one or more subsystems defined as atomic
subsystems. To learn more about subsystems and atomic subsystems, refer to
your Simulink documentation in the Help browser.

In this tutorial, you create two atomic subsystems—one from the Analysis
Filter Bank block and a second from the Soft Threshold block:

1 Select the Analysis Filter Bank block. Select Edit > Create subsystem
from the model menu bar. The name of the block changes to subsystem.
Repeat for the Soft Threshold block.

2 To convert your new subsystems to atomic subsystems, right-click on each
subsystem and choose Subsystem parameters... from the context menu.

3 In the Block Parameters: Subsystem dialog for each subsystem, select
the Treat as atomic unit option. Click OK to close the dialog. If you
look closely you can see that the subsystems now have heavier borders to
distinguish them from the other blocks in your model.

To Build and Profile Your Generated Code. You have enabled profiling in
your model and configured two atomic subsystems in the model as well. Now,
use the profiling feature to see how your code runs and check the performance
for bottlenecks and slowdowns as the code runs on your target.

Caution Do not click on any other open model while you are profiling your
model. Clicking on another open model can cause profiling to fail with an
error message like “Invalid Simulink object specifier.”

1 Select Tools > Code Generation > Build Model.

If you did not use the Simulink Coder software options to automate model
compiling, linking, downloading, and executing, perform these tasks using
the Project options in CCS IDE.

Allow the application to run for a few seconds or as long as necessary to
execute the model segments of interest a few times. Then stop the program.

56-90

Targeting with DSP/BIOS Options

2 Create a link to CCS IDE by entering

IDE_Obj = ticcs;

at the MATLAB prompt.

3 Enter

profile(IDE_Obj,'report')

at the prompt to generate the profile report of your code executing on
your target.

The profile report appears in the Help browser. It should look very much like
the following sample report; your results may differ based on your target
and the settings in the model.

56-91

56 Working with Texas Instruments™ C6000™ Processors

Using DSP/BIOS with Your Target Application

Enabling DSP/BIOS When You Generate Code
For any code you generate using Simulink Coder software and Embedded
Coder software, you have the option of including DSP/BIOS features
automatically when you generate the code. Incorporating the features
requires you to select one option in the Target Preferences block—DSP/BIOS
for the operating system.

1 Open the model to use to generate code.

2 Open the Target Preferences block in your model.

56-92

Targeting with DSP/BIOS Options

3 On the Board pane, select DSP/BIOS for Operating system under the
Code Generation options.

4 As shown in the figure, select DSP/BIOS for Operating system.

Generating Code for Any C64x+ Processor or Board
The Target Preferences block imports hardware information directly from
DSP/BIOS. This feature enables you to create custom Target Preferences
blocks for any C64x+ CPU core-based processor or board. You create and
reuse these Target Preferences blocks in your models to generate code for
your C64x+ processor or board.

56-93

56 Working with Texas Instruments™ C6000™ Processors

To create a custom Target Preferences block for your C64x+ processor or
board:

1 In MATLAB, enter idelinklib_common.

2 Drag the Target Preferences block to your Simulink model.

3 Double-click the Target Preferences block. This action opens the block.

When you open the Target Preferences block, the Embedded Coder
software uses the BIOS_INSTALL_DIR environment variable to locate the
DSP/BIOS installation folder. The link software then queries DSP/BIOS
for a list of processors and boards with C64x+ cores and displays them in
the Processor list.

Note If you change DSP/BIOS versions in the CCS Component Manager,
reopen the block to display the updated Processor list.

4 Select your processor from the Processor list.

The Target Preferences block imports settings from DSP/BIOS such as the
memory map, cache settings, and CPU clock rate. The block applies the
settings to the Memory, Section and DSP/BIOS tabs.

56-94

Targeting with DSP/BIOS Options

5 Set the CPU Clock rate for your processor.

6 To improve the efficiency of your application, you can adjust the L1 and L2
caches values and the compiler sections. The following section provides an
example of how to adjust these settings.

7 Click OK.

To create a library of custom Target Preferences blocks:

1 In Simulink, create a library: File>New>Library.

2 Copy any custom Target Preferences blocks from your models to the library.

56-95

56 Working with Texas Instruments™ C6000™ Processors

3 Relabel individual blocks for the processors they specify: Click the block
labels and edit the text.

4 Save the library to your default current folder. For example, save it as
c64xcustomtgtpreflib.mdl in c:\Program Files\matlab\bin.

Later, you can reopen the library by entering the library name on the
MATLAB command line.

Example: Creating a Custom Target Preferences Block for
OMAP-L138/C6748 EVM
To create a custom Target Preferences Block for OMAP-L138/C6748 EVM:

1 On the MATLAB command line, enter idelinklib_common.

2 Copy the Target Preferences block to your model.

3 Open the Target Preferences block.

4 For Processor, select evmOMAPL138. The block populates the Memory,
Section and DSP/BIOS tabs with default values for that processor.

5 Adjust the cache settings for efficiency. Turn L1 and L2 cache on:

a Click the Memory tab. The L1P, L1D, and L2 cache sizes are zero by
default.

b Set L1D and L1P cache sizes to 32 kb.

c When you increase the cache size, decrease the L1PSRAM and
L1DSRAM to accommodate memory taken from the high address range
of the corresponding L1 memory segments. Because L1PSRAM and
L1DSRAM are 32 kb in the OMAP-L138/C6748 processor, change the
Length for L1PSRAM and L1DSRAM to 0x00000000. This setting
allows you to use the entire L1 memory as level one cache.

d Set L2 cache size to 128 kb. Decrease the IRAM length to 0x00020000
(128 kb).

e Confirm the following configuration for the Memory tab, and click
Apply.

56-96

Targeting with DSP/BIOS Options

6 Reassign compiler sections to optimize the efficiency of the generated code.
Put .stack, .bios, .hwi, .hwi_vec sections into fast internal memory
and assign everything else to external memory. This approach avoids
linking errors caused by placing excessive code and data in limited internal
memory. It also runs critical sections of the application from internal
memory.

a Click the Section tab.

b In the Compiler sections list, set the Placement of every section,
except .stack, .bios, .hwi, and .hwi_vec, to DDR.

c Set the Placement of .stack, .bios, .hwi, and .hwi_vec to IRAM.

56-97

56 Working with Texas Instruments™ C6000™ Processors

7 The final step in configuring the OMAP-L138/C6748 EVM Target
Preferences block is to create a heap in external memory. Device drivers
from TI use heap to allocate data structures and device driver buffers.
Without a heap, integrating device drivers from TI would not be possible.

a Click the DSP/BIOS tab.

b In theHeap list, selectDDR and set the heap size to 0x00100000 (1 MB).

c Confirm the following configuration for theDSP/BIOS tab, and clickOK.

56-98

Using the C62x and C64x DSP Libraries

Using the C62x and C64x DSP Libraries

In this section...

“About the C62x and C64x DSP Libraries” on page 56-99

“Fixed-Point Numbers” on page 56-101

“Building Models” on page 56-106

About the C62x and C64x DSP Libraries

• “C62x DSP Library” on page 56-99

• “C64x DSP Library” on page 56-100

• “Supported Platforms” on page 56-101

• “Characteristics Common to C62x and C64x Library Blocks” on page 56-101

C62x DSP Library
Blocks in the C62x DSP library correspond to functions in the Texas
Instruments TMS320C62x DSP Library assembly-code library, which target
the TI C62x family of digital signal processors. Use these blocks to run
simulations by building models in Simulink software before generating code.
Once you develop your model, you can invoke Simulink Coder software to
generate code that is optimized to run on C6713 DSK development platforms
or C62x hardware. (Fixed-point processing on C67x hardware is identical
to C62x fixed point hardware and processing so you can develop on the
C67x for the C62x.) During code generation, each C62x DSP Library block
in your model is mapped to its corresponding TMS320C62x DSP Library
assembly-code routine to create target-optimized code.

C62x DSP Library blocks generally input and output fixed-point data types.
The block reference topics discuss the data types accepted and produced by
each block. “Fixed-Point Numbers” on page 56-101 gives a brief overview of
using fixed-point data types in Simulink software. For an in-depth discussion
of fixed-point data types, including issues with scaling and precision when
you perform fixed-point operations, refer to your “Fixed-Point Toolbox”
documentation.

56-99

56 Working with Texas Instruments™ C6000™ Processors

You can use C62x DSP Library blocks with certain blocks from the DSP
System Toolbox software and Simulink software. To learn more about
creating models that include both C62x DSP Library blocks and blocks from
other blocksets, refer to “Building Models” on page 56-106.

C64x DSP Library
Blocks in the C64x DSP library correspond to functions in the Texas
Instruments TMS320C64x DSP library assembly-code library, which target
the TI C64x family of digital signal processors. Use these blocks to run
simulations by building models in Simulink software before generating
code. Once you develop your model, you can invoke Simulink Coder
software to generate code that is optimized to run on the C6416 DSK
development platform or other C64x hardware. During code generation,
each C64x DSP Library block in your model is mapped to its corresponding
TMS320C64x DSP Library assembly-code routine to create target-optimized
code.

C64x DSP Library blocks generally input and output fixed-point data types.
“Optimization — C64x DSP Library (tic64dsplib)” discusses the data types
accepted and produced by each block in the library. “Fixed-Point Numbers” on
page 56-101 gives a brief overview of using fixed-point data types in Simulink
software. For an in-depth discussion of fixed-point data types, including
issues with scaling and precision when you perform fixed-point operations,
refer to your Fixed-Point Toolbox™ documentation.

You can use C64x DSP Library blocks with certain blocks from the DSP
System Toolbox software and Simulink software. To learn more about
creating models that include both C64x DSP Library blocks and blocks from
other blocksets, refer to “Building Models” on page 56-106.

Note While you can use C62x blocks on C64x targets, the generated code is
not optimal for the C64x target. Using the appropriate C64x block creates
better optimized code. (Embedded Coder software generates a warning
message when you try to do this but allows you to use the block.)

56-100

Using the C62x and C64x DSP Libraries

Supported Platforms
The C62x and C64x DSP libraries can be used with the platforms listed in the
following table:

Library Supported platforms

C62x C62x, C67x, C67x+, C64x, C64x+

C64x C64x, C64x+

Characteristics Common to C62x and C64x Library Blocks
The following characteristics are common to all C62x and C64x DSP Library
blocks:

• All blocks inherit sample times from driving blocks.

• The blocks are single rate.

• Block filter weights and coefficients are tunable, but not in real time. Other
block parameters are not tunable.

• All blocks support discrete sample times. Individual block reference pages
indicate blocks that also support continuous sample times.

To learn more about characteristics particular to each block in the library,
refer to “Optimization — C62x DSP Library (tic62dsplib)” and “Optimization
— C64x DSP Library (tic64dsplib)”

Fixed-Point Numbers

• “Notation” on page 56-101

• “Signed Fixed-Point Numbers” on page 56-102

• “Q Format Notation” on page 56-103

Notation
In digital hardware, numbers are stored in binary words. A binary word is a
fixed-length sequence of binary digits (1’s and 0’s). How hardware components
or software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

56-101

56 Working with Texas Instruments™ C6000™ Processors

Binary numbers are represented as either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The position of the binary
point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a fractional fixed-point number
(either signed or unsigned) is shown below.

where

• bi is the ith binary digit.

• ws is the word size in bits.

• bws–1 is the location of the most significant (highest) bit (MSB).

• b0 is the location of the least significant (lowest) bit (LSB).

• The binary point is shown four places to the left of the LSB. In this example
the number is said to have four fractional bits, or a fraction length of four.

Note For Embedded Coder, the results of fixed-point and integer operations
in MATLAB/Simulink match the results on the hardware target down to the
least significant bit (bit-trueness). The results of floating-point operations in
MATLAB/Simulink do not match those on the hardware target, because the
libraries used by the third-party compiler may be different from those used by
MATLAB/Simulink.

Signed Fixed-Point Numbers
Signed binary fixed-point numbers are typically represented in one of three
ways:

• Sign/magnitude

56-102

Using the C62x and C64x DSP Libraries

• One’s complement

• Two’s complement

Two’s complement is the most common representation of signed fixed-point
numbers and the one TI digital signal processors use.

Negation using signed two’s complement representation consists of a bit
inversion (translation into one’s complement) followed by the binary addition
of a one. For example, the two’s complement of 000101 is 111011:

000101 ->111010 (bit inversion) ->111011 (binary addition of 1 to the LSB)

results in the negative of 000101 being 111011.

Q Format Notation
The position of the binary point in a fixed-point number determines how you
interpret the scaling of the number. When performing arithmetic such as
addition or subtraction, hardware uses the same logic circuits regardless of
the value of the scale factor. In essence, the logic circuits have no knowledge
of a binary point. They perform signed or unsigned integer arithmetic—as
if the binary point is to the right of the LSB (b0). Therefore, you determine
the binary point in your code.

In the C62x DSP Library, the position of the binary point in signed,
fixed-point data types is expressed in and designated by Q format notation.
This fixed-point notation takes the form

Qm.n

where

• Q designates that the number is in Q format notation—the Texas
Instruments notation for signed fixed-point numbers.

• m is the number of bits used to designate the two’s complement integer
portion of the number.

• n is the number of bits used to designate the two’s complement fractional
portion of the number, or the number of bits to the right of the binary point.
Sometimes n is called the scale factor.

56-103

56 Working with Texas Instruments™ C6000™ Processors

Q format always designates the most significant bit of a binary number as
the sign bit. Representing a signed fixed-point data type in Q format requires
m+n+1 bits to account for the sign.

Example — Q.15. For example, a signed 16-bit number with n = 15 bits to
the right of the binary point is expressed as

Q0.15

in this notation. This is (1 sign bit) + (0 = m integer bits) + (15 = n fractional
bits) = 16 bits total in the data type. In Q format notation the m = 0 is often
implied, as in

Q.15

In Fixed-Point Toolbox software, this data type is expressed as

sfrac16

or

sfix16_En15

DSP System Toolbox software expresses this data type as the vector

[16 15]

meaning the word length is 16 bits and the fraction length is 15 bits.

Example — Q1.30. Multiplying two Q.15 numbers yields a product that is
a signed 32-bit data type with 30 bits to the right of the binary point. One bit
is the designated sign bit, forcing m to be 1:

m+n+1 = 1+30+1 = 32 bits total

Therefore this number is expressed as

Q1.30

In Fixed-Point Toolbox software, this data type is expressed as

sfix32_En30

56-104

Using the C62x and C64x DSP Libraries

In DSP System Toolbox software, this data type is expressed as

[32 30]

Example — Q-2.17. Consider a signed 16-bit number with a scaling of 2(-17).
This requires n = 17 bits to the right of the binary point, meaning the most
significant bit is a sign-extended bit.

Sign extension adds bits to the high end (MSB end) of the word and fills the
added bits with the value of the MSB. For example, consider a 4-bit two’s
complement number 1011. Extending the number to 7 bits with sign extension
changes the number to 1111011—the value of the number remains the same.

One bit is the designated sign bit, forcing m to be -2.

m+n+1 = -2+17+1 = 16 bits total

Therefore this number is expressed as

Q-2.17

In Fixed-Point Toolbox software, this data type is expressed as

sfix16_En17

To express this data type in DSP System Toolbox software, use

[16 17]

Example — Q17.-2. Consider a signed 16-bit number with a scaling of
2^(2) or 4. The binary point is implied to be 2 bits to the right of the 16 bits,
or that there are n = -2 bits to the right of the binary point. One bit must
be the sign bit, forcing m to be 17.

m+n+1 = 17+(-2)+1 = 16

Therefore this number is expressed as

Q17.-2

In Fixed-Point Toolbox software, this data type is expressed as

56-105

56 Working with Texas Instruments™ C6000™ Processors

sfix16_E2

In DSP System Toolbox software, this data type is expressed as

[16 -2]

Building Models

• “Overview” on page 56-106

• “Converting Data Types” on page 56-106

• “Using Sources and Sinks” on page 56-107

• “Choosing Blocks to Optimize Code” on page 56-107

Overview
You can use C62x or C64x DSP Library blocks in models along with certain
core Simulink and DSP System Toolbox software. This section discusses
issues you should consider when you build models with blocks from these
libraries.

Converting Data Types
Any blocks you connect in a model have compatible input and output data
types. In most cases, C62x or C64x DSP Library blocks handle only a
limited number of specific data types. Refer to any block reference page in
“Optimization — C62x DSP Library (tic62dsplib)” and “Optimization — C64x
DSP Library (tic64dsplib)” for a discussion of the data types that each block
accept sand produces.

When you connect C62x or C64x DSP Library blocks and Simulink blocks,
you often need to set the data type and scaling in the block parameters of the
Simulink block to match the data type of the C62x DSP Library block. Many
Simulink blocks allow you to set their data type and scaling by inheriting
from the driving block, or by back propagating from the next block. This can
be a good way to set the data type of a Simulink block to match a connected
C62x DSP Library block.

56-106

Using the C62x and C64x DSP Libraries

Some DSP System Toolbox software blocks and Simulink blocks also accept
fixed-point data types. Make the appropriate settings in the block parameters
when you connect them to a C62x DSP Library block.

To use DSP System Toolbox software or core Simulink blocks that do not
handle fixed-point data types with C62x DSP Library blocks in your model,
you must use an appropriate data type conversion block:

• To connect fixed-point and nonfixed-point blocks, use the Data Type
Conversion block from the Simulink Data Type library.

• To provide an interface to nonfixed-point blocks, use the C62x Convert
Floating-Point to Q.15 and C62x Convert Q.15 to Floating-Point blocks
from the C62x DSP Library.

• To connect blocks of varying nonfixed-point data types in your model, use
the Data Type Conversion block from the Signals and Systems Simulink
library

• To connect blocks of varying fixed-point data types in your model, use the
Data Type Conversion Inherited block from the Simulink Data Type library.

Refer to the reference pages for these blocks or invoke the Help system from
their block dialogs for more information.

Using Sources and Sinks
The C62x DSP Library does not include source or sink blocks. Use source or
sink blocks from the core Simulink library or DSP System Toolbox software
in your models with C62x DSP Library blocks. See “Converting Data Types”
on page 56-106 for more information on incorporating blocks from other
libraries into your models.

Choosing Blocks to Optimize Code
In some cases, blocks that perform similar functions appear in more than
one blockset. For example, the C62x DSP Library, the C64x DSP Library,
and the DSP System Toolbox software all have Autocorrelation blocks.
How do you choose which to include in your model? If you are building a
model to run on the C6713 DSK or on C62x hardware, choosing the block
from the C62x DSP Library always yields better optimized code. You can
use a similar block from another library if it provides functionality that

56-107

56 Working with Texas Instruments™ C6000™ Processors

the C62x DSP Library block does not support, but you generate less well
optimized code.

In the same manner, if you are building a model to run on the C6416 DSK
or on C64x hardware, choosing the block from the C64x DSP Library always
yields better optimized code. You can use a similar block from another library
if it provides functionality that the C64x DSP Library block does not support,
but you generate less well optimized code.

56-108

Configuring Timing Parameters for CAN Blocks

Configuring Timing Parameters for CAN Blocks

Setting Timing Parameters

• “Accessing the Timing Parameters” on page 56-109

• “Determining Timing Parameter Values” on page 56-110

• “CAN Bit Timing Example” on page 56-111

Accessing the Timing Parameters
The timing parameters that control the bit rate for DM643x CAN Receive
and DM643x CAN Transmit blocks are Baud rate prescaler, TSEG1, and
TSEG2 in the DM643x CAN Setup block.

The following sections describe how to set these parameters.

56-109

56 Working with Texas Instruments™ C6000™ Processors

Determining Timing Parameter Values
The following steps show you how to determine the appropriate values to use
for the timing parameters.

1 Gather these two values:

• Bit rate of the CAN network

• SYSCLKOUT — This is equivalent to the CAN module system clock
frequency. The CAN peripheral in the DM6437 is in the CLKIN clock
domain, which operates at the same frequency as the primary reference
clock to the DSP. In the DM6437EVM board, the primary reference clock
operates at 27 MHz.

2 Estimate the value of the Baud rate prescaler (BRP) and then solve
this equation for BitTime:

BitTime = SYSCLKOUT/(BRP * Bit rate)

3 Estimate values for TSEG1 and TSEG2 that satisfy the following equation:

BitTime = TSEG1 + TSEG2 + 1

The estimated values must also satisfy the following constraints:

TSEG1 >= TSEG2
IPT (Information Processing Time) = 3/BRP
IPT <= TSEG1 <= 16 TQ
IPT <= TSEG2 <= 8 TQ
1 TQ <= SJW <= min(4 TQ, TSEG2)

where:

IPT is Information Processing Time, TQ is Time Quanta, and SJW is
Synchronization Jump Width, which can be set in the CAN Setup block.

4 Iterate steps two and three until the values selected for TSEG1, TSEG2,
and BRP meet all of the criteria.

The following illustration shows the relationship between the parameters:

56-110

Configuring Timing Parameters for CAN Blocks

CAN Bit Timing Example
This example shows how to determine appropriate CAN timing parameters.

Assume that SYSCLKOUT = 27 MHz, and a Bit rate of 1 Mbits/s is required.

1 With the Baud rate prescaler (BRP) set to 12, substitute the values of
Bit rate, BRP, and SYSCLKOUT into the following equation, solving for
BitTime:

BitTime = SYSCLKOUT/(BRP * Bit rate)

BitTime = 27MHz/(12 * 0.25 MBits/sec) = 9TQ

2 Set the values of TSEG1 and TSEG2 to 6TQ and 2TQ, respectively.
Substitute the values of BitTime from the previous equation, and the
chosen values for TSEG1 and TSEG2 into the following equation:

BitTime = TSEG1 + TSEG2 + 1

9TQ = 6TQ + 2TQ + 1

56-111

56 Working with Texas Instruments™ C6000™ Processors

3 Finally, check the selected values against the rules:

IPT = 3/BRP = 3/12 = .25
IPT <= TSEG1 <= 16 TQ True! .25 <= 6TQ <= 16TQ
IPT <= TSEG2 <= 8TQ True! .25 <= 2TQ <= 8TQ
1TQ <= SJW <= min(4TQ, TSEG2), as a result of which SJW can be
set to either 1 or 2.

4 All chosen values satisfy the criteria, so no further iteration is necessary.

The following table provides common timing parameter settings for typical
values of Bit rate and SYSCLKOUT = 27 MHz. This clock frequency is the
maximum for the DM6437 EVM blocks.

Bit rate TSEG1 TSEG2 Bit Time BRP SJW

250
Kbits/sec

6 2 3 12 1 or 2

500
Kbits/sec

3 1 6 9 1

1
Mbits/sec*

6 2 9 3 1 or 2

2
Mbits/sec*

1 1 4.5 3 ERROR

* 3-time sampling in the DM643x CAN module is not possible at this Bit
rate. In the DM643x CAN Setup block, the SAM parameter cannot be set to
Sample three times.

References. For detailed information on the CAN module, see
TMS320DM643x DMP High-End CAN Controller User’s Guide (Rev. A),
Literature Number SPRU981A, available at the Texas Instruments Web site.

See Also. DM643x CAN Setup, DM643x CAN Transmit

56-112

Hardware Issues

Hardware Issues

In this section...

“Configuring the D.signT DSK-91C111 to Use TCP/IP and UDP” on page
56-113

“Requirements for the DM642 EVM” on page 56-113

“Installing and Configuring the Avnet Board Support Library” on page
56-116

“Continuing Issues with Embedded Coder Software” on page 56-118

Configuring the D.signT DSK-91C111 to Use TCP/IP
and UDP
Specific evaluation boards that don’t have a build-in Ethernet ports accept
the D.signT DSK-91C111 daughter card with the required Texas Instruments
TMS320C6000 TCP/IP Stack. To use the D.signT DSK-91C111, change the
position of solder point jumper JPINTPOL. Set the jumper to the “b” position
from the default “a” position. Refer to your TI TCP/IP Stack User’s Guide
documentation for additional information about configuring the daughter
card.

Requirements for the DM642 EVM

• “Identifying Your DM642 EVM Board Version” on page 56-113

• “Installing Third-party Software” on page 56-114

• “Configuring the Target Preferences Block for Your DM642 EVM” on page
56-114

• “Configuring the DM642 EVM Video ADC Block” on page 56-115

This section provides details about using both the DM642 EVM hardware
target and the simulator.

Identifying Your DM642 EVM Board Version
Spectrum Digital has released three versions of the DM642 EVM board:

56-113

56 Working with Texas Instruments™ C6000™ Processors

• Version 1— Original board with 600 MHz DM642, Philips SAA7115 video
decoders. ASSY 506840 Rev. D on back of board, 50 MHz oscillator.

• Version 2 — Original board revised to use 720 MHz DM642, Philips
SAA7115 video decoders. ASSY 506840 Rev. D on back of board, 60 MHz
oscillator.

• Version 3 — Revised board with 720 MHz DM642, TI TVP5146/5150
video decoders and HD filters. ASSY 507340 Rev. B on back of board, 60
MHz oscillator.

To determine the board version, consult the documentation provided with your
board, or refer to the ASSY number located on the bottom surface of the board.

Installing Third-party Software
After determining the board version, install the supported versions of the
third-party software for that board version. See the “System Requirements”
on page 56-4 for the Embedded Coder software.

Configuring the Target Preferences Block for Your DM642 EVM
When you use the DM642EVM V1, V2, and V3 Target Preferences block,
make sure that you enter the CPU clock speed that matches the CPU clock
on your board. The figure below shows the correct setting of 600 for Version
1 boards in CPU clock speed (MHz). For Version 2 and 3 boards, change
the clock speed to 720.

56-114

Hardware Issues

Configuring the DM642 EVM Video ADC Block
If you have a DM642 EVM Version 2 or 3 board, make sure that you have the
updated video drivers in your CCS IDE installation folder and that you select
the correct decoder type TVP5146 when you use DM642 EVM Video ADC
blocks as shown in the following figure.

56-115

56 Working with Texas Instruments™ C6000™ Processors

Installing and Configuring the Avnet Board Support
Library

• “Preface” on page 56-116

• “Installing the Avnet Board Support Library” on page 56-117

• “Setting the MATLAB Environment” on page 56-117

• “For Spectrum Digital DM6437EVM Users” on page 56-118

• “Verifying Your Installation” on page 56-118

Preface
The Avnet S3ADSP DaVinci evaluation platform is designed for joint software
and hardware design. It brings the Texas Instruments TMS320DM6437 DSP
and Xilinx Sparta-3A FPGA together. This chapter provides an overview of

56-116

Hardware Issues

the board, and instructions for installing, configuring, and using the Avnet
S3ADSP DM6437.

Installing the Avnet Board Support Library
Download and install the current Avnet Board Support Package for Simulink
(Avnet BSL), available from the Avnet Web site, www.avnet.com. Doing so
creates environment variables that the Embedded Coder software uses to
locate files in the Avnet BSP.

Make a note of the installation folder for the Avnet BSL.

Setting the MATLAB Environment
The Embedded Coder software uses environment variables to locate files in
the Avnet BSP.

The MathWorks utility, setTgtEnv.m, automatically maps the following
environment variables (where <Avnet BSL> is the Avnet BSL installation
folder):

• PSP_EVMDM6437_INSTALLDIR: must be mapped to “<Avnet BSL>\psp”

• CSLR_DM6437_INSTALLDIR: must be mapped to “<Avnet BSL>\
psp\pspdrivers\soc\dm6437\dsp\inc”

• NDK_INSTALL_DIR: must be mapped to “<Avnet BSL>\ndk”

Run setTgtEnv by entering the following command at the MATLAB command
prompt: setTgtEnv('avnet_s3adsp_dm6437')

If you installed the Avnet BSL prior to installing the MathWorks BSL, the
utility detects the AVNET_S3ADSP_DM6437_INSTALLDIR environment
variable created by the Avnet BSL installer. It will automatically
set the environment variables above based on the path stored in the
AVNET_S3ADSP_DM6437_INSTALLDIR environment variable. On a
successful run, you should see the following messages printed on the MATLAB
command window:

Setting environment variable "PSP_EVMDM6437_INSTALLDIR" to
C:\avnet_s3adsp_dm6437_1_06\psp"

56-117

http://www.avnet.com

56 Working with Texas Instruments™ C6000™ Processors

Setting environment variable "CSLR_DM6437_INSTALLDIR" to
C:\avnet_s3adsp_dm6437_1_06\psp\pspdrivers\soc\dm6437\dsp\inc"

Setting environment variable "NDK_INSTALL_DIR" to
C:\avnet_s3adsp_dm6437_1_06\ndk"

If automatic mapping fails for any reason, the script will prompt you to browse
for the “avnet_s3adsp_dm6437_version.txt” file stored in the top-level Avnet
BSL installation folder. If so, browse for the file and click the Open button.
This will set the required environment variables.

For Spectrum Digital DM6437EVM Users
If you have a Spectrum Digital DM6437EVM board together with an
Avnet S3ADSP DM6437 board, setting environment for the Avnet board as
explained in section 2.3 will override DM6437EVM environment setup. To
revert back to DM6437EVM environment after using Avnet board, execute
the following at the MATLAB command prompt: setTgtEnv('dm6437evm')

Follow the instructions printed on the MATLAB command window to complete
environment configuration. To go back and forth between DM6437EVM
environment and Avnet S3ADSP DM6437 environment, use the setTgtEnv
script with the appropriate platform name specified as the argument.

Verifying Your Installation
Open the Avnet S3ADSP Board Support Library by entering the following
command at the MATLAB command prompt: avnet_s3adsp_dm6437 This
opens the Avnet Spartan–3A DSP DaVinci Evaluation Platform Board
Support Library. You have completed installing and configuring the
MathWorks and Avnet Board Support Libraries. You are ready to start using
the Avnet S3ADSP DaVinci evaluation platform.

Continuing Issues with Embedded Coder Software
This section details some target operations that you should know about as
you use Embedded Coder software.

• “Setting the Clock Speed on the C6713 DSK” on page 56-119

56-118

Hardware Issues

• “Simulink Stop Block Works Differently When Not Using DSP/BIOS
Features” on page 56-120

• “Installing Third-Party Embedded Coders” on page 56-120

Setting the Clock Speed on the C6713 DSK
The C6713DSK PLL is not automatically set to the correct CPU Clock
frequency when you try to target the board. When you power-up your DSK, it
runs at a clock speed of 50 MHz. However, the C6713 is capable of running
at 225 MHz.

If you generate code incorporating the DSP/BIOS real-time operating system,
the PLL is automatically configured for you at run-time to use the correct
clock speed. If you are not using DSP/BIOS in your project, you must
manually configure the PLL to the correct clock rate before running your code.

Setting the PLL to Drive the CPU at 225 MHz. To set the C6713 DSK PLL
to drive the CPU at 225 MHz, perform the following steps. Be sure you have
defined your GEL file for your DSK in the Setup Utility for CCS IDE.

1 Launch Code Composer Studio.

2 Open your C6713 DSK project with the GEL file.

3 Select GEL > Resets > InitPLL from the menu bar in CCS IDE.

To make this happen whenever you open Code Composer Studio to use your
C6713 DSK, edit the file \ti\IDE_Obj\gel\dsk6713.gel. Add the following
command to the StartUp() function:

init_pll();

This tells the GEL file to initialize the PLL to operate at 225 MHz.

On the DM642 EVM, ADC-DAC Loopback Does Not Display An RGB
Image Correctly After Power-Up. When you set up the DM642 EVM to
use loopback from the ADC to the DAC, the DAC block does not reproduce the
captured image correctly immediately after you power up the board. Colors in
the image are not shown correctly.

56-119

56 Working with Texas Instruments™ C6000™ Processors

To get a clean image, reload the program to the target and run the program
again. This also happens with the examples Texas Instruments ships with
the DM642 EVM product.

Simulink Stop Block Works Differently When Not Using
DSP/BIOS Features
If you are using the Simulink Stop block in your model, but you are not using
DSP/BIOS features, your model might take longer to stop when it is running
on the target than if you are using DSP/BIOS.

The condition the model uses to detect the stop processing flag is different
when you do not use DSP/BIOS. The result is that the model may not detect
and respond to the flag as promptly, taking longer to stop the running model
on the target.

Installing Third-Party Embedded Coders
For a list of required third-party target packages, with version
numbers, see the Embedded Coder System Requirements page at
http://www.mathworks.com/products/target-package/requirements.html.

When you install any of the third-party target packages listed below, perform
a default installation using the installation path provided for that package
and perform any additional steps given.

This documentation uses placeholders for portions of the installation
path that may vary by software version or environment. Please
replace the placeholders with the correct path information for your
software environment. For example, if the CCS IDE installation path is
C:\CCStudio_v3.3, then enter C:\CCStudio_v3.3\boards\evmdm642 instead
of <CCStudio_vn.n>\boards\evmdm642.

Placeholders:

• <CCStudio_vn.n>— The installation path for Code Composer Studio

• <n.n> — Version-specific path information

56-120

http://www.mathworks.com/products/target-package/requirements.html

Hardware Issues

Note If you do not use the installation paths provided, update the Libraries
and Include paths parameters in the Target Preferences and C6000 IP
Config blocks of the Embedded Coder™ software with the correct paths.
Otherwise, the software produces error messages when you attempt to
generate code.

DM642EVM Version 3 Board.

• Spectrum Digital EVMDM642 Board Support Package —
<CCSvn.n>\boards\evmdm642

• TI’s Network Developer’s Kit (NDK) — <CCSvn.n>\C6000\NDK

DM642EVM Version 1 & 2 Boards.

• Spectrum Digital EVMDM642 Board Support Package —
<CCSvn.n>\boards\evmdm642

• Device Driver Developer’s Kit (DDK) — <CCSvn.n>\ddk

• TI’s Network Developer’s Kit (NDK) — <CCSvn.n>\C6000\NDK

DM6437EVM.

• Spectrum Digital DM6437EVM DVSDK RTM — Install anywhere.
TI recommends using the root path of your main drive. For example,
C:\dvsdk_<n.n>

Also, set the following environment variables, replacing DVSK with the
DVSDK installation path (e.g., C:\dvsdk_<n.n>).

The first time you generate code, the Embedded Coder™ software prompts you
to locate specific files in the DVDSK folders and creates environment variables
mapped to the location of required folders. For example, the application
creates an environment variable called CSLR_DM6437_INSTALLDIR for the
path of the Register Layer Chip Support Library.

C6455DSK. Spectrum Digital DSK6455/EVM6455 Target Content Package
— <CCSvn.n>\boards\dsk6455_v<n.n>

56-121

56 Working with Texas Instruments™ C6000™ Processors

Network Developer’s Kit NDK — <CCSvn.n>\C6000\NDK

C6727PADK. Lyrtech’s PADK Software — Install anywhere.

TI’s C672x Chip Support Libraries (CSL) — Extract all three C672x CSL
components from sprc223.zip to <CCSvn.n>\boards\C6727PADK.

TI’s System Patch Code, FastRts(V<n.n>)/DSPLIB (V<n.n>) —
<CCSvn.n>\boards\C6727PADK\sprc203

After installation, the path structure for the C672x CSL libraries should
resemble the following figure:

The PADK Software installer automatically sets the PADK_DIR environment
variable with the correct installation path.

56-122

Hardware Issues

The first time you generate code, the Embedded Coder™ software prompts
you to locate the following files under <CCSvn.n>\boards\C6727PADK\ and
sets the environment variables accordingly:

• $(CSL_C672x_INSTALLDIR)\lib\csl_C6727.lib

• $(CSL_C672x_INTC_INSTALLDIR)\lib\csl_C672x_intc.lib

• $(SYSPATCH_C672x_INSTALLDIR)\applySystemPatch.obj

You have completed installation of the third-party softwares.

56-123

56 Working with Texas Instruments™ C6000™ Processors

56-124

57

Working with Wind River
VxWorks Target

• “Overview of Support for Wind River VxWorks” on page 57-2

• “Tutorial: Building and Running Embedded Software on VxWorks” on
page 57-4

• “Generating Code for VxWorks Running on Other Targets” on page 57-9

• “Schedulers” on page 57-10

57 Working with Wind River® VxWorks® Target

Overview of Support for Wind River VxWorks
Using Embedded Coder software, you can generate software for the VxWorks
RTOS.

• Real-time scheduler

• Non real-time (free-running) scheduler

• Single-tasking and multitasking modes

You can use the following MathWorks software features to verify that the
target software you create for VxWorks:

• External Mode simulation

• Processor-in-the-loop simulation over TCP/IP (TCP/IP PIL)

Additionally, the Simulink Library Browser contains a new VxWorks block
library, vxworkslib, with the following blocks:

• VxWorks Task

• UDP Receive

• UDP Send

You can find vxworkslib in the Simulink Library Browser under Embedded
Targets > Operating Systems > VxWorks.

In this release, Embedded Coder cannot generate IDE projects for the Wind
River Diab or GNU tool chains. Instead, use the XMakefile feature to
generate makefiles, source code, and related files from your model. You can
then use those files with to build, load, and run your embedded software
on VxWorks. For more information, see “IDE Projects” on page 43-18 and
“Makefiles” on page 43-24.

The XMakefile feature includes the following new configuration files:

• wrsdiab_arm9_vxworks_rtp— Diab tool chain, ARM9 processor, VxWorks
real-time process (RTP) applications

57-2

Overview of Support for Wind River® VxWorks®

• wrsdiab_arm9_vxworks_rtp_so — Diab tool chain, ARM9 processor,
VxWorks real-time process (RTP) applications with shared object

• wrsdiab_hostsim_vxworks_rtp — Diab tool chain, host-simulator,
VxWorks real-time process (RTP) applications

• wrsdiab_hostsim_vxworks_rtp_so — Diab tool chain, host-simulator,
VxWorks real-time process (RTP) applications with shared object

• wrsgnu_arm9_vxworks_rtp— GNU tool chain, ARM9, VxWorks real-time
process (RTP) applications

• wrsgnu_hostsim_vxworks_rtp — GNU tool chain, host-simulator,
VxWorks real-time process (RTP) applications

For a demonstration of how to develop embedded software for VxWorks, see
the Code Generation and Verification demo.

57-3

57 Working with Wind River® VxWorks® Target

Tutorial: Building and Running Embedded Software on
VxWorks

In this section...

“Install and Set Up the Wind River Development Environment” on page
57-4

“Setting VxWorks Environment Variables and Starting MATLAB” on page
57-5

“Setting Up XMakefile for VxWorks” on page 57-6

“Customizing XMakefile to Automatically Download and Build Your
Software” on page 57-7

“Prepare Your Model for VxWorks and Makefiles” on page 57-8

“Build Your Embedded Software” on page 57-8

This tutorial shows you how to use the XMakefile feature in your MathWorks
software to build and run embedded software for VxWorks. For more
information about XMakefile, see “Makefiles” on page 43-24.

Install and Set Up the Wind River Development
Environment
Set up VxWorks software and hardware on your host and target:

1 Install Wind River Workshop on the host.

2 Set up host-to-target communications.

3 Create a VxWorks operating system kernel image on the host.

4 Boot the embedded target with the kernel image.

For detailed instructions, consult your Wind River Workshop and VxWorks
documentation.

57-4

Tutorial: Building and Running Embedded Software on VxWorks®

Setting VxWorks Environment Variables and Starting
MATLAB
Each time you use VxWorks with your MathWorks software, start by:

• Setting the VxWorks environment variables

• Starting MATLAB

The XMakefiles feature in your MathWorks software uses standard
input/output (command line) to start and communicate with the tool chain in
Wind River Workbench. Wind River recommends that you set environment
variables using the wrenv utility each time you start those tools from the
command line. For more information, read the readme.txt file in the Wind
River installation folder, and search the Wind River Workbench help for
“Setting Environment Variables With wrenv”.

Set the VxWorks environment variables, and then start MATLAB:

1 Open a command-line session in Windows or Linux.

2 Change folders to the Wind River installation folder. For example, at the
Windows command line, enter:

cd C:\WindRiver

3 Run the wrenv utility, including -p followed by the relative path to the
VxWorks platform you are using.

For example, in Windows, enter:

wrenv.exe -p vxworks-6.7

For example, in Linux, enter:

./wrenv.sh -p vxworks-6.7

4 Start MATLAB. For example, enter:

C:\Program Files\MATLAB\R2010a\bin\matlab.exe

57-5

57 Working with Wind River® VxWorks® Target

Setting Up XMakefile for VxWorks
The XMakefile feature tells your MathWorks software how to create makefiles
for a “configuration”, which is a specific combination of tool chain and
embedded target. Some configurations require additional information before
you can use them.

Select and complete a configuration for VxWorks:

1 Enter xmakefilesetup at the MATLAB command prompt. This action
opens the XMakefile User Configuration dialog box.

2 Deselect Display operational configurations only.

3 Set Configurations to a choice that starts with wrs and contains vxworks,
and click Apply.

4 If the configuration is incomplete, the software displays a series of Browse
For Folder dialog boxes that include instructions to provide missing
information.

5 Examine the Tool Directories tab to see if the paths are correct.

6 When you have supplied the missing information and the configuration is
complete, click OK to close the XMakefile User Configuration dialog box.

For example, to generate code for VxWorks and an ARM9 processor:

1 Enter xmakefilesetup on the command line.

2 In the XMakefile dialog box, deselectDisplay operational configurations
only, set Configurations to wrsdiab_arm9_vxworks_rtp, and click
Apply.

3 When the Browse For Folder dialog box appears, stating “Select the
Wind River Diab compiler binary directory...”, browse and select a path.

For example, you can select a path such as
C:\WindRiver\diab\5.7.0.0\WIN32\bin.

4 When another Browse For Folder dialog box appears, stating “Select the
Wind River root installation directory...”, browse and select a path.

57-6

Tutorial: Building and Running Embedded Software on VxWorks®

For example, you can select a path such as C:\WindRiver.

5 Examine the Tool Directories tab to see if the paths are correct.

6 After you complete the update of configuration information, click
OK to save the updated configuration and close the dialog box. The
wrsdiab_arm9_vxworks_rtp configuration is now operational.

Customizing XMakefile to Automatically Download
and Build Your Software
Create a customized XMakefile configuration that automatically builds and
downloads your embedded software to the VxWorks target.

1 Enter xmakefilesetup at the MATLAB command prompt. This action
opens the XMakefile User Configuration dialog box.

2 Verify that Configurations displays the wrsdiab_arm9_vxworks_rtp
configuration.

3 Click New, and name the new configuration.

4 On the Post-build tab:

• For Post-build tool, enter echo

• For Arguments, enter the following text as a single line:

rtpSp \"host:[|||MW_XMK_GENERATED_TARGET_REF[E]|||]\">"

[|||MW_XMK_OUTPUT_PATH_REF[E]|||]vxscript.txt"

5 On the Execute tab:

• For Execute tool, enter the complete path to the VxWorks simulator
executable. For example:

C:\WindRiver\vxworks-6.7\host\x86-win32\bin\vxsim.exe

• For Arguments, enter the following string. Substitute vxworksimage
with the complete path to the VxWorks operating system kernel image
you created earlier:

-f vxworksimage -s
"[|||MW_XMK_OUTPUT_PATH_REF[E]|||]vxscript.txt" &

57-7

57 Working with Wind River® VxWorks® Target

Prepare Your Model for VxWorks and Makefiles
The Target Preferences block contains information that your MathWorks
software needs to generate code for a specific combination of tool chain and
embedded target.

Configure your model to generate code VxWorks by updating the Target
Preferences block.

If your model does not contain a Target Preferences block:

1 Open the Common block library by entering idelinklib_common on the
command line.

2 Copy the Target Preferences block to your model.

3 Complete the Target Preferences: Initialize Configuration
Parameters dialog box:

• Set IDE/Tool Chain to: Wind River Diab/GCC (makefile generation
only).

• Set Processor to ARM9.

4 Click Yes, to update the appropriate values in your Target Preferences and
model Configuration Parameters.

If your model already contains a Target Preferences block, open the block and
update the parameters described in step 3 and 4.

Build Your Embedded Software
In your model, build your embedded software by entering CTRL+B. This
action causes your MathWorks software to generate code and makefiles.
Then the Wind River tool chain builds and loads the embedded software on
the VxWorks target.

57-8

Generating Code for VxWorks® Running on Other Targets

Generating Code for VxWorks Running on Other Targets
The XMakefile feature includes configurations for the ARM9 processor.
To generate makefiles for VxWorks running on other targets, such as the
ARM9E, ARM10, ARM11, or generic/custom processors:

1 Start the XMakefile dialog box by typing xmakefilesetup at the command
line.

2 Click New, and name the new configuration.

3 Update the new configuration with any missing information and new
arguments. Consult the Wind River documentation for information on
which arguments to provide.

57-9

57 Working with Wind River® VxWorks® Target

Schedulers

Running Target Applications on Multicore Processors
If you are generating code for a processor running Linux or VxWorks, you can
elect to partition the code such that each rate is placed in its own thread.
With code generated from a multi-rate model, the multi-threaded application
will be enabled for concurrent multicore execution, as scheduled by the target
operating system.

1 Create a multi-rate Simulink model.

2 Add a Target Preferences block to your model as described in the “Target
Preferences” on page 43-4 section.

3 Verify that your model uses a Rate Transition block to transition between
rates.

4 Clear the Ensure deterministic data transfer checkbox of the Rate
Transition block. This action forces the Rate Transition block to use the
most recent data available.

5 In the Target Preferences block, set Operating System to Linux or
VxWorks.

6 In the Linux or VxWorks tab of the Target Preferences block, select the
Allow tasks to execute concurrently checkbox. Selecting this option
enables the generated multi-threaded code to run concurrently on multicore
processors.

57-10

Schedulers

7 In the Configuration Parameters dialog box, on the Solver pane, set
Tasking mode for periodic sample times to Auto or Multitasking.

8 Open the Rate Transition block and clear the Ensure deterministic data
transfer checkbox. This action forces the Rate Transition block to use
the most recent data.

9 In the Target Preferences block, set Operating System to Linux or
VxWorks.

10 Select the Allow tasks to execute concurrently checkbox. Selecting
this option enables generated multi-threading code to run concurrently on
multicore processors.

11 For the best performance, in the Configuration Parameters dialog box,
on the Solver pane, set Tasking mode for periodic sample times to
Auto or Multitasking.

12 In your model, click the build button or enter Ctrl+B. The software
performs the actions you selected for Build action in the model
Configuration Parameters, under Code Generation > IDE Link.

57-11

57 Working with Wind River® VxWorks® Target

57-12

A

Examples

Use this list to find examples in the documentation.

A Examples

Code Generation
“Generating a Shared Library Version of Your Model Code” on page 4-18
“Creating Application Code to Load and Use Your Shared Library File”
on page 4-19
“Specifying Code Generation Objectives Using the GUI” on page 15-4
“Specifying Code Generation Objectives at the Command Line” on page
15-6
“Reviewing the Model Without Generating Code” on page 15-7
“Reviewing the Model During Code Generation” on page 15-9
“How to Create Custom Objectives” on page 15-14
“Using Virtualized Output Ports Optimization” on page 21-24
“Importing an AUTOSAR Software Component” on page 24-28
“Creating a SIL Block” on page 26-3
“Techniques for Exporting Function-Call Subsystems” on page 27-7
“Function-Call Subsystem Export Example” on page 27-12
“Examples of Modular Function Code for Nonvirtual Subsystems” on page
28-9
“Model Function Prototypes Example” on page 29-12
“Sample Script for Configuring Model Function Prototypes” on page 29-22
“C++ Encapsulation Quick-Start Example” on page 30-4
“Sample Script for Configuring the Step Method for a Model Class” on
page 30-24

Custom Storage Classes
“Creating Packages that Support CSC Definitions” on page 8-8
“Generating Code with Custom Storage Classes” on page 8-58
“Defining Advanced Custom Storage Class Types” on page 8-62
“GetSet Custom Storage Class Example” on page 8-68

Memory Sections
“Requirements for Defining Memory Sections” on page 9-4
“Defining Memory Sections” on page 9-7

A-2

Advanced Code Generation

“Applying Memory Sections” on page 9-15
“Examples of Generated Code with Memory Sections” on page 9-23

Advanced Code Generation
“Specifying Type Definition Location for User-Defined Data Types” on
page 11-5
“Generating Source and Header Files with a Custom File Processing (CFP)
Template” on page 17-35
“Creating a Custom File and Function Banner Template” on page 17-53
“Customizing a Code Generation Template (CGT) File for File and Function
Banner Generation” on page 17-54
“Adding a Configuration Wizard Block to Your Model” on page 21-9
“Creating a Custom Configuration Wizard Block” on page 21-11

Target Function Libraries
“Target Function Libraries Quick-Start Example” on page 31-9
“Example: Mapping Math Functions to Target-Specific Implementations”
on page 31-27
“Example: Mapping the memcpy Function to a Target-Specific
Implementation” on page 31-34
“Example: Mapping Nonfinite Support Utility Functions to Target-Specific
Implementations” on page 31-38
“Example: Mapping Scalar Operators to Target-Specific Implementations”
on page 31-43
“Adding Target Function Library Reserved Identifiers” on page 31-137
“Examining and Validating Function Replacement Tables” on page 31-139
“Using the sl_customization API to Register a TFL with Simulink
Software” on page 31-149
“Registering Multiple TFLs” on page 31-154

A-3

A Examples

Data Structures, Code Modules, and Program Execution
“Rate Grouping and the Static Main Program” on page 34-15
“Making Your S-Functions Rate Grouping Compliant” on page 34-19

Verifying Generated Code
“Demos of the Target Connectivity API” on page 39-59

Makefiles
“Example: Creating a New XMakefile Configuration” on page 43-31

Verification
“By Tasks” on page 44-15
“By Subsystems” on page 44-17
“Profiling System Stack Use” on page 44-22

Tutorials
“Tutorial: Using Option Sets” on page 46-75
“Tutorial: Creating New Template Projects” on page 46-76
“Creating a New Configuration” on page 46-80
“Tutorial: Configuring an Existing Model for Embedded Coder Software”
on page 46-81

Automation Interface
“Getting Started with Automation Interface” on page 47-7

A-4

Working with adivdsp Objects

“Getting Started with Automation Interface” on page 50-10
“Getting Started with Automation Interface” on page 54-10

Working with adivdsp Objects
“Example — Constructor for adivdsp Objects” on page 47-23
“Example — Setting Object Property Values at Construction” on page 47-24
“Example — Setting Object Property Values Using set” on page 47-25
“Example — Retrieving Object Property Values Using get” on page 47-25
“Example — Direct Property Referencing in Links” on page 47-26

Project Generator
“Project Generator Tutorial” on page 47-31
“Project Generator Tutorial” on page 50-34
“Project Generator Tutorial” on page 54-60

Real-Time Target
“Tutorial: Creating a New Application” on page 49-26
“Using External Mode” on page 49-54
“ASAP2 File Generation Procedure” on page 49-65
“Data Acquisition (DAQ) List Configuration” on page 49-66
“Using External Mode” on page 55-35

Processor-in-the-Loop Target
“Tutorial 1: Building and Running a PIL Simulation” on page 49-84
“Using the Demo Model In a PIL Simulation” on page 49-94

A-5

A Examples

Algorithm Export Target
“Algorithm Export Target” on page 49-103

Working with ghsmulti Objects
“Example — Constructor for ghsmulti Objects” on page 50-26
“Example — Setting Link Property Values at Construction” on page 50-28
“Example — Setting Link Property Values Using set” on page 50-29
“Example — Retrieving Link Property Values Using get” on page 50-29
“Example — Direct Property Referencing in Links” on page 50-30

Simple Example Applications
“Example Model 1: c166_serial_transmit” on page 51-24
“Example 2: c166_serial_io” on page 51-28
“Debugging and Using The Code Profile Report” on page 51-30
“RAM / ROM Code Profile Report” on page 51-31
“Parameter Tuning and Signal Logging” on page 51-34
“Parameter Tuning and Signal Logging” on page 55-34

Integrating Manually Coded Device Drivers
“Tutorial: Using the Example Driver Functions” on page 51-43

Bit-Addressable Memory
“Using the Bitfield Example Model” on page 51-50

A-6

Execution Profiling

Execution Profiling
“Multitasking Demo Model” on page 51-62

Working with ticcs Objects
“Getting Started with RTDX” on page 54-27
“Example — Constructor for ticcs Objects” on page 54-49

Exporting Filter Coefficients from FDATool
“Exporting Filter Coefficients from FDATool to the CCS IDE Editor” on
page 54-75
“Example: Changing Filter Coefficients Stored on Your Processor” on
page 54-82

Q Format Examples
“Example — Q.15” on page 55-57
“Example — Q1.30” on page 55-58
“Example — Q-2.17” on page 55-58
“Example — Q17.-2” on page 55-59
“Example — Q.15” on page 56-104
“Example — Q1.30” on page 56-104
“Example — Q-2.17” on page 56-105
“Example — Q17.-2” on page 56-105

Targeting Tutorials
“Targeting Tutorial — Single Rate Application” on page 56-11
“Targeting Tutorial II — A More Complex Application” on page 56-43

A-7

A Examples

Asynchronous Scheduler
“Asynchronous Scheduler Examples” on page 56-24
“Free-Running DSP/BIOS Task” on page 56-28
“Idle Task” on page 56-30
“Hardware Interrupt Triggered DSP/BIOS Task” on page 56-31
“Hardware Interrupt Triggered Task” on page 56-32

Profiling Code
“Profiling Multitasking Systems” on page 56-82
“Profiling Your Generated Code” on page 56-89

Target Preferences
“Example: Creating a Custom Target Preferences Block for
OMAP-L138/C6748 EVM” on page 56-96

A-8

Index

IndexA
absolute time 32-3
access properties 47-24 50-28
acquisition window

ADC blocks
ACQ_PS 55-47

add build subdirectory suffix 46-15
Add IDE Link Configuration to Model 46-23
additional options

adding custom comments 17-4
delimiter for all #includes 17-69

adivdsp 47-22
adivdsp object properties 47-29

procnum 47-28
sessionname 47-29

algorithm export 49-103
algorithms

verifying in context of complete real-time
target environment 41-1

Alias 7-9
Analog Devices model reference 47-35
apiversion 54-53
Archive_library 47-37 50-41 54-66 56-35
ASAP2 files

generating for C166 51-31
ASAP2 files, generating 49-64 51-35 55-45
asynchronous interrupt processing 55-7
asynchronous scheduling 56-21
attributes 12-3
AUTOSAR 22-2

standards, complying with 22-5

B
bit-addressable memory 51-49
Bitfield (Custom) 7-6
block limitations using model reference 47-38

50-42 54-67 56-36
blocks

adding to model 55-26

boardnum 54-54
boards, selecting 43-21 54-58
Browse button

on Code Generation pane 16-2
build action 46-13

setting 46-18
build configuration 46-13
build folder

contents of 56-50
naming convention 56-45

build format 43-12
build process

command line information 46-35
folder structure 46-33
overview 46-27
shared libraries 46-31
template projects 46-29

build subdirectory suffix 46-15
building models

use C62x DSP Library blocks 56-106

C
c2000lib startup 55-24
C6000 model reference 54-65 56-34
C6000 Target

targeting Code Composer Studio 56-54
C62x DSP Library blocks

building models 56-106
choosing blocks to optimize code 56-107
common characteristics 56-101
Q format notation 56-103
using source and sink blocks 56-107

C6713 DSK
confirming proper configuration 56-42
start/stop models 56-40 56-54
tutorial about multirate applications 56-43

C6713 DSK blocks
tutorial 56-43

C6713 DSK folders

Index-1

Index

build 56-45
working 56-45

CAN
timing parameters

Bitrate 56-109
CAN/eCAN

timing parameters
bit rate 55-29

CCS 54-2
See also Code Composer Studio™

CCS IDE
create projects for the IDE 56-54

CCS IDE objects
tutorial about using 54-10

ccsappexe 54-54
changing identifier names 12-30
classes 12-3 46-38
clock speed 55-7
code analysis report 49-104
Code Composer Studio 56-54

MATLAB API 54-5
Code Composer Studio™ 54-2
code generation

overview 55-28
code generation options

Application lifespan (days) 21-3
Bitfield declarator type specifier 21-4
code style pane 17-22
Configure Step Function 32-6
Custom comments 17-2
External mode 21-26
Fixed-point exception protection 21-3
Generate reusable code 32-5
Generate scalar inlined parameters 17-13
GRT compatible call interface 32-5
Identifier format control 17-12
MAT-file logging

clearing 21-23
Maximum identifier length 17-12
Minimum mangle length 17-12

Pack Boolean data into bitfields 21-4
Parameter structure 21-4
Pass reusable subsystem outputs as 21-4
Pass root-level I/O as 32-7
Requirements in block comments 17-3
Reusable code error diagnostic 32-7
Simplify array indexing 21-4
Simulink block descriptions 17-2
Simulink data object descriptions 17-2
Single output/update function 32-5

clearing 34-17
Stateflow object descriptions 17-3
Support absolute time 32-3
Support complex numbers 32-2
Support continuous time 32-3

for using continuous time blocks 5-2
limitations 26-4

Support floating-point numbers 32-2
Support non-finite numbers 32-2
Support noninlined S-functions 32-4
Suppress error status in real-time model

data structure 32-6
Terminate function required 32-5

Code generation options 7-4
Code Generation pane

target configuration options
Browse button 16-2
system target file field 16-2

Code Generation Report 12-25
code modules, generated 19-2
code optimization 55-60
code style

controlling 17-22
code templates

example of use 17-35
generating code with 17-36
structure of 17-31
summary of API 17-47

code tracing
by using HTML reports 37-2

Index-2

Index

code, generated
verifying in target environment 40-1

code, user-written 19-5
codegen

generating reusable, reentrant code 23-1
comments

adding custom 17-4
adding global 17-5

Complexity 7-3
component models

verifying in context of complete real-time
target environment 41-1

components
, project generator 46-37
project generator 46-27

Configuration Class blocks 49-23 51-19
configuration default 54-2
configuration options 46-13
configuration parameters

Code Generation Pane: ET MPC5xx
(Algorithm Export) Options Tab 49-109

Code Generation Pane: ET MPC5xx
(Processor-in-the-Loop) Options
Tab 49-111

Code Generation Pane: ET MPC5xx
Real-Time Options (1) Tab 49-116

Code Generation Pane: ET MPC5xx
Real-Time Options (2) Tab 49-119

pane 46-84
Add build directory suffix 46-88
Build action 49-115
Build directory suffix: 46-89
Compiler optimization switches 49-113
Configure model to build PIL algorithm

object code 46-94
CrossView Pro handle name: 46-92
EDE handle name: 46-90
Execution profiling 49-122
Export CrossView Pro handle to

MATLAB base workspace 46-92

Export EDE handle to MATLAB base
workspace 46-90

Maximum number of concurrent
base-rate overruns: 49-120

Maximum number of concurrent sub-rate
overruns: 49-121

Number of data points: 49-122
Optimize compiler for 49-113
Target Memory Model 49-117
TaskingBuildAction 46-85
TaskingConfiguration 46-87
Use prebuilt (static) libraries 49-111

Configuration Parameters
Code Generation Pane: C166 Options

Tab 51-72
pane

Execution profiling 51-77
Include input/output driver function

hooks 51-73
Maximum number of concurrent

base-rate overruns: 51-74
Maximum number of concurrent sub-rate

overruns: 51-75
Number of data points: 51-78

Configuration Parameters dialog box 18-3
configuration sets 46-13
Configuration Wizard buttons 21-7
Configure model to build PIL algorithm object

code 46-15
confirm your C6713 DSK configuration 56-42
Const (Custom) 7-7
ConstVolatile (Custom) 7-7
controllers

verifying in context of complete real-time
target environment 41-1

controlling signal storage 21-25
convert data types 56-106
CPU clock speed 55-7
Create a New Model (configured for use with

TASKING) 46-22

Index-3

Index

create custom target function library 45-8
Create New Template Projects 46-22
creating a data dictionary 12-4
CrossView Pro handle name 46-15
custom C6000 target

about 56-59
preferences block 56-59
setup 56-59

custom code generation
of file banners 17-50
with code templates 17-31

custom comments 17-4
custom file processing (CFP) template 17-23
custom hardware guidelines 56-55
custom hardware, target 56-55
custom storage class 51-49

D
daexplr command 12-8
Data access 7-8
data dictionary 12-2

introduction 12-2
See also data objects

data initialization
of floats and doubles 21-2
of internal states 21-2
of root-level I/O ports 21-2

data object wizard 12-5
data objects

adding missing 12-5
naming rules

changing all #defines 12-36
changing all parameter names 12-35
changing all signal names 12-35

properties 7-2
setting property values 12-8
wizard 12-5

data placement
introduction 13-2

rules for 13-25
settings 13-2

data templates 17-23
Data type property 7-3
data type support 55-5
data types

conversion 55-60
creating 12-38

dataobjectwizard 12-6
Default (Custom) storage class 7-5
default build configuration 54-2
Define (Custom) 7-7
#defines

changing all 12-36
defining all objects in separate file 12-26
defining one object in its own file 12-28
Definition file 7-6
Definition File priority 13-8
Demos 46-23
Description 7-9
design specification

developing 3-1 4-1 5-1
designs, model

optimizing for specific hardware with
on-target rapid prototyping 38-1

device driver blocks
input data types 49-20
input scaling 49-20
output data types 49-20
output scaling 49-20

dialog boxes
AUTOSAR Options 24-31
Model Interface 29-4

Dialog boxes
Model Explorer 12-8

Dimensions 7-3
Direct 7-8
DO-178B 22-2

standards, complying with 22-10
DO-178B Standard 22-10

Index-4

Index

DO178-B 22-2
DocBlock 17-6
domain

installing products for 3-1
downloading code 51-26
downloading code to target 49-39

application code 49-42
to flash memory 49-44
to RAM 49-43

DSP/BIOS
added files 56-78
files removed from project 56-78
to enable 56-92

DSP/BIOS, enabling 56-92

E
Eclipse™ IDE for C/C++ Developers 48-4
EDE handle name 46-15
elapsed time 32-3
Embedded Coder™

about 56-2
create Simulink® model for targeting 56-43
expected background for use 56-2
information for new users 56-3
listing link functions 54-48

Embedded Coder™ for use with Altium®

TASKING®

build process 46-27
objects 46-37

Embedded Coder™ product
PIL simulation 46-50

Embedded Coder™ software
IDE Link Utilities for Use with TASKING

dialog 46-21
introduction 46-2
limitations and tips 46-95
supported toolsets 46-6
target preferences 46-8
Tools menu 46-23

tutorials 46-75
user guide 46-7

enabling DSP/BIOS 56-92
entry points, model 33-1
ert_main.c 34-14
ert_main.cpp 34-14
example model

c166_bitfields 51-49
c166_fuelsys 51-31
c166_multitasking 51-56
c166_serial_io 51-28
c166_serial_transmit 51-24
c166_user_io 51-38

execution in timer-based models 56-22
execution profiling 51-56

subsystem 44-17
Export CrossView Pro handle to MATLAB base

workspace 46-15
Export EDE handle to MATLAB base

workspace 46-15
export filters to CCS IDE from FDATool 54-69

select the export data type 54-72
set the Export mode option 54-71

Export handles 46-15
ExportToFile (Custom) 7-8
external data dictionary

importing data objects from 12-16
External mode support 21-26

F
FDATool. See export filters to CCS IDE from

FDATool
file banners, generation of 17-50
file packaging 19-2
files added to DSP/BIOS project 56-78
files removed from DSP/BIOS projects 56-78
fixed-point example 51-31
fixed-point numbers 55-54 56-101

signed 56-102

Index-5

Index

Frame based 7-4
functions

overloading 47-26 50-30 54-50

G
generate optimized code 43-11
generated code

modules 19-2
verifying in target environment 40-1

generating code 51-26
generating reusable, reentrant code

codegen 23-1
Get function 7-9
GetSet (Custom) 7-8
GetSet custom storage class 8-66
getting properties 47-25 50-29
ghsmulti 50-26
ghsmulti object properties 50-32

portnum 50-32
procnum 50-31

Global (Custom) storage class 7-5
global comments

using DocBlock 17-6
using Simulink annotation 17-9
using sorted notes 17-10
using Stateflow note 17-9

Global priority 13-7
GNU Tool Chain on Linux® 48-5
GNU Tool Chain on Windows 48-7
Green Hills MULTI® IDE objects

tutorial about using 50-10
Green Hills Software model reference 50-39
guidelines

MISRA C® 22-5

H
hardware 56-4
Hardware Implementation parameters

configuration of 21-20
hardware, custom 56-55
Header file 7-6
Header File priority 13-8
heap size, set heap size 43-15
high-speed peripheral clock 55-7

I
identifier format control parameters 17-15
identifier format control tokens 17-14
IEC 61508 22-2

standards, complying with 22-6
IEC 61508 Standard 22-6
import filter coefficients from FDATool.. See

FDATool
ImportFromFile (Custom) 7-8
inaccurate profile information 56-82
#include

specifying delimiter 17-69
industry standards and guidelines

modeling and coding 22-2
initialized memory 56-58
inserting custom comments 17-4
inserting global comments 17-5
installing software 55-2 56-5
integer-only code 21-23
integer-only code generation 21-23
integrating manually coded device drivers 51-38
interrupts, servicing 34-4
intrinsics. See target function library
IQ Math library 55-53

building models 55-59
code optimization 55-60
common characteristics 55-54
Q format notation 55-56

ISO 26262
standards, complying with 22-8

ISO 26262 Standard 22-8
issues, using PIL 44-13

Index-6

Index

L
Launch and Test Communication with TASKING

EDE 46-21
link filters properties

getting 47-26 50-30
link properties

about 47-28 50-30 to 50-31 54-51 to 54-52
apiversion 54-53
boardnum 54-54
ccsappexe 54-54
numchannels 54-54
page 54-55
procnum 54-55
quick reference table 54-51
rtdx 54-55
rtdxchannel 54-56
setting 47-26 50-30
timeout 54-57
version 54-57

link properties, details about 47-28 50-31 54-52
linking objects

quick reference 47-27
links

closing CCS IDE 54-26
closing Green Hills MULTI® 50-25
closing RTDX 54-45
closing VisualDSP++® 47-21
communications for RTDX 54-36
creating links for RTDX 54-33
details 47-28 50-31 54-52
introducing the tutorial for using links for

RTDX 54-29
loading files into CCS IDE 54-18
loading files into Green Hills MULTI®

IDE 50-17
loading files into VisualDSP++® IDE 47-14
quick reference 50-30 54-51
running applications using RTDX 54-38
tutorial about using links for RTDX 54-27

working with your processor 47-15 50-19
54-20

M
main program (ert_main)

modifying 34-5
operation of 34-5
static module 34-14
VxWorks example 35-1

management, memory 56-58
map memory 56-57
map, memory 56-58
math blocks. See IQ Math library
MathWorks Automotive Advisory Board (MAAB)

guidelines, complying with 22-4
MathWorks® Automotive Advisory Board

(MAAB) 22-2
MATLAB functions

#define naming 12-36
parameter naming 12-35
signal naming 12-35

Maximum property 7-4
MemConst 7-5
MemConstVolatile 7-5
memory

initialized 56-58
management 56-58
map 56-58
section 56-58
segment 56-58
uninitialized 56-58

memory maps 56-57
Memory section 7-5
MemVolatile 7-5
methods

tasking.edeapi 46-46
tasking.edeproject 46-48
tasking.edeprojectspace 46-48
tasking.xviewapi 46-48

Index-7

Index

Minimum property 7-4
MISRA C 22-2
MISRA C®

guidelines, complying with 22-5
MISRA C® guidelines 22-5
model

add blocks 55-26
building overview 55-21
IQmath library 55-59

model design specification
developing 3-1 4-1 5-1

model designs
optimizing for specific hardware with

on-target rapid prototyping 38-1
model entry points 33-1
model execution 56-21
Model Explorer

parameter and signal properties 7-2
model reference 47-35 50-39 54-65 56-34

about 47-35 50-39 54-65 56-34
Archive__library 56-35
Archive_library 47-37 50-41 54-66
block limitations 47-38 50-42 54-67 56-36
modelreferencecompliant flag 47-38 50-42

54-68 56-37
setting build action 47-37 50-41 54-66 56-35
Target Preferences block 56-36
Target Preferences blocks 47-38 50-42 54-67
using 47-37 50-41 54-66 56-35

model schedulers 56-21
modelreferencecompliant flag 47-38 50-42

54-68 56-37
modifying rt_OneStep 34-12
MPC555 Target 49-2
mpt (module packaging tool) data object 12-4
MULTI

starting from MATLAB 50-12
stopping from MATLAB 50-12

multitasking 51-56

N
name mangling 17-16
naming rules

applying globally 12-30
changing all #defines 12-36
changing all parameter names 12-35
changing all signal names 12-35

new configuration
creating 46-80

numchannels 54-54

O
object

adivdsp 47-22
ghsmulti 50-26
ticcs 54-48

object properties
about 47-27
quick reference table 47-27 50-31

objects
accessing properties 46-45
calling methods 46-45
creating 46-43
creating objects for CCS IDE 54-16
creating objects for Green Hills MULTI®

IDE 50-16
creating objects for VisualDSP++® IDE 47-12
demo 46-46
finding methods 46-44
finding properties 46-45
introducing the objects for CCS IDE

tutorial 54-10
introducing the objects for Green Hills

MULTI® IDE tutorial 50-10
introducing the objects for VisualDSP++®

IDE tutorial 47-7
list of methods 46-46
obtaining method help 46-44
selecting processors for CCS IDE 54-14

Index-8

Index

selecting processors for VisualDSP++® IDE
47-11

terms 46-37
tutorial about using Automation Interface

for CCS IDE 54-10
tutorial about using Automation Interface

for Green Hills MULTI® IDE 50-10
tutorial about using Automation Interface

for VisualDSP++® IDE 47-7
using 46-38

on-target rapid prototyping
optimizing model designs for specific

hardware with 38-1
Open Existing Template Projects 46-22
optimization code 55-60
optimization, processor specific 43-11
optimize code 56-107
option sets 46-24

tutorial 46-75
Options 46-23
overloading 47-26 50-30 54-50
Owner 7-6
ownership

effects of settings 13-10
explanation 13-10

Ownership priority 13-8

P
package 12-3
page 54-55
Parameter class 12-3
parameter names

changing all 12-35
Persistence level 7-6
PIL (processor-in-the-loop) simulation 49-82

benefits of 49-82
getting started tutorial 49-85
hardware connections for 49-85
in plant/controller simulation 49-83

preparation for 49-85
technical overview of 49-83

PIL (processor-in-the-loop) target 49-82
files and folders created by 49-100
in SIL simulation 49-97
in simulation 49-94
using in closed-loop simulation 49-97

PIL block
creating 46-53

PIL issues 44-13
PIL simulation

building and downloading 46-54
coverage and profiling reports 46-58
debugging 46-56
overview 46-50
profiling reports 46-60

Pointer 7-8
portnum 50-32
priority and usage 13-3

Definition File priority 13-8
Global priority 13-7
Header File priority 13-8
introduction 13-3
Ownership priority 13-8
Read-Write priority 13-4
See also interdependent settings

processor configuration options
build action 43-12
overrun action 43-13

processor function library. See target function
library

processor specific optimization 43-11
processor-in-the-loop (PIL)

communications API 39-56
connectivity API 39-53
connectivity API demos 39-59
connectivity configuration 39-54
custom target 39-54
limitations 39-60
rtiostream API 39-56

Index-9

Index

target connectivity API 39-54
Processor-in-the-Loop (PIL) Verification 46-15
procnum 47-28 50-31 54-55
profile generated code 56-79
profile report

about 56-79
correcting inaccurate profile

information 56-82
CPU clock speed 56-88
maximum percent of interrupt interval (Max

%) 56-88
maximum time spent in this subsystem per

interrupt (Max time) 56-88
number of interrupts counted 56-87
profiling subsystems 56-80
reading 56-86
sample 56-86
STS objects 56-88
timing details 56-81
to generate 56-89

profiling execution
by subsystem 44-17

program execution
main program 34-5
rt_OneStep 34-7

multirate multitasking operation 34-9
multirate single-tasking operation 34-11
reentrancy 34-11
single-rate single-tasking operation 34-8

project generation
selecting the board 43-21 54-58

project-based build process 46-29
projects, create for CCS IDE 56-54
properties

link properties 50-30 54-51
object properties 47-27
referencing directly 47-26 50-30
retrieving 47-24 50-28

function for 47-25 50-29

retrieving by direct property
referencing 47-26 50-30

setting 47-24 50-28
property values

definition 12-2
descriptions 7-2
setting 12-8

pure integer code 21-23
and external mode 21-27

Q
Q format 55-56
Q format notation 56-103

R
rapid prototyping

optimizing model designs for specific
hardware with 38-1

rate grouping 34-10
Read-Write priority 13-4
real-time target

C166 tutorial 51-22
introduction 49-24
tutorial 49-26

code generation 49-31
example model for 49-28
prerequisites for 49-27

reentrant code 32-5
codegen 23-1

Remove IDE Link Configuration from
Model 46-23

requirements
validating with traceability 36-1

reset 55-22
reusable code 32-5

codegen 23-1
rtdx 54-55
RTDX links

Index-10

Index

tutorial about using 54-27
rtdxchannel 54-56
RTW.copyFileToBuildDir 31-135
rtwdemo_mpf.mdl 12-19
run the DSK confidence test 56-42

S
S-function wrapper generation 26-1
Sample based 7-4
Sample mode 7-4
Sample time 7-3
scheduling 55-6
section,memory 56-58
segment, memory 56-58
Select Preconfigured Target Preference

Settings 46-21
selecting boards 43-21 54-58
sessionname 47-29
Set function 7-9
set heap size 43-15
set properties 47-24 50-28
set stack size 43-14
Signal class 12-3
signal names

changing all 12-35
signed fixed-point numbers 55-56 56-102
simulation 49-82
simulation parameters

automatic 55-24
simulator

device cycle accurate 56-9
use simulators for development 56-9
use with DSP/BIOS 56-9

simulators, about 56-9
Simulink annotation 17-9
software-in-the-loop (SIL) simulation 49-97
solver modes, permitted 34-7
sorted notes 17-10
source and sink blocks 56-107

source code files, generated 19-2
specification

developing 3-1 4-1 5-1
stack size, set stack size 43-14
standards

DO-178B 22-10
IEC 61508 22-6
ISO 26262 22-8

standards and guidelines, modeling and
coding 22-2

start MULTI from MATLAB 50-12
startup c2000lib 55-24
Stateflow note 17-9
stop MULTI from MATLAB 50-12
Storage class 7-4
Struct (Custom) 7-8
Struct name 7-6
structure-like referencing 47-26 50-30
Sun™ Java™ Runtime Environment 48-4
supported hardware 56-5
symbols for templates

alphabetical list 17-62
synchronous scheduling 56-22
system requirements 56-4
System Target File Browser 16-4
system target files

selecting programmatically 16-4

T
target Code Composer Studio 56-54
target connectivity API 39-54
target custom hardware 56-55
target environment

verifying generated code in 40-1
target function library

assessing execution time after selecting a
library 45-5

create a custom library 45-8
optimization 45-2

Index-11

Index

seeing the library changes in your generated
code 45-5

selecting the library to use 45-4
use in the build process 45-3
using with link software 45-2
viewing library tables 45-8
when to use 45-4
. See TFL

target hardware setup
communications ports 49-133
jumper settings 49-134

target preferences
fields 46-10
setting 46-8

Target Preferences 46-21
Tools menu 46-23

Target Preferences block in referenced
models 56-36

Target Preferences blocks in referenced
models 47-38 50-42 54-67

Target Preferences Configuration 46-14
targets

selecting programmatically 16-4
task identifier (tid) 34-9
TASKING® CrossView Pro (Debugger)

MATLAB® API 46-4
TASKING® EDE

MATLAB® API 46-4
template projects 46-29

creating 46-76
templates

example with generated file 17-44
rules for creating or modifying 17-66
symbols 17-62

TFL 31-1
build information for function

replacements 31-134
cache hits and misses 31-144
conceptual view of function or operator 31-3
defining 31-16

examining 31-139
registering 31-148
reserved identifiers 31-137
RTW.copyFileToBuildDir 31-135
rtwTargetInfo.m file 31-148
selecting in MATLAB Coder 31-8
selecting in Simulink 31-8
sl_customization.m file 31-148
table definition file 31-16
table entry 31-3
target-specific implementation of function or

operator 31-3
TargetFcnLibHandle 31-144
tracing generated code 31-143
validating 31-139
Viewer 31-140
workflow 31-7
. See target function library

ticcs 54-48
tid 34-9
timeout 54-57

timeout 47-29 50-32
timer interrupts 34-4
timer-based models, execution 56-22
timer-based scheduler 56-22
timing 56-21

interrupts 55-6
traceability

for validating requirements 36-1
tutorial

changing identifier names 12-31
changing organization of generated file 17-33
configuring existing models 46-81
creating a data dictionary 12-19
defining all objects in separate file 12-26
defining one object in its own file 12-28
new configuration 46-80
new template projects 46-76
option sets 46-75

tutorial for C6713 DSK blocks 56-43

Index-12

Index

tutorials
links for RTDX 54-27
objects for CCS 54-10
objects for Green Hills MULTI® 50-10
objects for VisualDSP++® 47-7

U
uninitialized memory 56-58
Units 7-3
use blocks for the C6713 DSK 56-43
use C62x and C64x DSP Library blocks 56-99
use C6713 DSK blocks 56-43
User data type 12-38
User object type 7-2

V
Value 7-3

version 54-57
View, Modify, and Copy Configuration Sets via

Model Explorer 46-22
viewing target function libraries 45-8
virtualized output port optimization 21-24
VisualDSP++® IDE objects

tutorial about using 47-7
Volatile (Custom) 7-7
VxWorks deployment example 35-1

W
wizard

data object 12-5
working folder 56-45

Index-13

	toc
	Introduction to the Embedded Coder Product
	Bug Reports
	Developing Models for Code Generation
	Setting Up Your Modeling Environment
	Architecture Considerations
	Generating Code for Variant Systems
	Overview
	Why Generate Code for Variant Systems?
	How to Generate Preprocessor Conditionals for Variant Systems
	Defining Variant Control Variables and Variant Objects for Gener
	Configure Your Model for Generating Preprocessor Conditional Dir
	Build Your Model

	Reviewing Code Variants in the Code Generation Report
	Example of Model Variants in the Generated Code
	Example of Variant Subsystems in the Generated Code
	Open the Example Model
	Define the Variant Control Variables
	Make Each Child Subsystem an Atomic Subsystem
	Configure Your Model for Generating Preprocessor Conditional Dir
	View the Generated Code

	Restrictions on Code Generation of a Variant Subsystem
	Special Considerations for Generating Preprocessor Conditionals
	Limitations on Generating Code for Variants
	Exceptions to Conditionally Compiled Components in the Generated
	Demos for Generating Code for Variants

	Creating and Using Host-Based Shared Libraries
	Overview
	Generating a Shared Library Version of Your Model Code
	Creating Application Code to Load and Use Your Shared Library Fi
	Example Application Header File
	Example Application C Code
	Example Application Script

	Host-Based Shared Library Limitations

	Scheduling Considerations
	Using Discrete and Continuous Time
	Generating Code for Discrete and Continuous Time Blocks
	Generating Code that Supports Continuous Solvers
	Generating Code that Honors a Stop Time

	Optimizing Task Scheduling for Multirate Multitasking Models on
	Overview
	Using rtmStepTask
	Task Scheduling Code for Multirate Multitasking Model on Wind Ri
	Suppressing Redundant Scheduling Calls

	Developing Model Patterns that Generate Specific C Constructs
	About Modeling Patterns
	Standard Methods to Prepare a Model for Code Generation
	Configuring a Signal
	Configuring Input and Output Ports
	Initializing States
	Setting Up Configuration Parameters for Code Generation
	Setting Up an Example Model With a Stateflow Chart
	Setting Up an Example Model With a MATLAB Function Block

	Types, Operators, and Expressions
	Data Declaration
	C Construct
	Declare a Variable for a Block Parameter Using a Data Object
	C Construct
	Declare a Variable for a Signal using a Data Object

	Data Type Conversion
	C Construct
	Modeling Patterns
	Modeling Pattern for Data Type Conversion — Simulink Block
	Modeling Pattern for Data Type Conversion — Stateflow Chart
	Modeling Pattern for Data Type Conversion — MATLAB Function Bloc
	Other Type Conversions in Modeling

	Type Qualifiers
	Modeling Patterns for Type Qualifiers
	Using a Tunable Parameter in the Base Workspace
	Using a Data Object of the Const Custom Storage Class

	Relational and Logical Operators
	Modeling Patterns for Relational and Logical Operators
	Modeling Pattern for Relational or Logical Operators — Simulink
	Modeling Pattern for Relational and Logical Operators —Stateflow
	Modeling Pattern for Relational and Logical Operators — MATLAB F

	Bitwise Operations
	Simulink Bitwise-Operator Block
	Stateflow Chart
	MATLAB Function Block

	Control Flow
	If-Else
	C Construct
	Modeling Patterns
	Modeling Pattern for If-Else: Switch block
	Modeling Pattern for If-Else: Stateflow Chart
	Modeling Pattern for If-Else: MATLAB Function Block

	Switch
	C Construct
	Modeling Patterns
	Modeling Pattern for Switch: Switch Case block
	Modeling Pattern for Switch: MATLAB Function block
	Converting If-Elseif-Else to Switch statement

	For loop
	C Construct
	Modeling Patterns:
	Modeling Pattern for For Loop: For-Iterator Subsystem block
	Modeling Pattern for For Loop: Stateflow Chart
	Modeling Pattern for For Loop: MATLAB Function block

	While loop
	C Construct
	Modeling Patterns
	Modeling Pattern for While Loop: While Iterator Subsystem block
	Modeling Pattern for While Loop: Stateflow Chart
	Modeling Pattern for While Loop: MATLAB Function Block

	Do While loop
	C Construct
	Modeling Patterns
	Modeling Pattern for Do While Loop: While Iterator Subsystem blo
	Modeling Pattern for Do While Loop: Stateflow Chart

	Functions
	Function Call
	C Construct
	Procedure
	Results

	Function Prototyping
	C Construct
	Modeling Patterns
	Function Call Using Graphical Functions
	Control Function Prototype of the model_step Function

	External C Functions
	C Construct
	Modeling Patterns
	Using the Legacy Code Tool to Create S-functions
	Using a Stateflow Chart to Make Calls to C Functions
	Using a MATLAB Function Block to Make Calls to C Functions

	Preprocessor Directives
	Macro Definitions (#define)
	C Construct
	Modeling Patterns
	Using a ’Define’ Custom Storage Class
	Using a Custom Header File

	Conditional Inclusions (#if / #endif)

	Structures
	Typedef
	C Construct
	Procedure
	Results

	Structures for Parameters
	C Construct
	Procedure
	Results

	Structures for Signals
	C Construct
	Modeling Patterns
	Structure for Signals Using a ’Struct’ Custom Storage Class
	Structure for Signals Using a Simulink Non-Virtual Bus Object

	Nested Structures
	C Construct
	Procedure
	Results

	Bitfields
	C Construct
	Procedure
	Results

	Arrays
	Arrays for Parameters
	C Construct
	Procedure
	Results

	Arrays for Signals
	C Construct
	Procedure
	Results

	Pointers
	Pointers for Signals
	C Construct
	Procedure
	Results

	Pointers for Signals and Parameters Using Simulink Data Objects
	C Construct
	Procedure
	Results

	Defining Data Representation and Storage for Code Generation
	Using mpt Data Objects
	Creating and Using Custom Storage Classes
	Introduction to Custom Storage Classes
	Custom Storage Class Memory Sections
	Registering Custom Storage Classes
	Custom Storage Class Demos

	Resources for Defining Custom Storage Classes
	Simulink Package Custom Storage Classes
	Creating Packages that Support CSC Definitions
	Designing Custom Storage Classes and Memory Sections
	Using the Custom Storage Class Designer
	Selecting a Data Class Package
	Selecting and Editing CSCs, Memory Sections, and References
	Saving Your Definitions
	Restarting MATLAB After Changing Definitions

	Editing Custom Storage Class Properties
	General
	Comments. The Comments panel lets you specify comments to be ge
	Structure Attributes
	Validating CSC Definitions

	Using Custom Storage Class References
	Changing Existing CSC References

	Creating and Editing Memory Section Definitions
	Previewing Generated Code

	Using Memory Section References
	Changing Existing Memory Section References

	Applying CSCs to Parameters and Signals
	About Applying Custom Storage Classes
	Applying a Custom Storage Class to a Parameter
	Providing a Parameter Object Using the GUI
	Providing a Parameter Object Using the API

	Applying a Custom Storage Class to a Signal
	Applying a CSC Using a Base Workspace Signal Object
	Providing a Base Workspace Signal Object Using the GUI
	Providing a Base Workspace Signal Object Using the API

	Applying a CSC Using an Embedded Signal Object
	Providing an Embedded Signal Object using the GUI
	Deleting an Embedded Signal Object Using the GUI
	Providing an Embedded Signal Object using the API
	Changing an Embedded Signal Object Using the API
	Deleting an Embedded Signal Object Using the API

	Specifying a Custom Storage Class Using the GUI
	Specifying a Custom Storage Class Using the API
	RTWInfo Properties
	Specifying a Custom Storage Class
	Specifying Instance-Specific Attributes
	Assigning an Embedded Signal Object to an Output Port

	Generating Code with Custom Storage Classes
	Code Generation Prerequisites
	Code Generation Example
	Grouped Custom Storage Classes

	Defining Advanced Custom Storage Class Types
	Introduction
	Create Your Own Parameter and Signal Classes
	Create a Custom Attributes Class for Your CSC (Optional)
	Write TLC Code for Your CSC
	Register Custom Storage Class Definitions

	GetSet Custom Storage Class for Data Store Memory
	Overview
	GetSet CSC Properties
	Using the GetSet CSC
	GetSet CSC Restrictions
	GetSet Custom Storage Class Example

	Custom Storage Class Implementation
	Custom Storage Class Limitations

	Memory Sections
	Introduction to Memory Sections
	Overview
	Memory Sections Demo
	Additional Information

	Requirements for Defining Memory Sections
	Defining Memory Sections
	Editing Memory Section Properties
	Specifying the Memory Section Name
	Specifying a Qualifier for Custom Storage Class Data Definitions
	Specifying Comment and Pragma Text
	Surrounding Individual Definitions with Pragmas
	Including Identifier Names in Pragmas

	Configuring Memory Sections
	Declaring Constant Data as Volatile
	Applying Memory Sections
	Assigning Memory Sections to Custom Storage Classes
	Applying Memory Sections to Model-Level Functions and Internal D
	Applying Memory Sections to Atomic Subsystems

	Examples of Generated Code with Memory Sections
	Sample ERT-Based Model with Subsystem

	Model-Level Data Structures
	Model-Level Functions
	Subsystem Function

	Memory Section Limitation

	Optimizing Buses for Code Generation
	Introduction
	Setting Bus Diagnostics
	Optimizing Virtual and Nonvirtual Buses
	Use Virtual Buses Wherever Possible
	When are Virtual and Nonvirtual Buses Required?

	Avoid Nonlocal Nested Buses in Nonvirtual Buses

	Using Single-Rate and Multi-Rate Buses
	Introduction
	Techniques for Combining Multiple Rates
	Larger Buses and Multiple Rates
	Specifying Sample Time Rates

	Setting Bus Signal Initial Values
	Introduction
	Initializing Bus Signals in Simulink
	Bus Initialization in Stateflow
	Creating a Bus of Constants

	Buses and Atomic Subsystems
	Extract Nonvirtual Bus Signals Inside of Atomic Subsystems
	Virtual Bus Signals Crossing Atomic Boundaries
	Atomic Subsystems and Buses of Constants

	Renaming and Replacing Data Types
	Defining Application-Specific Data Types Based On Built-In Types
	Code Generation with User-Defined Data Types
	Overview
	Specifying Type Definition Location for User-Defined Data Types
	Omitting a HeaderFile Value
	Specifying a HeaderFile Value

	Using User-Defined Data Types for Code Generation

	Managing Data Definitions and Declarations With the Data Diction
	Overview of the Data Dictionary
	Creating Simulink and mpt Data Objects
	Overview
	Creating Simulink Data Objects with Data Object Wizard
	Creating Simulink Data Objects
	Setting Property Values for Simulink Data Objects
	Generating and Inspecting Code

	Creating mpt Data Objects with Data Object Wizard
	Comparing Simulink and mpt Data Objects
	Signal and Parameter Properties
	Configuration Parameters
	Generated Code

	Creating Data Objects Based on an External Data Dictionary
	Manually Creating Objects to Represent External Data
	Automatically Creating Objects to Represent External Data

	Creating a Data Dictionary for a Model
	Using Data Object Wizard
	Inspect the Data Dictionary
	Generate and Inspect Code

	Defining All Global Data Objects in a Separate File
	Defining a Specific Global Data Object in Its Own File
	Saving and Loading Data Objects
	Applying Naming Rules to Identifiers Globally
	Overview
	Changing Names of Identifiers
	Specifying Simulink Data Object Naming Rules
	Defining Rules That Change All Signal Names
	Defining Rules That Change All Parameter Names
	Defining Rules That Change All #defines

	Creating User Data Types
	Overview
	Registering User Data Types Using sl_customization.m
	Example User Data Type Customization Using sl_customization.m
	Example 1: sl_customization.m for User Data Type Customizations

	Selecting User Data Types for Signals and Parameters
	Preparing User Data Types
	Selecting the User Data Types

	Registering mpt User Object Types
	Introduction
	Registering mpt User Object Types Using sl_customization.m
	Example mpt User Object Type Customization Using sl_customizatio
	Example 2: sl_customization.m for mpt Object Type Customizations

	Replacing Built-In Data Type Names in Generated Code
	Replacing Built-In Data Type Names
	Example 3: Generated Code with real_T Built-In Data Type
	Example 4: Generated Code with FLOAT64 Replacement Data Type
	Replacing boolean with an Integer Data Type
	Data Type Replacement Limitations

	Customizing Data Object Wizard User Packages
	Introduction
	Registering Data Object Wizard User Packages Using sl_customizat
	Example Data Object Wizard User Package Customization Using sl_c
	Example 5: sl_customization.m for DOW User Package Customization

	Managing Placement of Data Definitions and Declarations
	Overview of Data Placement
	Priority and Usage
	Overview
	Read-Write Priority
	The Generated Files
	Settings for Read-Write Priority

	Global Priority
	Definition File, Header File, and Ownership Priorities

	Ownership Settings
	Memory Section Settings
	Data Placement Rules
	Example Settings
	Introduction
	Read-Write Example
	Ownership Example
	Header File Example
	Definition File Example

	Data Placement Rules and Effects
	Effects of Ownership Settings
	Example Settings and Resulting Generated Files
	Data Placement Rules
	Notes

	Specifying the Persistence Level for Signals and Parameters

	Preparing Models for Code Generation
	Mapping Application Objectives to Model Configuration Parameters
	Considerations When Mapping Application Objectives
	Defining High-Level Code Generation Objectives
	Determining Whether the Model is Configured for Specified Object
	Specifying Code Generation Objectives Using the GUI
	Specifying Code Generation Objectives at the Command Line
	Reviewing Objectives in Referenced Models
	Reviewing the Model Without Generating Code
	Reviewing the Model During Code Generation

	Creating Custom Objectives
	Specifying Parameters in Custom Objectives
	Specifying Checks in Custom Objectives
	Determining Checks and Parameters in Existing Objectives
	How to Create Custom Objectives

	Selecting and Configuring an Embedded Real-Time Target
	Introduction
	Selecting an ERT Target
	Customizing an ERT Target

	Specifying Code Appearance and Documentation
	Customizing Comments in Generated Code
	Adding Custom Comments to Generated Code
	Adding Custom Comments

	Adding Global Comments
	Introduction
	Using a Simulink DocBlock to Add a Comment
	Using a Simulink Annotation to Add a Comment
	Using a Stateflow Note to Add a Comment
	Using Sorted Notes to Add Comments

	Configuring the Appearance of Generated Identifiers
	Customizing Generated Identifiers
	Configuring Symbols
	Specifying Simulink Data Object Naming Rules
	Specifying Identifier Formats
	Name Mangling
	Traceability
	Minimizing Name Mangling
	Model Referencing Considerations
	Exceptions to Identifier Formatting Conventions
	Identifier Format Control Parameters Limitations

	Controlling Code Style
	Configuring Templates for Customizing Code Organization and Form
	Overview
	Custom File Processing Components
	Custom File Processing User Interface Options
	Code Generation Template (CGT) Files
	Default CGT file
	CGT File Structure
	Built-In Tokens and Sections
	Subsections

	Using Custom File Processing (CFP) Templates
	Custom File Processing (CFP) Template Structure
	Changing the Organization of a Generated File
	Generating Source and Header Files with a Custom File Processing
	Generating Code with a CFP Template
	Analysis of the Example CFP Template and Generated Code
	Generating a Custom Section

	Comparison of a Template and Its Generated File
	Template and Generated File

	Code Template API Summary
	Generating Custom File and Function Banners
	Creating a Custom File and Function Banner Template
	Customizing a Code Generation Template (CGT) File for File and F

	Template Symbols and Rules
	Introduction
	Template Symbol Groups
	Template Symbols
	Rules for Modifying or Creating a Template

	Configuring the Placement of Data in Generated Code
	Ensuring Delimiter Is Specified for All #Includes

	Defining Model Configuration Variations
	Introduction
	Viewing ERT Target Options in the Configuration Parameters Dialo

	Generating Code and Building Executables
	Generating Code Modules
	Code Modules
	Introduction
	Generated Code Modules
	User-Written Code Modules
	Customizing Generated Code Modules

	Generating Reports for Code Reviews and Traceability Analysis
	About HTML Code Generation Report Extensions
	Generating an HTML Code Generation Report
	Using the Code Interface Report to Analyze the Generated Code In
	Code Interface Report Overview
	Generating a Code Interface Report
	Navigating Code Interface Report Subsections
	Interpreting the Entry Point Functions Subsection
	Interpreting the Inports and Outports Subsections
	Interpreting the Interface Parameters Subsection
	Interpreting the Data Stores Subsection
	Code Interface Report Limitations

	Optimizing Generated Code
	Configuring Production Code Optimizations
	Optimization Dependencies
	Optimizing Your Model with Configuration Wizard Blocks and Scrip
	Overview
	Adding a Configuration Wizard Block to Your Model
	Using Configuration Wizard Blocks
	Creating a Custom Configuration Wizard Block
	Setting Up a Configuration Wizard Block
	Creating a Configuration Wizard Script
	Invoking a Configuration Wizard Script from the MATLAB Command P

	Tips for Optimizing the Generated Code
	Introduction
	Using Configuration Wizard Blocks
	Setting Hardware Implementation Parameters Correctly
	Removing Unnecessary Initialization Code
	Generating Pure Integer Code If Possible
	Disabling MAT-File Logging
	Using Virtualized Output Ports Optimization
	Controlling Signal Storage
	Using External Mode with the ERT Target
	Memory Management
	Generation of Pure Integer Code with External Mode

	Optimizing Generated Code Using Specified Minimum and Maximum Va
	How to Configure Your Model
	How to Enable Simulation Range Checking
	How to Enable Optimization
	Example: Optimizing Generated Code Using Specified Minimum and M
	Limitations

	Developing Models and Code That Comply with Industry Standards a
	What Are the Standards and Guidelines?
	Developing Models and Code That Comply with MAAB Guidelines
	Developing Models and Code That Comply with MISRA C Guidelines
	Developing Models and Code That Comply with the IEC 61508 Standa
	Applying Simulink and Embedded Coder to the IEC 61508 Standard
	Checking for IEC 61508 Standard Compliance Using the Model Advis
	Validating Traceability

	Developing Models and Code That Comply with the ISO 26262 Standa
	Applying Simulink and Embedded Coder to the ISO 26262 Standard
	Checking for ISO 26262 Standard Compliance Using the Model Advis
	Validating Traceability

	Developing Models and Code That Comply with the DO-178B Standard
	Applying Simulink and Embedded Coder to the DO-178B Standard
	Checking for Standard Compliance Using the Model Advisor
	Validating Traceability

	Generating Reentrant Code from MATLAB Code
	What Is Reentrant Code?
	When to Generate Reentrant Code
	How to Generate Reentrant Code
	Prerequisites
	Procedure

	Generated Code API
	How to Call Reentrant Code in a Single-Thread Environment
	How to Call Reentrant Code in a Multithreaded Environment
	Multithreaded Examples

	Example: Calling Reentrant Code with No Persistent or Global Dat
	MATLAB Code Used for This Example
	Providing a main Function
	Generating Reentrant C Code
	Examining the Generated Code
	Running the Code

	Example: Calling Reentrant Code — Multithreaded with Persistent
	MATLAB Code Used for This Example
	Providing a main Function
	Generating Reentrant C Code
	Examining the Generated Code
	Running the Code

	Example: Calling Reentrant Code — Multithreaded with Persistent
	MATLAB Code Used for This Example
	Providing a main Function
	Generating Reentrant C Code
	Examining the Generated Code
	Running the Code

	Generating Code for AUTOSAR Software Components
	Overview of AUTOSAR Support
	Simulink Modeling Patterns for AUTOSAR
	About Simulink Modeling Patterns for AUTOSAR
	AUTOSAR Software Components
	Runnables
	Multiple Instantiation

	AUTOSAR Communication
	Sender-Receiver Interface
	Client-Server Interface

	Calibration Parameters
	About Calibration Parameters
	Importing and Exporting Calibration Parameters

	Inter-Runnable Variables
	Data Types
	Enumerated Data Types

	Per-Instance Memory
	AUTOSAR Terminology

	Workflow for AUTOSAR
	Importing an AUTOSAR Software Component
	Preparing a Simulink Model for AUTOSAR Code Generation
	Using the Configure AUTOSAR Interface Dialog Box
	Configuring Single Runnables for DataReceivedEvents

	Configuring Ports for Basic Software and Error Status Receivers
	Configuring Client-Server Communication
	Configuring a Server Operation
	Configuring the Invoke AUTOSAR Server Operation Block
	Creating Configurable Subsystems from a Client-Server Interface
	Simulating and Generating Code for Client-Server Communication

	Configuring Multiple Runnables
	Configuring Inter-Runnable Variables
	Specifying Execution Period
	Configuring Multiple Runnables for DataReceivedEvents

	Configuring Calibration Parameters
	Using Data Store Memory Blocks to Specify Per-Instance Memory
	Creating an AUTOSAR.Signal Object

	Modifying and Validating an Existing AUTOSAR Interface

	Generating AUTOSAR Code and Description Files
	Selecting an AUTOSAR Schema
	Specifying Maximum SHORT-NAME Length
	Configuring AUTOSAR Compiler Abstraction Macros
	Configuring AUTOSAR Compiler Macro Generation
	Example

	Root-Level Matrix I/O
	Exporting AUTOSAR Software Component

	Configuring AUTOSAR Options Programmatically
	Verifying the AUTOSAR Code with SIL and PIL Simulations
	Overview
	Using the SIL and PIL Simulation Modes
	AUTOSAR Top Model SIL and PIL Support
	AUTOSAR Model Block SIL and PIL Support

	Using a SIL or PIL Block for AUTOSAR Verification
	AUTOSAR SIL and PIL Block Support

	Limitations and Tips
	Cannot Import Internal Behavior
	Cannot Copy Subsystem Blocks Without Losing Interface Informatio
	Error If No Default Configuration
	The Generate Code Only Check Box
	Specify Sample Time Independent Server Operation Model
	Invoke AUTOSAR Server Operation Block in Referenced Model
	Cannot Save Importer Objects in MAT-Files
	Using the Merge Block for Inter-Runnable Variables
	Using Goto and From Blocks Within Wrapper Subsystems
	AUTOSAR Compiler Abstraction Macros
	Intrinsic Fixed-Point Types for Model Configured as Server
	Server Operation Model with Tunable Parameters
	Migrating AUTOSAR Development Kit Models

	Demos and Further Reading
	AUTOSAR Demos
	Further Reading

	Integrating External Code and Generated C and C++ Code
	About External Code Integration Extensions
	Generating S-Function Wrappers
	About S-Function Wrapper Generation
	Creating a SIL Block
	S-Function Wrapper Generation Limitations

	Exporting Function-Call Subsystems
	Overview
	Exported Subsystems Demo
	Additional Information

	Requirements for Exporting Function-Call Subsystems
	Requirements for All Exported Subsystems
	Blocks Must Support Code Generation
	Blocks Must Not Use Absolute Time
	Blocks Must Not Depend on Elapsed Time
	Trigger Signals Require a Common Source
	Trigger Signals Must Be Scalar
	Data Signals Must Be Nonvirtual

	Requirements for Exported Virtual Subsystems
	Virtual Subsystem Must Use Only Permissible Blocks
	Constant Blocks Must Be Inlined
	Constant Outputs Must Specify a Storage Class

	Techniques for Exporting Function-Call Subsystems
	General Workflow
	Specifying a Custom Initialize Function Name
	Specifying a Custom Description

	Optimizing Exported Function-Call Subsystems
	Exporting Function-Call Subsystems That Depend on Elapsed Time
	Function-Call Subsystem Export Example
	Function-Call Subsystems Export Limitations

	Nonvirtual Subsystem Modular Function Code Generation
	Overview
	Configuring Nonvirtual Subsystems for Generating Modular Functio
	Examples of Modular Function Code for Nonvirtual Subsystems
	H File Differences for Nonvirtual Subsystem Function Data Separa
	C File Differences for Nonvirtual Subsystem Function Data Separa

	Nonvirtual Subsystem Modular Function Code Limitations

	Controlling Generation of Function Prototypes
	Overview
	Configuring Model Function Prototypes
	Launching the Model Interface Dialog Boxes
	Default Model Initialize and Step Functions View
	Model Specific C Prototypes View
	Configuring Function Prototypes for Nonvirtual Subsystems

	Model Function Prototypes Example
	Configuring Model Function Prototypes Programmatically
	Sample Script for Configuring Model Function Prototypes
	Verifying Generated Code for Customized Functions
	Model Function Prototype Control Limitations

	Controlling Generation of Encapsulated C++ Model Interfaces
	Overview of C++ Encapsulation
	C++ Encapsulation Quick-Start Example
	Generating and Configuring C++ Encapsulation Interfaces to Model
	Selecting the C++ (Encapsulated) Option
	Configuring Code Interface Options
	Configuring the Step Method for Your Model Class
	Passing No Arguments (void-void)
	Passing I/O Arguments

	Configuring C++ Encapsulation Interfaces for Nonvirtual Subsyste

	Configuring C++ Encapsulation Interfaces Programmatically
	Sample Script for Configuring the Step Method for a Model Class
	C++ Encapsulation Interface Control Limitations

	Replacing Math Functions and Operators Using Target Function Lib
	Introduction to Target Function Libraries
	Overview of Target Function Libraries
	Target Function Libraries General Workflow
	Target Function Libraries Quick-Start Example

	Creating Function Replacement Tables
	Overview of Function Replacement Table Creation
	Creating Table Entries
	Overview of Table Entry Creation
	General Method for Creating Function and Operator Entries
	Alternative Method for Creating Function Entries

	Example: Mapping Math Functions to Target-Specific Implementatio
	Example: Mapping the memcpy Function to a Target-Specific Implem
	Example: Mapping Nonfinite Support Utility Functions to Target-S
	Example: Mapping Scalar Operators to Target-Specific Implementat
	Mapping Nonscalar Operators to Target-Specific Implementations
	Example: Mapping Small Matrix Operations to Processor-Specific I
	Example: Mapping Matrix Multiplication to MathWorks BLAS Functio
	Example: Mapping Matrix Multiplication to ANSI/ISO C BLAS Functi

	Mapping Fixed-Point Operators to Target-Specific Implementations
	Overview of Fixed-Point Operator Replacement
	Fixed-Point Numbers and Arithmetic
	Addition
	Subtraction
	Multiplication
	Division
	Data Type Conversion (Cast)
	Shift
	Creating Fixed-Point Operator Entries
	Example: Creating Fixed-Point Operator Entries for Binary-Point-
	Example: Creating Fixed-Point Operator Entries for [Slope Bias]
	Example: Creating Fixed-Point Operator Entries for Relative Scal
	Example: Creating Fixed-Point Operator Entries for Net Slope (Mu
	Example: Creating Fixed-Point Operator Entries for Equal Slope a
	Mapping Data Type Conversion (Cast) Operations to Target-Specifi
	Mapping Fixed-Point Shift Left Operations to Target-Specific Imp

	Remapping Operator Outputs to Implementation Function Input Posi
	Refining TFL Matching and Replacement Using Custom TFL Table Ent
	Example: Customizing TFL Matching and Replacement for Operators
	Example: Customizing TFL Matching and Replacement for Functions

	Replacing Math Functions Based on Computation Method
	Specifying Build Information for Function Replacements
	Functions for Specifying Table Entry Build Information
	Using RTW.copyFileToBuildDir to Copy Files to the Build Folder
	RTW.copyFileToBuildDir Examples

	Adding Target Function Library Reserved Identifiers

	Examining and Validating Function Replacement Tables
	Overview of Function Replacement Table Validation
	Invoking the Table Definition File
	Using the Target Function Library Viewer to Examine Your Table
	Using the Target Function Library Viewer to Examine Registered T
	Tracing Code Generated Using Your Target Function Library
	Examining TFL Cache Hits and Misses

	Registering Target Function Libraries
	Overview of TFL Registration
	Using the sl_customization API to Register a TFL with Simulink S
	Using the rtwTargetInfo API to Register a TFL with MATLAB Coder
	Registering Multiple TFLs

	Target Function Library Limitations

	Setting Up Generated Code To Interface With Components in the Ru
	Configuring the Target Hardware Environment
	Configuring Support for Numeric Data
	Configuring Support for Time Values
	Setting Up Support for Non-Inlined S-Functions
	Configuring Model Function Generation and Argument Passing
	Setting Up Support for Code Reuse
	Configuring Target Function Libraries

	Model Entry Points
	Interfacing With Hardware That is Not Running an Operating Syste
	About Standalone Program Execution
	Generating a Standalone Program
	Standalone Program Components
	Main Program
	Overview of Operation
	Guidelines for Modifying the Main Program

	rt_OneStep and Scheduling Considerations
	Overview of Operation
	Single-Rate Single-tasking Operation
	Multirate Multitasking Operation
	Task Identifiers
	Prioritization of Base-Rate and Subrate Tasks
	Rate Grouping and Rate-Specific model_step Functions
	Scheduling model_stepN Execution
	Preemption
	Overrun Detection

	Multirate Single-Tasking Operation
	Guidelines for Modifying rt_OneStep

	Static Main Program Module
	Overview
	Rate Grouping and the Static Main Program
	Modifying the Static Main Program

	Rate Grouping Compliance and Compatibility Issues
	Main Program Compatibility
	Making Your S-Functions Rate Grouping Compliant
	Listing 1: Outputs Code Generation Without Rate Grouping
	Listing 2: Outputs Code Generation With Rate Grouping

	Wind River Systems VxWorks Example Main Program
	Introduction to the VxWorks Example Main Program
	Task Management
	Overview of Operation
	Single-Rate Single-tasking Operation
	Multirate Multitasking Operation
	Multirate Single-tasking Operation

	Verifying Generated Code Applications
	Tracing Generated Code to Requirements
	About Generated Code and Requirements Traceability
	Goals of Generated Code and Requirements Traceability

	Verifying Generated Code
	Traceability for Production Code Generation
	About Traceability
	Tracing Code to Model Objects Using Hyperlinks
	Tracing Model Objects to Generated Code
	Reloading Existing Traceability Information
	Customizing Traceability Reports
	Generating a Traceability Matrix (DO Qualification Kit or IEC Ce
	Traceability Limitations

	Checking Code Correctness
	About Checking Code Correctness
	How To Check Code Correctness

	Rapid Prototyping On a Target System
	About On-Target Rapid Prototyping
	Goals of On-Target Rapid Prototyping
	Optimizing Generated Code for an Embedded Processor With On-Targ

	Verifying Generated Code With SIL and PIL Simulations
	About SIL and PIL Simulations
	Overview
	What are SIL and PIL Simulations?
	Why Use SIL and PIL

	How SIL and PIL Simulations Work
	Comparison of SIL and PIL Simulation
	Choosing a SIL or PIL Approach
	About Choosing a SIL or PIL Simulation
	When to Use Top-Model SIL or PIL
	When to Use Model Block SIL or PIL
	Modeling Scenarios with the Model Block

	When to Use the SIL or PIL Block

	Configuring a SIL or PIL Simulation
	Top-Model SIL or PIL Simulation
	Model Block SIL or PIL Simulation
	Using a SIL or PIL Block
	Verifying a SIL or PIL Configuration
	How To Verify a SIL or PIL Configuration

	Compatible Models

	Code Coverage
	Using a Code Coverage Tool in a SIL Simulation
	Code Coverage Annotations in Code Generation Report
	Tips and Limitations

	Code Coverage for a PIL Simulation
	Configuring Code Coverage Programmatically

	Code Execution Profiling
	About Code Execution Profiling
	Configuring Code Execution Profiling
	How Profiling Settings Apply to Model and PIL Blocks

	Viewing and Analyzing Code Execution Profiles
	Code Execution Profiling Example
	Tips and Limitations
	Triggered Model Block
	Outliers in Execution Profiles
	Execution Times with Separate Output and Update Functions

	Running a Top Model as a SIL or PIL Simulation
	Running a Referenced Model as a SIL or PIL Simulation
	Verifying Internal Signals of a Component
	Simulation Mode Override Behavior in Model Reference Hierarchy

	SIL and PIL Code Interfaces
	Code Interface for Top-Model SIL or PIL
	Code Interface for Model Block SIL or PIL

	Configuring Hardware Implementation Settings for SIL
	Compiling Generated Code That Supports Portable Word Sizes
	Portable Word Sizes Limitations

	Programming PIL Support for Third-Party Tools and Target Hardwar
	Creating a Connectivity Configuration for a Target
	What Is a PIL Connectivity Configuration?
	Overview of the Target Connectivity API
	Target Connectivity API Components
	Communications rtiostream API

	Creating a Connectivity API Implementation
	Registering a Connectivity API Implementation
	Demos of the Target Connectivity API

	SIL and PIL Simulation Support and Limitations
	About SIL and PIL Simulation Support and Limitations
	Code Source Support
	Custom Code Interfaces
	SIL/PIL Does Not Check Simulink Coder Error Status
	Cannot Use Multirate Model Block SIL/PIL Inside Conditionally Ex
	PIL Block Export Functions

	Block Support
	Merge Block Issue
	Other Top-Model SIL/PIL Limitations

	Configuration Parameters Support
	Missing Code Interface Description File Errors
	Algebraic Loop Issues

	I/O Support
	Tunable Parameters and SIL/PIL
	Global Data Store Support
	Imported Data Definitions
	Unsupported Custom Storage Classes
	Unsupported Implementation Errors
	Variable-Size Signals and SIL/PIL
	Fixed-Point Tool Data Type Override
	Data Type Overrides Unavailable for Most Blocks in Embedded Targ
	Data Type Replacement Limitation
	Top-Model SIL/PIL Bus Limitations
	PIL Block Virtual Bus Support Limitations
	PIL Block MUX Support Limitations
	Incremental Build for Top-Model SIL/PIL
	Top-Model SIL/PIL Logging Limitations
	Exported Functions in Feedback Loops

	Hardware Implementation Support
	Hardware Implementation Settings

	Other Feature Support

	Verifying a Component in the Target Environment
	About Component Verification in the Target Environment
	Goals of Component Verification in the Target Environment
	Maximizing Code Portability and Configurability
	Simplifying Code Integration and Maximizing Code Efficiency
	Running Component Tests in the Target Environment

	Verifying a Component by Building a Complete Real-Time Target En
	About Component Verification With a Complete Real-Time Target En
	Goals of Component Verification With a Complete Real-Time Target
	Testing a Component as Part of a Complete Real-Time Target Envir

	Verifying Numerical Equivalence of Results with Code Generation
	Verifying Numerical Equivalence with Code Generation Verificatio
	Code Generation Verification API Overview
	Verifying Numerical Equivalence with CGV Workflow
	Example of Verifying Numerical Equivalence Between Two Modes of
	Configuring the Model
	Executing the Model
	Comparing All Output Signals
	Comparing Individual Output Signals

	Example of Plotting Output Signals

	Embedded IDEs and Embedded Targets
	Project and Build Configurations
	Model Setup
	Block Selection
	Target Preferences
	Supported IDEs
	What is a Target Preferences Block?
	Adding a Target Preferences Block to Your Model
	Creating a Library of Customized Target Preferences Blocks

	Configuration Parameters
	What are Configuration Parameters?
	Setting Model Configuration Parameters
	Build format
	Build action
	Overrun notification
	Function name
	Configuration
	Compiler options string
	Linker options string
	System stack size (MAUs)
	System heap size (MAUs)
	Profile real-time execution
	Link Automation
	Maximum time allowed to build project (s)
	Maximum time allowed to complete IDE operations (s)
	Export IDE link handle to base workspace
	IDE link handle name
	Source file replacement

	Model Reference
	Target Preferences Blocks in Reference Models

	IDE Projects
	Third Party Product Setup
	For Code Composer Studio
	For Eclipse
	Installation of MathWorks Products on 64-bit Host Computers
	IDE Link Configuration
	Analog Devices VisualDSP++ IDE
	Eclipse IDE
	Green Hills MULTI IDE
	Texas Instruments Code Composer Studio IDE
	Code Generation and Build
	Building Your Model
	Green Hills MULTI Output Folder
	Project Generator Features
	IDE Handle Objects

	Automation of IDE Tasks and Processes
	Getting Started with Automation Interface

	Makefiles
	Using XMakefile to Generate and Build Software
	Overview
	Feature Support
	Configuring Your Model to Use Makefiles
	Choosing an XMakefile Configuration
	Building Your Model
	Green Hills MULTI Output Folder

	Making an XMakefile Configuration Operational
	Example: Creating a New XMakefile Configuration
	Overview
	Create a Configuration
	Modify the Configuration
	Test the Configuration

	XMakefile User Configuration Dialog Box
	Active
	Make Utility
	Compiler
	Linker
	Archiver
	Pre-build
	Post-build
	Execute
	Tool Directories

	Verification and Profiling
	What Is Verification?
	Processor-in-the-Loop (PIL) Simulation
	Overview
	Approaches
	Model Block PIL
	Top Model PIL
	PIL Block
	Preparing Your Model to Generate a PIL Block
	Setting Model Configuration Parameters to Generate the PIL Appli
	Creating the PIL Block Application from a Model Subsystem
	Running Your PIL Application to Perform Simulation and Verificat

	Communications
	TCP/IP
	Additional Steps for TI C6000 Processors
	Debugger

	Definitions
	PIL Issues and Limitations
	Constraints
	Generic PIL Issues
	With Texas Instruments CCS, PIL with DSP/BIOS Enabled Does Not S
	Simulink Coder grt.tlc-Based Targets Not Supported
	Execution Profiling During PIL Simulation and Standalone Executi

	Execution Profiling
	What Is Execution Profiling?
	Execution Profiling during Standalone Execution Mode
	By Tasks
	By Subsystems

	Execution Profiling during PIL Simulation

	Stack Profiling
	What is Stack Profiling?
	Profiling System Stack Use

	Processor-Specific Optimizations
	Target Function Library (TFL)
	About Target Function Libraries and Optimization
	Code Generation Using the Target Function Library

	Using a Processor-Specific Target Function Library to Optimize C
	Process of Determining Optimization Effects Using Real-Time Prof
	Reviewing Processor-Specific Target Function Library Changes in
	Reviewing Code Manually
	Using Model-to-Code Tracing
	Using a File Differencing Scheme

	Reviewing Target Function Library Operators and Functions
	Creating Your Own Target Function Library

	Working with Altium TASKING IDE
	Getting Started
	Overview
	Introduction
	Project Generator
	Automation Interface
	Verification
	Optimization

	Supported Altium TASKING Toolsets
	Supported Versions
	Support for Other Versions

	Using This Guide
	Setting Target Preferences for Altium TASKING
	Procedure
	Target Preference Fields

	Working with Configuration Sets
	Adding the Embedded Coder Configuration Set Component
	Configuration Set Options
	Using Configuration Sets to Specify Your Target
	Setting Build Action

	Accessing Utilities for TASKING
	IDE Link Utilities for Use with TASKING dialog
	Tools Menu Items

	Option Sets
	What Are Option Sets?
	Supported DAS Software

	Components
	Project Generator
	Overview of the Project Generator Component
	Project-Based Build Process
	Template Projects
	Shared Libraries
	Example 1
	Example 2

	Build Process — Folder Structure

	Automation Interface
	Overview of Automation Interface Component
	Classes
	Using Objects
	Create EDE and CrossView Pro Handles
	Create an EDE handle for TriCore

	List of Methods
	Details of Particular Methods

	Verification
	Processor-in-the-Loop (PIL) Simulation
	Processor-in-the-Loop Overview
	PIL Workflow
	Creating a PIL Block
	Building, Running, and Debugging PIL Block Applications
	PIL Block Parameters
	10-Second Pause on Termination of the CrossView Pro Debugger

	PIL Metrics

	C Code Coverage Reports
	Execution Profiling
	CrossView Pro Execution Profiling
	Task Execution Profiling Kit

	Stack Profiling
	What Is Stack Profiling?
	PIL Applications
	Non-PIL Applications
	Infineon TriCore Stack Depth Analyzer

	Bidirectional Traceability Between Code and Model
	Using Traceability
	Enabling Traceability

	MISRA C Rule Checking

	Optimization
	Compiler / Linker Optimization Settings
	Target Memory Placement / Mapping
	Execution and Stack Profiling
	Execution Profiling
	Stack Profiling

	Target Specific Optimizations
	C Language Extensions / Intrinsics
	ISO/IEC 9899:1999 Math Library
	Saturated Arithmetic

	Target Optimized Libraries for Infineon XC166 and Infineon TriCo

	Model Advisor

	Tutorials
	Tutorial: Using Option Sets
	Tutorial: Creating New Template Projects
	Creating New Template Projects
	Creating a New Configuration

	Tutorial: Configuring an Existing Model for Embedded Coder Softw

	Code Generation Pane — IDE Link
	Overview
	Configuration
	See Also

	Build Action
	Settings
	Tip
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Target Preference Configuration
	Settings
	Command-Line Information
	See Also

	Add build directory suffix
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Build directory suffix
	Settings
	Dependencies
	Command-Line Information
	See Also

	Export EDE handle to MATLAB base workspace
	Settings
	Dependencies
	Command-Line Information
	See Also

	EDE handle name
	Settings
	Dependencies
	Command-Line Information
	See Also

	Export CrossView Pro handle to MATLAB base workspace
	Settings
	Dependencies
	Command-Line Information
	See Also

	CrossView Pro handle name
	Settings
	Dependency
	Command-Line Information
	See Also

	Configure model to build PIL algorithm object code
	Settings
	Dependency
	See Also

	Limitations and Tips
	General Issues
	IDE Link TASKING requires User Account Control (UAC) to be disab
	Problems with Installations in Read-Only Locations
	Simulink Configuration Set Reference Not Supported
	Serialization of Embedded Coder Objects Not Supported
	Avoid Spaces in Environment Variables Used by tempname and tempd

	Debugger Issues
	ARM CrossView Pro Debugger Fails with File | Open Source Conten
	On-Chip Debugging/On-Chip PIL Not Supported on ARM Hardware

	Build Process Issues
	Linker Errors Due to Limited Memory
	EDE Is Slow, Unresponsive, or Crashes
	DSP System Toolbox Library Build Failures
	Memory Block Freed Twice Error
	8051 EDE Cannot Compile Files with Long Names
	DSP563xx Toolset Support Limitations
	“Create, Build and Execute Application Project” Build Action Fai
	C166 Toolset Warnings
	Build Error From Root Drive Location
	Limited Support for Nonfinite Values
	Memory Warning/Error Messages in the CrossView Pro Command Windo
	C++ Code Generation Not Supported
	Computer Vision System Toolbox Library Not Supported
	Noninlined S-functions Calling rt_matrx.c Not Supported
	“Compiler optimization level” Configuration Parameter Has No Eff
	Configuration Changes Cause Build Errors With Referenced Models

	Processor-in-the-Loop Issues
	Generic PIL Issues
	On-Chip PIL Not Supported on ARM Hardware
	10-Second Pause on Termination of the CrossView Pro Debugger
	DSP563xx Link-Order Issue Can Cause PIL Application Failure
	No Support for TASKING Feature “Treat double as float”
	TASKING Optimization Settings May Cause Incorrect Simulation Res

	Issues Using Simulink Coder Software Without Embedded Coder Soft
	Simulink Coder grt.tlc-Based Targets Not Supported for PIL
	DSP563xx Toolset Support Limitations
	Use ERT Target for Memory-Constrained Targets
	8051 GRT Limitations

	Working with Analog Devices VisualDSP++ IDE
	Getting Started
	Overview
	Software Structure and Components
	Automation Interface
	Project Generator
	Verification

	Software Requirements
	Installation and Configuration

	Automation Interface
	Getting Started with Automation Interface
	Introducing the Automation Interface Tutorial
	Running the Interactive Tutorial
	Selecting Your Session and Processor
	Querying Objects for VisualDSP++ IDE
	Loading Files into VisualDSP++ IDE
	Running the Project
	Working with Global Variables and Memory
	Working with Local Variables and Memory
	Closing Files and Projects
	Closing the Connections or Cleaning Up VisualDSP++ Software
	Tutorial Summary

	Constructing Objects
	Example — Constructor for adivdsp Objects

	Properties and Property Values
	Setting and Retrieving Property Values
	Setting Property Values Directly at Construction
	Setting Property Values with set
	Retrieving Properties with get
	Direct Property Referencing to Set and Get Values
	Overloaded Functions for adivdsp Objects

	adivdsp Object Properties
	Quick Reference to adivdsp Properties
	Details About adivdsp Object Properties

	Project Generator
	Introducing Project Generator
	Project Generator Tutorial
	Building the Model
	Adding the Target Preferences Block to Your Model
	Specifying Simulink Configuration Parameters for Your Model

	Model Reference
	How Model Reference Works
	Using Model Reference
	Configuring Targets to Use Model Reference

	Reported Limitations and Tips
	Reported Issues
	Using 64-bit Symbols in a 64-bit Memory Section on SHARC Process

	Working with Eclipse IDE
	Tested Software Versions
	Installing Third-Party Software for Eclipse
	Installing Sun Java Runtime Environment (JRE)
	Installing Eclipse IDE for C/C++ Developers
	Verifying the GNU Tool Chain on Linux
	Installing the GNU Tool Chain on Windows

	Configuring Your MathWorks Software to Work with Eclipse
	Additional Configuration Steps to Run Your Executable on a Remot

	Troubleshooting with Eclipse IDE
	SIGSEGV Segmentation Fault for GDB
	GDB Stops on Each Semaphore Post
	Build Errors
	Profiling is not available for Intel x86/Pentium and AMD K5/K6/A
	Eclipse Message: “Can’t find a source file”
	Eclipse Message: “Cannot access memory at address”

	Working with Freescale MPC5xx Processors
	Getting Started
	Overview
	Introduction
	Feature Summary
	Code Validation
	Determining Code Size

	Applications for the coder product

	Additional Blocks on MATLAB Central Web Site
	Using This Guide
	CAN Hardware Requirements for Freescale MPC5xx
	Supported Cross-Development Tools for Freescale MPC5xx
	Setting Up and Verifying Your Configuring the Host Vector CAN Ap
	Setting Target Preferences for MPC5xx
	Configuring the coder product for Your Cross-Development Toolcha
	Use Prebuilt Libraries

	Run Test Program
	Download Boot Code to Flash Memory

	Accessing Utilities for Freescale MPC555
	Utilities for Use with MPC555 Dialog

	Data Type Support and Scaling for Device Driver Blocks

	Generating Stand-Alone Real-Time Applications
	Overview
	Generating Real-Time Applications
	Deploying Generated Code

	Tutorial: Creating a New Application
	Tutorial Overview
	Before You Begin
	The Example Model
	Generating Code
	Downloading the Application to RAM via Serial or CAN
	Downloading the Application to RAM via BDM

	Downloading Boot and Application Code
	RAM vs. Flash Memory
	Overview of Memory Organization and the Boot Process
	Downloading Application Code
	Using the Download Control Panel as a Standalone Application
	Downloading Boot or Application Code via CAN Without Manual CPU
	Rebuilding the Boot Code and Device Driver Libraries
	Running Applications with a Debugger

	Parameter Tuning and Signal Logging
	Methods for Parameter Tuning and Signal Logging
	Using External Mode
	Using a Third Party Calibration Tool
	Data Acquisition (DAQ) List Configuration

	HTML Code Profile (RAM/ROM) Report
	Execution Profiling
	Overview of Execution Profiling
	The Profiling Command
	Execution Profiling Definitions
	MPC5xx Options for Execution Profiling
	Interpreting the Execution Profiling Graphic
	Enabling Execution Profiling for Device Driver Interrupt Service

	Summary of the Real-Time Target
	Code Generation Options
	Requirements and Restrictions

	Performance Tips
	Run the Model Advisor
	Increase the System Clock Beyond the Default 20 MHz
	Use Flash Instead of RAM
	TouCAN Interrupt Generator Block Performance Tips
	Optimized Target Function Library

	PIL Simulation
	Overview of PIL Simulation
	What Is PIL Simulation?
	Why Use Simulation?
	How Simulation Works

	Tutorial 1: Building and Running a PIL Simulation
	Before You Begin
	Hardware Connections
	The Demo Model
	Setting Up the Model
	Building PIL and Simulation Components
	Using the Demo Model In a PIL Simulation
	Modifying the Controller Subsystem

	Tutorial 2: Using the Demo Model in Simulation
	Closed-Loop Simulation
	SIL Simulation

	PIL Target Summary
	Code Generation Options
	Build Process Files and Folders
	Restrictions

	Algorithm Export Target
	HTML Code Analysis (RAM/ROM) Report
	Algorithm Export Target Summary
	Code Generation Options
	Restrictions

	Configuration Parameters
	Code Generation Pane: ET MPC5xx (Algorithm Export) Options
	ET MPC5xx (Algorithm Export) Options Tab Overview
	Use prebuilt (static) libraries

	Code Generation Pane: ET MPC5xx (Processor-in-the-Loop) Options
	ET MPC5xx (Processor-in-the-Loop) Options Tab Overview
	Optimize compiler for
	Compiler optimization switches
	Build action

	Code Generation Pane: ET MPC5xx Real-Time Options (1)
	ET MPC5xx Real-Time Options (1) Tab Overview
	Target Memory Model

	Code Generation Pane: ET MPC5xx Real-Time Options (2)
	ET MPC5xx Real-Time Options (2) Tab Overview
	Maximum number of concurrent base-rate overruns
	Maximum number of concurrent sub-rate overruns
	Execution profiling
	Number of data points

	Toolchains and Hardware
	Setting Up Your Toolchain
	Setting Up Your Installation with Wind River Compiler and Wind R
	Required Hardware and Software
	Procedure

	Setting Up Your Installation with Freescale CodeWarrior
	Required Hardware and Software
	Procedure
	Limitations

	Setting Up Your Target Hardware
	Communications Ports
	Jumper Settings

	CAN Hardware and Drivers
	Configuring CAN Channels
	Creating and Assigning Application Channels

	Configuration for Nondefault Hardware
	Hardware Clock Configuration
	Other Configuration Changes for Nondefault Hardware

	Integrating External Blocksets
	Introduction
	Example External Blockset Folder Structure and rtwmakecfg.m

	Working with Green Hills MULTI IDE
	Getting Started
	Overview
	Software Structure and Components
	Components
	Automation Interface
	Project Generator
	Verification
	Configuring Your Software
	Configuring Green Hills MULTI to use Full Folder Paths

	Automation Interface
	Getting Started with Automation Interface
	Introducing the Automation Interface Tutorial
	Starting and Stopping Green Hills MULTI From the MATLAB Desktop
	Running the Interactive Tutorial
	Querying Objects for Green Hills MULTI Software
	Loading Files into Green Hills MULTI Software
	Running the Project
	Working With Data in Memory
	More Memory Data Manipulation
	Closing the Connections to Green Hills MULTI Software
	Tasks Performed During the Tutorial

	Constructing Objects
	Example — Constructor for ghsmulti Objects

	Properties and Property Values
	Working with Properties
	Setting and Retrieving Property Values
	Setting Property Values Directly at Construction
	Setting Property Values with set
	Retrieving Properties with get
	Direct Property Referencing to Set and Get Values
	Overloaded Functions for ghsmulti Objects

	ghsmulti Object Properties
	Quick Reference to ghsmulti Properties
	Details About ghsmulti Object Properties

	Project Generator
	Introducing Project Generator
	Project Generator Tutorial
	Process for Building and Generating a Project
	Create the Model
	Adding the Target Preferences Block to Your Model
	Specifying Simulink Configuration Parameters for Your Model
	Creating Your Project

	Model Reference
	About Model Reference
	How Model Reference Works
	Using Model Reference
	Configuring Targets to Use Model Reference

	Breakpoints and PIL

	Working with Infineon C166 Processors
	Getting Started
	Overview
	Introduction
	Feature Summary

	Using This Guide
	Supported Hardware for Infineon C166
	CAN Hardware

	Supported Cross-Development Tools for Infineon C166
	Switching Between Hardware Variants
	Setting Up and Verifying Your Installation
	Setting Up Software
	Verifying MiniMon Settings

	Setting Up Your Target Hardware
	Jumper Settings for the phyCore-167 Development Board
	Setting Up XC164CM Hardware
	Jumper Settings for the STMicrolectronics MB449 ST10F25x EVA Boa

	Setting C166 Target Preferences
	Code Generation Configuration for Nondefault Processors
	Supported Blocks and Data Types
	Accessing Utilities for Infineon C166
	Overview of C166 Options in the Configuration Parameters Dialog

	Tutorial: Simple Example Applications for C166 Microcontrollers
	Introduction
	Tutorial: Creating a New Application
	Tutorial Overview
	Before You Begin
	Example Model 1: c166_serial_transmit
	Generating and Downloading Code
	Example 2: c166_serial_io

	Debugging and Using The Code Profile Report
	Starting the Debugger on Completion of the Build Process
	RAM / ROM Code Profile Report

	Parameter Tuning and Signal Logging
	Methods For Parameter Tuning and Signal Logging
	Using a Third Party Calibration Tool

	Integrating Your Own Device Drivers
	Integrating Manually Coded Device Drivers with a Simulink Model
	Preparing Input and Output Signals to the Device Driver Function
	Calling the Device Driver Functions from c166_main.c
	Adding the I/O Driver Source to the List of Files to Build
	Tutorial: Using the Example Driver Functions

	Custom Storage Class for C166 Microcontroller Bit-Addressable Me
	Specifying C166 Microcontroller Bit-Addressable Memory
	Using the Bitfield Example Model

	Execution Profiling
	Overview of Execution Profiling
	Introducing Execution Profiling
	The Profiling Command
	Definitions
	Execution Profiling Blocks

	Options for Execution Profiling
	Execution Profiling
	Number of Data Points
	Task Scheduler Overrun Options

	Multitasking Demo Model
	Introducing the Multitasking Demo
	Running the Multitasking Demo
	Interpreting the MATLAB Graphic
	The Generated HTML Report

	Configuration Parameters
	Code Generation Pane: C166 Options
	C166 Options Tab Overview
	Include input/output driver function hooks
	Maximum number of concurrent base-rate overruns:
	Maximum number of concurrent sub-rate overruns:
	Execution profiling
	Number of data points:

	Working with Linux Target
	Disambiguation
	Preparing Models to Run on Linux
	Scheduler
	Base Rate
	Running Target Applications on Multicore Processors
	Avoiding Lock-Up in Free-Running, Multirate, Multitasking Models
	Limitations
	Profiling is not available for Intel x86/Pentium and AMD K5/K6/A

	Example: Build Generated Code on a BeagleBoard Running Linux
	Overview
	Configure the Windows Host
	Configure the BeagleBoard
	Configure MATLAB

	Example: Build Generated Code on a Linux Host, Then Run It Remot
	Overview
	Prerequisites
	Set up your environment for Linux-ARM Code Generation
	Generate Code for Linux-ARM
	External Mode Simulation

	Embedded Linux Topics
	Troubleshooting “sched_setaffinity: Bad address” Error

	Working with Microsoft Windows Target
	Preparing Models to Run on Windows
	Scheduler
	Selecting the Operating System and Scheduling Mode
	Base Rate
	Running Target Applications on Multicore Processors
	Limitations
	Profiling is not available for Intel x86/Pentium and AMD K5/K6/A

	Working with Texas Instruments Code Composer Studio IDE
	Code Composer Studio
	Using Code Composer Studio with Embedded Coder Software
	Default Project Configuration
	Default Build Options in the CustomMW Configuration

	Getting Started
	Overview
	Automation Interface
	Project Generator
	Verification

	Configuration Information
	Verifying Your Code Composer Studio Installation

	Automation Interface
	Getting Started with Automation Interface
	Introducing the Automation Interface Tutorial
	Selecting Your Processor
	Creating and Querying Objects for CCS IDE
	Loading Files into CCS
	Working with Projects and Data
	Closing the Links or Cleaning Up CCS IDE

	Getting Started with RTDX
	Introducing the Tutorial for Using RTDX
	Creating the ticcs Objects
	Configuring Communications Channels
	Running the Application
	Closing the Connections and Channels or Cleaning Up
	Listing Functions

	Constructing ticcs Objects
	Example — Constructor for ticcs Objects

	ticcs Properties and Property Values
	Overloaded Functions for ticcs Objects
	ticcs Object Properties
	Quick Reference to ticcs Object Properties
	Details About ticcs Object Properties

	Project Generator
	Introducing Project Generator
	Project Generation and Board Selection
	Project Generator Tutorial
	Creating the Model
	Adding the Target Preferences Block to Your Model
	Specify Configuration Parameters for Your Model

	Model Reference
	How Model Reference Works
	Using Model Reference
	Configuring processors to Use Model Reference

	Exporting Filter Coefficients from FDATool
	About FDATool
	Preparing to Export Filter Coefficients to Code Composer Studio
	Features of a Filter
	Selecting the Export Mode
	Choosing the Export Data Type

	Exporting Filter Coefficients to Your Code Composer Studio Proje
	Exporting Filter Coefficients from FDATool to the CCS IDE Editor
	Reviewing ANSI C Header File Contents

	Preventing Memory Corruption When You Export Coefficients to Pro
	Allocating Sufficient or Extra Memory for Filter Coefficients
	Example: Using the Exported Header File to Allocate Extra Proces
	Replacing Existing Coefficients in Memory with Updated Coefficie
	Example: Changing Filter Coefficients Stored on Your Processor

	Tutorial: Using XMakefile with Code Composer Studio 4.x
	Introduction
	Set Up XMakefile for CCSv4
	Prepare Your Model for CCSv4 and Makefiles
	Create Target Configuration File in CCSv4
	Load and Run the Embedded Software

	Reported Limitations and Tips
	Demonstration Programs Do Not Run Properly Without Correct GEL F
	Changing Values of Local Variables Does Not Take Effect
	Code Composer Studio Cannot Find a File After You Halt a Program
	File Not Found
	Defining a Search Path for Source Files
	To Specify Search Path Directories

	C54x XPC Register Can Be Modified Only Through the PC Register
	Working with More Than One Installed Version of Code Composer St
	Workaround

	Changing CCS Versions During a MATLAB Session
	MATLAB Hangs When Code Composer Studio Cannot Find a Board
	Using Mapped Drives
	Uninstalling Code Composer Studio 3.3 Prevents Embedded Coder Fr
	PostCodeGenCommand Commands Do Not Affect Embedded Coder Project

	Working with Texas Intruments C2000 Processors
	Setting Up and Configuring
	Installing and Configuring Software
	Verifying the Configuration

	Data Type Support
	Scheduling and Timing
	Overview
	Timer-Based Interrupt Processing
	High-Speed Peripheral Clock

	Asynchronous Interrupt Processing

	Sharing General Purpose Timers between C281x Peripherals
	Example 1
	Example 2

	Overview of Creating Models for C2000 Processors
	Accessing the Embedded Coder Block Library
	Building Your Model
	F2812, F2808, and F28335 eZdsp Reset Sequence

	Using the c2000lib Blockset
	Introduction
	Hardware Setup
	Starting the c2000lib Library
	Setting Up the Model
	Adding Blocks to the Model
	Generating Code from the Model

	Configuring Timing Parameters for CAN Blocks
	The CAN Blocks
	Setting Timing Parameters
	Accessing the Timing Parameters
	Determining Timing Parameter Values
	CAN Bit Timing Example

	Parameter Tuning and Signal Logging
	Overview
	Using External Mode
	Using a Third Party Calibration Tool

	Configuring Acquisition Window Width for ADC Blocks
	What Is an Acquisition Window?
	Configuring ADC Parameters for Acquisition Window Width
	Accessing the ADC Parameters
	Examples

	Using the IQmath Library
	About the IQmath Library
	Introduction
	Common Characteristics
	References

	Fixed-Point Numbers
	Notation
	Signed Fixed-Point Numbers
	Q Format Notation

	Building Models
	Overview
	Converting Data Types
	Using Sources and Sinks
	Choosing Blocks to Optimize Code
	Double and Single-Precision Parameter Values

	Programming Flash Memory
	Introduction
	Installing TI Flash APIs
	Configuring the DSP Board Bootloader
	Configuring the Software for Automatic Flash Programming
	Selectively Erase, Program, or Verify Specific Flash Sectors
	Placing Additional Code or Data on Unused Flash Sectors

	Configuring LIN Communications
	Overview
	Configuring Your Model

	Working with Texas Instruments C6000 Processors
	Getting Started
	Overview
	Product Description

	Using This Guide
	Expected Background

	Configuration Information
	Setting Up and Configuring
	System Requirements
	Supported Hardware
	Installing and Configuring Software

	Targeting C6000 DSP Hardware
	Introduction to Targeting
	Overview
	About the Tutorials

	C6000 and Code Composer Studio IDE
	Using Code Composer Studio with Embedded Coder Software
	About Simulators
	Typical Hardware Setup for a Development Board

	Targeting Tutorial — Single Rate Application
	Overview
	Building the Audio Reverberation Model
	Adding C6713 DSK Blocks to Your Model
	Configuring Embedded Coder Blocks
	Specifying Configuration Parameters for Your Model

	Schedulers and Timing
	Timer-Based Versus Asynchronous Interrupt Processing
	Blocks in the DSP/BIOS (dspbioslib) library
	Blocks in the Scheduling (c6000dspcorelib) library
	Blocks in the Embedded Coder library for Texas Instruments Code
	Blocks in the idelinklib_common library
	Synchronous Scheduling
	Asynchronous Scheduling
	Asynchronous Scheduler Examples
	Compatibility Considerations

	Uses for Asynchronous Scheduling
	Idle Task. The following model illustrates a case where the rev

	Scheduling Considerations

	Model Reference and Embedded Coder Software
	Overview
	How Model Reference Works
	Using Model Reference with Embedded Coder Software
	Configuring Targets to Use Model Reference

	Targeting Supported Boards
	Overview
	Typical Targeting Process
	Targeting the C6713 DSP Starter Kit
	Configuring Your C6713DSK
	Confirming Your C6713DSK Installation

	Simulink Models and Targeting
	Creating Your Simulink Model for Targeting

	Targeting Tutorial II — A More Complex Application
	Overview
	Working and Build folders
	Setting Simulation Program Parameters
	Selecting the Target Configuration
	Building and Running the Program
	Contents of the Build folder

	Targeting Your C6713 DSK and Other Hardware
	Overview
	Confirming Your C6713 DSK Installation
	Running Models on Your C6713 DSK

	Creating Code Composer Studio Projects Without Building
	Introduction
	Creating Projects in CCS IDE Without Loading Files to Your Targe

	Targeting Custom Hardware
	Overview
	Typical Targeting Process
	Targeting a Custom Target
	Section Pane
	To Create Memory Maps for Targets

	Using Embedded Coder Software
	Introduction
	To Use the Embedded Coder Target File

	Targeting with DSP/BIOS Options
	Introducing DSP/BIOS
	DSP/BIOS and Targeting Your C6000 DSP
	Introduction
	DSP/BIOS Configuration File
	Memory Mapping
	Hardware Interrupt Vector Table
	Linker Command File

	Code Generation with DSP/BIOS
	Overview
	Generated Code Without and With DSP/BIOS

	Profiling Generated Code
	Overview
	Profiling Subsystems
	Details About Timing and Profiling
	Profiling Multitasking Systems
	The Profiling Report
	Interrupts and Profiling
	Reading Your Profile Report
	Definitions of Report Entries
	Profiling Your Generated Code
	To Enable Profiling for Your Generated Code
	To Create Atomic Subsystems for Profiling

	Using DSP/BIOS with Your Target Application
	Enabling DSP/BIOS When You Generate Code

	Generating Code for Any C64x+ Processor or Board
	Example: Creating a Custom Target Preferences Block for OMAP-L13

	Using the C62x and C64x DSP Libraries
	About the C62x and C64x DSP Libraries
	C62x DSP Library
	C64x DSP Library
	Supported Platforms
	Characteristics Common to C62x and C64x Library Blocks

	Fixed-Point Numbers
	Notation
	Signed Fixed-Point Numbers
	Q Format Notation

	Building Models
	Overview
	Converting Data Types
	Using Sources and Sinks
	Choosing Blocks to Optimize Code

	Configuring Timing Parameters for CAN Blocks
	Setting Timing Parameters
	Accessing the Timing Parameters
	Determining Timing Parameter Values
	CAN Bit Timing Example

	Hardware Issues
	Configuring the D.signT DSK-91C111 to Use TCP/IP and UDP
	Requirements for the DM642 EVM
	Identifying Your DM642 EVM Board Version
	Installing Third-party Software
	Configuring the Target Preferences Block for Your DM642 EVM
	Configuring the DM642 EVM Video ADC Block

	Installing and Configuring the Avnet Board Support Library
	Preface
	Installing the Avnet Board Support Library
	Setting the MATLAB Environment
	For Spectrum Digital DM6437EVM Users
	Verifying Your Installation

	Continuing Issues with Embedded Coder Software
	Setting the Clock Speed on the C6713 DSK
	Simulink Stop Block Works Differently When Not Using DSP/BIOS Fe
	Installing Third-Party Embedded Coders

	Working with Wind River VxWorks Target
	Overview of Support for Wind River VxWorks
	Tutorial: Building and Running Embedded Software on VxWorks
	Install and Set Up the Wind River Development Environment
	Setting VxWorks Environment Variables and Starting MATLAB
	Setting Up XMakefile for VxWorks
	Customizing XMakefile to Automatically Download and Build Your S
	Prepare Your Model for VxWorks and Makefiles
	Build Your Embedded Software

	Generating Code for VxWorks Running on Other Targets
	Schedulers
	Running Target Applications on Multicore Processors

	Examples
	Code Generation
	Custom Storage Classes
	Memory Sections
	Advanced Code Generation
	Target Function Libraries
	Data Structures, Code Modules, and Program Execution
	Verifying Generated Code
	Makefiles
	Verification
	Tutorials
	Automation Interface
	Working with adivdsp Objects
	Project Generator
	Real-Time Target
	Processor-in-the-Loop Target
	Algorithm Export Target
	Working with ghsmulti Objects
	Simple Example Applications
	Integrating Manually Coded Device Drivers
	Bit-Addressable Memory
	Execution Profiling
	Working with ticcs Objects
	Exporting Filter Coefficients from FDATool
	Q Format Examples
	Targeting Tutorials
	Asynchronous Scheduler
	Profiling Code
	Target Preferences

	Index

	tables
	Parameter and Signal Property Values
	Some Examples of the Effect of Property Value Changes on Generat
	Simulink Package CSC Instance-Specific Properties
	Model-Level Memory Section Assignments and Definitions
	Subsystem-Level Memory Section Assignments and Definitions
	Naming Rules and Alias Override (Global Change of Force Lower Ca
	Identifier Format Tokens
	Identifier Format Control Parameter Values
	How Name Mangling Strings Are Computed
	Built-In CGT Tokens and Corresponding Code Sections
	Subsections Defined for Built-In Sections
	How the Template Affects Code Generation
	Code Template API Functions
	Built-in Styles
	Summary of Tokens for File Banner Generation
	Summary of Tokens for Function Banner Generation
	Summary of Tokens for Shared Utility Function Banner Generation
	Embedded Coder File Packaging
	Generated Files According to File Packaging Format
	Function Prototype Control Functions
	C++ Encapsulation Interface Control Functions
	Permitted Solver Modes for Embedded Coder Targeted Models
	I/O Data Types and Scaling for MPC5xx Device Driver Blocks
	Default Boot Code Parameters
	Real-Time Target Restricted Code Generation Options
	PIL Target Restricted Code Generation Options
	AE Target Restricted Code Generation Options
	GP Timer Use for C281x Peripheral Blocks

